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Abstract 

This paper describes classification of typed 
student utterances within AutoTutor, an intel-
ligent tutoring system.  Utterances are classi-
fied to one of 18 categories, including 16 
question categories.  The classifier presented 
uses part of speech tagging, cascaded finite 
state transducers, and simple disambiguation 
rules. Shallow NLP is well suited to the task: 
session log file analysis reveals significant 
classification of eleven question categories, 
frozen expressions, and assertions.  

1 Introduction 

AutoTutor is a domain-portable intelligent tutoring 
system (ITS) with current versions in the domains of 
physics and computer literacy (Graesser et al. 1999; 
Olney et al. 2002).   AutoTutor, like many other ITSs, is 
an intersection of applications, including tutoring, 
mixed-initiative dialogue, and question answering.  In 
each of these, utterance classification, particularly ques-
tion classification, plays a critical role.  

In tutoring, utterance classification can be used to 
track the student's level of understanding.  Contribution 
and question classifications can both play a role: contri-
butions may be compared to an expected answer 
(Graesser et al. 2001) and questions may be scored by 
how "deep" they are.  For example, The PREG model 
(Otero and Graesser 2001) predicts under what circum-
stances students will ask "deep" questions, i.e. those that 
reveal a greater level of cognitive processing than who, 
what, when, or where questions.  A student who is only 
asking shallow questions, or no questions at all, is pre-
dicted by PREG to not have a situation-level under-
standing (van Dijk and Kintsch 1983) and thus to learn 
less and forget faster.  The key point is that different 

metrics for tracking student understanding are applica-
ble to questions and contributions.  Distinguishing them 
via classification is a first step to applying a metric. 

In mixed-initiative dialog systems, utterance classifi-
cation can be used to detect shifts in initiative.  For ex-
ample, a mixed-initiative system that asks, "Where 
would you like to travel", could respond to the question, 
"Where can I travel for $200?" (Allen 1999) by giving a 
list of cities.  In this example, the user is taking the ini-
tiative by requesting more information.  In order to re-
spond properly, the system must detect that the user has 
taken initiative before it can respond appropriately; oth-
erwise it might try to interpret the user's utterance as a 
travel destination.  In this sense, questions mark redirec-
tion of the dialogue, whereas contributions are continua-
tions of the dialogue.  In order for a user to redirect the 
dialogue and thus exercise initiative, a mixed-initiative 
system must be able to distinguish questions and contri-
butions. 

Question classification as early as Lehnert (1978) 
has been used as a basis for answering questions, a trend 
that continues today (Voorhees 2001).  A common fea-
ture of these question-answering systems is that they 
first determine the expected answer type implicit in the 
question.  For example, "How much does a pretzel cost" 
might be classified according to the answer type of 
MONEY or QUANTITY.  Knowledge of the expected an-
swer type can be used to narrow the search space for the 
answer, either online (Brill et al. 2001) or in a database 
(Harabagiu et al. 2000).  Accordingly, question answer-
ing calls for a finer discrimination of question types as 
opposed to only distinguishing questions from contribu-
tions. 

AutoTutor uses utterance classification to track stu-
dent progress, to determine initiative, and to answer 
questions. By virtue of being embedded in AutoTutor, 
the utterance classifier presented here has an unusual set 
of constraints, both practical and theoretical.  On the 
practical side, AutoTutor is a web-based application that 
performs in real time; thus utterance classification must 



also proceed in real time.  For that reason, the classifier 
uses a minimum of resources, including part of speech 
tagging (Brill 1995; Sekine and Grishman 1995) and 
cascaded finite state transducers defining the categories.  
Theoretically speaking, AutoTutor must also recognize 
questions in a meaningful way to both question answer-
ing and tutoring.  The question taxonomy utilized, that 
of Graesser et al (1992), is an extension of Lehnert's 
(1978) taxonomy for question answering and has been 
applied to human tutoring (Graesser et al. 1992; 
Graesser and Person 1994).   

This paper outlines the utterance classifier and quan-
tifies its performance.  In particular, Section 2 presents 
AutoTutor.  Section 3 presents the utterance taxonomy.  
Section 4 describes the classifier algorithm.  Section 5 
delineates the training process and results.  Section 6 
presents evaluation of the classifier on real AutoTutor 
sessions.  Section 7 concludes the paper. 

2 AutoTutor 

AutoTutor is an ITS applicable to any content domain.  
Two distinct domain applications of AutoTutor are 
available on the Internet, for computer literacy and con-
ceptual physics.  The computer literacy AutoTutor, 
which has now been used in experimental evaluations 
by over 200 students, tutors students on core computer 
literacy topics covered in an introductory course, such 
as operating systems, the Internet, and hardware.  The 
topics covered by the physics AutoTutor are grounded 
in basic Newtonian mechanics and are of a similar in-
troductory nature.  It has been well documented that 
AutoTutor promotes learning gains in both versions 
(Person et al. 2001). 

AutoTutor simulates the dialog patterns and peda-
gogical strategies of human tutors in a conversational 
interface that supports mixed-initiative dialog. AutoTu-
tor’s architecture is comprised of seven highly modular 
components: (1) an animated agent, (2) a curriculum 
script, (3) a speech act classifier,  (4) latent semantic 
analysis (LSA), (5) a dialog move generator, (6) a Dia-
log Advancer Network, and (7) a question-answering 
tool (Graesser et al. 1998; Graesser et al. 2001; 
Graesser et al. 2001; Person et al. 2000; Person et al. 
2001; Wiemer-Hastings et al. 1998).  

A tutoring session begins with a brief introduction 
from AutoTutor’s three-dimensional animated agent.  
AutoTutor then asks the student a question from one of 
topics in the curriculum script. The curriculum script 
contains lesson-specific tutor-initiated dialog, including 
important concepts, questions, cases, and problems 
(Graesser and Person 1994; Graesser et al. 1995; 
McArthur et al. 1990; Putnam 1987). The student sub-
mits a response to the question by typing and pressing 
the “Submit” button. The student’s contribution is then 
segmented, parsed (Sekine and Grishman 1995) and 

sent through a rule-based utterance classifier.  The clas-
sification process makes use of only the contribution 
text and part-of-speech tag provided by the parser. 

Mixed-initiative dialog starts with utterance classifi-
cation and ends with dialog move generation, which can 
include question answering, repeating the question for 
the student, or just encouraging the student.  Concur-
rently, the LSA module evaluates the quality of the stu-
dent contributions, and in the tutor-initiative mode, the 
dialog move generator selects one or a combination of 
specific dialog moves that is both conversationally and 
pedagogically appropriate (Person et al 2000; Person et 
al. 2001). The Dialog Advancer Network (DAN) is the 
intermediary of dialog move generation in all instances, 
using information from the speech act classifier and 
LSA to select the next dialog move type and appropriate 
discourse markers.  The dialog move generator selects 
the actual move.  There are twelve types of dialog 
move: Pump, Hint, Splice, Prompt, Prompt Response, 
Elaboration, Summary, and five forms of immediate 
short-feedback (Graesser and Person 1994; Graesser et 
al. 1995; Person and Graesser 1999).  

3 An utterance taxonomy 

The framework for utterance classification in Table 1 is 
familiar to taxonomies in the cognitive sciences 
(Graesser et al. 1992; Graesser and Person 1994).  The 
most notable system within this framework is QUALM 
(Lehnert 1978), which utilizes twelve of the question 
categories.  The taxonomy can be divided into 3 distinct 
groups, questions, frozen expressions, and contribu-
tions.  Each of these will be discussed in turn. 

The conceptual basis of the question categories 
arises from the observation that the same question may 
be asked in different ways, e.g. "What happened?" and 
"How did this happen?"  Correspondingly, a single lexi-
cal stem for a question, like "What" can be polysemous, 
e.g. both in a definition category, "What is the definition 
of gravity?" and metacommunicative, "What did you 
say?"  Furthermore, implicit questions can arise in tutor-
ing via directives and some assertions, e.g. "Tell me 
about gravity" and "I don't know what gravity is."  In 
AutoTutor these information seeking utterances are 
classified to one of the 16 question categories. 
The emphases on queried concepts rather than ortho-
graphic forms make the categories listed in Table 1 bear 
a strong resemblance to speech acts.  Indeed, Graesser 
et al. (1992) propose that the categories be distinguished 
in precisely the same way as speech acts, using seman-
tic, conceptual, and pragmatic criteria as opposed to 
syntactic and lexical criteria. Speech acts presumably 
transcend these surface criteria: it is not what is being 
said as what is done by the saying (Austin, 1962; Searle, 
1975). 



The close relation to speech acts underscores what a 
difficult task classifying conceptual questions can be. 
Jurafsky and Martin (2000) describe the problem of 
interpreting speech acts using pragmatic and semantic 
inference as AI-complete, i.e. impossible without creat-
ing a full artificial intelligence.  The alternative ex-
plored in this paper is cue or surface-based 
classification, using no context.  

It is particularly pertinent to the present discussion 
that the sixteen qualitative categories are employed in a 
quantitative classification process.  That is to say that 
for the present purposes of classification, a question 
must belong to one and only one category.  On the one 
hand this idealization is necessary to obtain easily ana-
lyzed performance data and to create a well-balanced 
training corpus.  On the other hand, it is not entirely 
accurate because some questions may be assigned to 
multiple categories, suggesting a polythetic coding 
scheme (Graesser et al. 1992).  Inter-rater reliability is 
used in the current study as a benchmark to gauge this 
potential effect. 

Frozen expressions consist of metacognitive and 
metacommunicative utterances.  Metacognitive utter-
ances describe the cognitive state of the student, and 
they therefore require a different response than ques-
tions or assertions.  AutoTutor responds to metacogni-
tive utterances with canned expressions such as, "Why 
don't you give me what you know, and we'll take it from 
there."  Metacommunicative acts likewise refer to the 

dialogue between tutor and student, often calling for a 
repetition of the tutor's last utterance.  Two key points 
are worth noting: frozen expressions have a much 
smaller variability than questions or contributions, and 
frozen expressions may be followed by some content, 
making them more properly treated as questions.  For 
example, "I don't understand" is frozen, but "I don't un-
derstand gravity" is a more appropriately a question. 

Contributions in the taxonomy can be viewed as 
anything that is not frozen or a question; in fact, that is 
essentially how the classifier works.  Contributions in 
AutoTutor, either as responses to questions or un-
prompted, are tracked to evaluate student performance 
via LSA, forming the basis for feedback. 

4 Classifier Algorithm 

The present approach ignores the semantic and prag-
matic context of the questions, and utilizes surface fea-
tures to classify questions.  This shallow approach 
parallels work in question answering (Srihari and Li 
2000; Soubbotin and Soubbotin 2002; Moldovan et al 
1999). Specifically, the classifier uses tagging provided 
by ApplePie (Sekine and Grishman 1995) followed by 
cascaded finite state transducers defining the categories.  
The finite state transducers are roughly described in 
Table 2. Every transducer is given a chance to match, 
and a disambiguation routine is applied at the end to 
select a single category.  

Category Example 
 
Questions 
Verification  
Disjunctive 
Concept Completion  
Feature Specification  
Quantification 
Definition  
Example 
Comparison  
Interpretation  
Causal Antecedent  
Causal Consequence  
Goal Orientation  
Instrumental/Procedural  
Enablement  
Expectational  
Judgmental 
 

 
 
Does the pumpkin land in his hands? 
Is the pumpkin accelerating or decelerating? 
Where will the pumpkin land? 
What are the components of the forces acting on the pumpkin? 
How far will the pumpkin travel? 
What is acceleration? 
What is an example of Newton's Third Law? 
What is the difference between speed and velocity? 
What is happening in this situation with the runner and pumpkin? 
What caused the pumpkin to fall? 
What happens when the runner speeds up? 
Why did you ignore air resistance? 
How do you calculate force? 
What principle allows you to ignore the vertical component of the force? 
Why doesn't the pumpkin land behind the runner?  
What do you think of my explanation? 

Frozen Expressions  
Metacognitive 
Metacommunicative 

I don't understand. 
Could you repeat that? 

Contribution The pumpkin will land in the runner's hands 

Table 1. AutoTutor’s utterance taxonomy. 



Immediately after tagging, transducers are applied to 
check for frozen expressions.  A frozen expression must 
match, and the utterance must be free of any nouns, i.e. 
not frozen+content, for the utterance to be classified as 
frozen.  Next the utterance is checked for question 
stems, e.g. WHAT, HOW, WHY, etc. and question 
mark punctuation.  If question stems are buried in the 
utterance, e.g. "I don't know what gravity is", a move-
ment rule transforms the utterance, placing the stem at 
the beginning.  Likewise if a question ends with a ques-
tion mark but has no stem, an AUX stem is placed at the 
beginning of the utterance.  In this way the same trans-
ducers can be applied to both direct and indirect ques-
tions.  At this stage, if the utterance does not possess a 
question stem and is not followed by a question mark, 
the utterance is classified as a contribution. 

Two sets of finite state transducers are applied to po-

tential questions, keyword transducers and syntactic 
pattern transducers.  Keyword transducers replace a set 
of keywords specific to a category with a symbol for 
that category.  This extra step simplifies the syntactic 
pattern transducers that look for the category symbol in 
their pattern.  The definition keyword transducer, for 
example, replaces "definition", "define", "meaning", 
"means", and "understanding" with "KEYDEF".  For 
most categories, the keyword list is quite extensive and 
exceeds the space limitations of Table 2.  Keyword 
transducers also add the category symbol to a list when 
they match; this list is used for disambiguation.  Syntac-
tic pattern transducers likewise match, putting a cate-
gory symbol on a separate disambiguation list. 

In the disambiguation routine, both lists are con-
sulted, and the first category symbol found on both lists 
determines the classification of the utterance.  Clearly 

Utterance Category Finite state transducer pattern 
Verification ^AUX 
Disjunctive ^AUX ... or 
Concept Completion ^(Who|What|When|Where) 
Feature Specification ^What ... keyword 

keyword 
Quantification ^What AUX ... keyword 

^How (ADJ|ADV) 
^MODAL you ... keyword 

Definition ^What AUX ... (keyword|a? (ADJ|ADV)* N 
^MODAL you ... keyword 
what a? (ADJ|ADV)* N BE 

Example ^AUX ... keyword 
^What AUX ... keyword 

Comparison ^What AUX ... keyword 
^How ... keyword 
^MODAL you ... keyword 

Interpretation keyword 
Causal Antecedent ^(Why|How) AUX ... (VBpast|keyword) 

^(WH|How) ... keyword 
Causal Consequence  
Goal Orientation ^(What|Why) AUX ART? (NP|SUBJPRO|keyword) 

^What ... keyword 
Instrumental/Procedural ^(WH|How) AUX ART? (N|PRO) 

^(WH|How) ... keyword 
^MODAL you ... keyword 

Enablement ^(WH|How) ... keyword 
Expectational ^Why AUX ... NEG 
Judgmental 
(you|your) ... keyword 

(should|keyword) (N|PRO) 

Frozen (no nouns) ^SUBJPRO ... keyword 
^VB ... keyword ... OBJPRO 
^AUX ... SUBJPRO ... keyword 

Contribution Everything else 

Table 2.  Finite state transducer patterns 



ordering of transducers affects which symbols are clos-
est to the beginning of the list.  Ordering is particularly 
relevant when considering categories like concept com-
pletion, which match more freely than other categories.  
Ordering gives rarer and stricter categories a chance to 
match first; this strategy is common in stemming (Paice 
1990).  

5 Training 

The classifier was built by hand in a cyclical process of 
inspecting questions, inducing rules, and testing the 
results.  The training data was derived from brainstorm-
ing sessions whose goal was to generate questions as 
lexically and syntactically distinct as possible.  Of the 
brainstormed questions, only when all five raters agreed 
on the category was a question used for training; this 
approach filtered out polythetic questions and left only 
archetypes. 

Intuitive analysis suggested that the majority of 
questions have at most a two-part pattern consisting of a 
syntactic template and/or a keyword identifiable for that 
category.  A trivial example is disjunction, whose syn-
tactic template is auxiliary-initial and corresponding 
keyword is “or”.  Other categories were similarly de-
fined either by one or more patterns of initial constitu-
ents, or a keyword, or both.  To promote 
generalizability, extra care was given not to overfit the 
training data.  Specifically, keywords or syntactic pat-
terns were only used to define categories when they 
occurred more than once or were judged highly diagnos-
tic. 

 
 Expert 
Classifier present  ¬present 
present tp fp 
¬present fn tn 

Table 3.  Contingency Table. 
 
The results of the training process are shown in Ta-

ble 4.  Results from each category were compiled in 2 x 
2 contingency tables like Table 3, where tp stands for 
"true positive" and fn for "false negative". 

Recall, fallout, precision, and f-measure were calcu-
lated in the following way for each category: 

 
Recall  =  tp / ( tp + fn ) 
Fallout  =  fp / ( fp + tn ) 
Precision  =  tp / ( tp + fp ) 
 
F-measure = 2 * Recall * Precision  

 Recall + Precision 
 
Recall and fallout are often used in signal detection 

analysis to calculate a measure called d’ (Green and 

Swets 1966).  Under this analysis, the performance of 
the classifier is significantly more favorable than under 
the F-measure, principally because the fallout, or false 
alarm rate, is so low.  Both in training and evaluation, 
however, the data violate assumptions of normality that 
d’ requires.    

As explained in Section 3, a contribution classifica-
tion is the default when no other classification can be 
given.  As such, no training data was created for contri-
butions.  Likewise frozen expressions were judged to be 
essentially a closed class of phrases and do not require 
training.  Absence of training results for these categories 
is represented by double stars in Table 4. 

During the training process, the classifier was never 
tested on unseen data.  A number of factors it difficult to 
obtain questions suitable for testing purposes.  Brain-
stormed questions are an unreliable source of testing 
data because they are not randomly sampled.  In gen-
eral, corpora proved to be an unsatisfactory source of 
questions due to low inter-rater reliability and skewed 
distribution of categories.   

Low inter-rater reliability often could be traced to 
anaphora and pragmatic context.  For example, the 
question "Do you know what the concept of group cell 
is?" might license a definition or verification, depending 
on the common ground.  "Do you know what it is?" 
could equally license a number of categories, depending 
on the referent of "it".  Such questions are clearly be-
yond the scope of a classifier that does not use context.  

The skewed distribution of the question categories 
and their infrequency necessitates use of an extraction 
algorithm to locate them.  Simply looking for question 
marks is not enough: our estimates predict that raters 
would need to classify more than 5,000 questions ex-
tracted from the Wall Street Journal this way to get a 
mere 20 instances of the rarest types.  A bootstrapping 
approach using machine learning is a possible alterna-
tive that will be explored in the future (Abney 2002). 

Regardless of these difficulties, the strongest evalua-
tion results from using the classifier in a real world task, 
with real world data. 

6 Evaluation 

The classifier was used in AutoTutor sessions through-
out the year of 2002.  The log files from these sessions 
contained 9094 student utterances, each of which was 
classified by an expert.  The expert ratings were com-
pared to the classifier's ratings, forming a 2 x 2 contin-
gency table for each category as in Table 4.   

To expedite ratings, utterances extracted from the 
log files were split into two groups, contributions and 
non-contributions, according to their logged classifica-
tion.  Expert judges were assigned to a group and in-
structed to classify a set of utterances to one of the 18 
categories.  Though inter-rater reliability using the 



kappa statistic (Carletta 1996) may be calculated for 
each group, the distribution of categories in the contri-
bution group was highly skewed and warrants further 
discussion.   

Skewed categories bias the kappa statistic to low 
values even when the proportion of rater agreement is 
very high (Feinstein and Cicchetti 1990a; Feinstein and 
Cicchetti 1990b). In the contribution group, judges can 
expect to see mostly one category, contribution, 
whereas judges in the non-contribution group can ex-
pect to see the other 17 categories.  Expected agreement 
by chance for the contribution group was 98%.  Corre-
spondingly, inter-rater reliability using the kappa statis-
tic was low for the contribution group, .5 despite 99% 
proportion agreement, and high for non-contribution 
group, .93.   

However, the .93 inter-rater agreement can be ex-
tended to all of the utterance categories.  Due to classi-
fier error, the non-contribution group consisted of 38% 
contributions.  Thus the .93 agreement applies to contri-
butions in this group.  Equal proportion of agreement 
for contribution classifications in both groups, 99%, 
suggests that the differences in kappa solely reflect dif-
ferences in category skew across groups.  Under this 
analysis, dividing the utterances into two groups im-
proved the distribution of categories for the calculation 
of kappa (Feinstein and Cicchetti  1990b). 

Expert judges classified questions with a .93 kappa, 
which supports a monothetic classification scheme for 
this application.  In Section 3 the possibility was raised 
of a polythetic scheme for question classification, i.e. 
one in which two categories could be assigned to a 
given question.  If a polythetic scheme were truly neces-
sary, one would expect inter-rater reliability to suffer in 
a monothetic classification task.  High inter-rater reli-
ability on the monothetic classification task renders 
polythetic schemes superfluous for this application. 

The recall column for evaluation in Table 4 is gener-
ally much higher than corresponding cells in the preci-
sion column.  The disparity implies a high rate of false 
positives for each of the categories.  One possible ex-
planation is the reconstruction algorithm applied during 
classification.  It was observed that, particularly in the 
language of physics, student used question stems in ut-
terances that were not questions, e.g. “The ball will land 
when …”  Such falsely reconstructed questions account 
for 40% of the questions detected by the classifier.  
Whether modifying the reconstruction algorithm would 
improve F-measure, i.e. improve precision without sac-
rificing recall, is a question for future research. 

The distribution of categories is highly skewed: 97% 
of the utterances were contributions, and example ques-
tions never occurred at all.  In addition to recall, fallout, 
precision, and F-measure, significance tests were calcu-

 Training Data AutoTutor Performance 

CATEGORY Recall Fallout Precision F-measure Recall Fallout Precision F-measure Likelihood Ratio 
Contribution ** ** ** ** 0.983 0.054 0.999 0.991 1508.260 
Frozen ** ** ** ** 0.899 0.002 0.849 0.873 978.810 
Concept  
Completion 

0.844 0.035 0.761 0.800 0.857 0.003 0.444 0.585 235.800 

Interpretation 0.545 0.009 0.545 0.545 0.550 0.000 0.917 0.688 135.360 
Definition 0.667 0.002 0.941 0.780 0.424 0.001 0.583 0.491 131.770 
Verification 0.969 0.004 0.969 0.969 0.520 0.004 0.255 0.342 103.880 
Comparison 0.955 0.011 0.778 0.857 1.000 0.004 0.132 0.233 55.460 
Quantification 0.949 0.002 0.982 0.966 0.556 0.003 0.139 0.222 43.710 
Expecational 0.833 0.010 0.833 0.833 1.000 0.000 0.667 0.800 33.870 
Procedural 0.545 0.009 0.545 0.545 1.000 0.000 1.000 1.000 20.230 
Goal  
Orientation 

0.926 0.006 0.893 0.909 1.000 0.001 0.143 0.250 14.490 

Judgmental 0.842 0.010 0.865 0.853 0.500 0.001 0.167 0.250 12.050 
Disjunction 0.926 0.000 1.000 0.962 0.333 0.000 0.250 0.286 11.910 
Causal  
Antecedent 

0.667 0.017 0.667 0.667 0.200 0.001 0.083 0.118 8.350* 

Feature  
Specification 

0.824 0.006 0.824 0.824 0.000 0.000 0.000 0.000 0.000* 

Enablement 0.875 0.006 0.903 0.889 0.000 0.000 0.000 0.000 0.000* 
Causal  
Consequent 

0.811 0.008 0.882 0.845 0.000 0.000 0.000 0.000 0.000* 

Example 0.950 0.008 0.826 0.884 ** ** ** ** ** 

Table 4. Training data and AutoTutor results. 



lated for each category's contingency table to insure that 
the cells were statistically significant.  Since most of the 
categories had at least one cell with an expected value 
of less than 1, Fisher's exact test is more appropriate for 
significance testing than likelihood ratios or chi-square 
(Pedersen 1996).  Those categories that are not signifi-
cant are starred; all other categories are significant, p < 
.001. 

Though not appropriate for hypothesis testing in this 
instance, likelihood ratios provide a comparison of clas-
sifier performance across categories.  Likelihood ratios 
are particularly useful when comparing common and 
rare events (Dunning 1993; Plaunt and Norgard 1998), 
making them natural here given the rareness of most 
question categories and the frequency of contributions.  
The likelihood ratios in the rightmost column of Table 4 
are on a natural logarithmic scale, -2lnλ, so procedural 
at e . 5 x 20.23 = 24711 is more likely than goal orientation, 
at e . 5 x 14.49 = 1401, with respect to the base rate, or null 
hypothesis. 

To judge overall performance on the AutoTutor ses-
sions, an average weighted F-measure may be calcu-
lated by summing the products of all category F-
measures with their frequencies: 

 

∑ +×−=
N

fntp
measureFFavg  

 
The average weighted F-measure reflects real world 

performance since accuracy on frequently occurring 
classes is weighted more.  The average weighted F-
measure for the evaluation data is .98, mostly due to the 
great frequency of contributions (.97 of all utterances) 
and the high associated F-measure.  Without weighting, 
the average F-measure for the significant cells is .54. 

With respect to the three applications mentioned, i) 
tracking student understanding, ii) mixed-initiative dia-
logue, and iii) questions answering, the classifier is do-
ing extremely well on the first two and adequately on 
the last.  The first two applications for the most part 
require distinguishing questions from contributions, 
which the classifier does extremely well, F-measure = 
.99.  Question answering, on the other hand, can benefit 
from more precise identification of the question type, 
and the average unweighted F-measure for the signifi-
cant questions is .48. 

7 Conclusion 

One of the objectives of this work was to see how well a 
classifier could perform with a minimum of resources.  
Using no context and only surface features, the classi-
fier performed with an average weighted F-measure of 
.98 on real world data. 

However, the question remains how performance 
will fare as rare questions become more frequent.  Scaf-
folding student questions has become a hot topic re-
cently (Graesser et al. 2003).  In a system that greatly 
promotes question-asking, the weighted average of .97 
will tend to drift closer to the unweighted average of 
.54.  Thus there is clearly more work to be done. 

Future directions include using bootstrapping meth-
ods and statistical techniques on tutoring corpora and 
using context to disambiguate question classification. 
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