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1. Introduction 

As shown by Srinivas (1997), standard n-gram modeling may be used to perfonn supertag disambiguation with 
accuracy that is adequate for partial parsing, but in general not sufficient for füll parsing. A serious problem is that 
n-gram modeling usually considers a very small, fixed context and does not perfonn weil with large tag sets, such 
as those generated by automatic grammar extraction (Xia, 1999; Chen and Vijay-Shanker, 2000; Chlang, 2000). 
As an alternative, Chen, Bangalore and Vijay-Shanker (1999) introduce class-based supertagging. An example of 
class tagging is n-best trigram-based supertagging, which assigns to each word the top n most likely supertags as 
detennined by an n-gram supertagging model. Class-based supertagging can be performed much more accurately 
than supertagging with only a small increase in ambiguity. In a second phase, the most likely candidate from the 
class is chosen. 

In this paper, we investigate an approach to such a choice based on reranking a set of candidate supertags 
and their confidence scores. RankBoost (Freund et al., 1998) is the boosting algorithm that we use in order to 
learn to rerank outputs. lt also has been used with good effect in reranking outputs of a statistical parser (Collins, 
2000) and ranking sentence plans (Walker, Rambow and Rogati, 2001). RankBoost may learn to correct biases 
tbat are inherent in n-gram modeling which lead to systematic errors in supertagging (cf. (van Halteren, 1996)). 
RankBoost can also use a variety of local and long distance features more easily than n-gram-based approaches 
(cf. (Chen, Bangalore and Vijay-Shanker, 1999)) because it makes sparse data less ofan issue. 

The outline of this paper is as follows. First, we develop the background and motivations behlnd the task of 
reranking the output of an n-best trigrarn supertagger. Second, we introduce RankBoost as the approach that we 
adopt in order to train the reranker. Third, we perform an initial set of experiments where the reranker is trained 
with different feature subsets. Fourth, we perform an in-depth analysis of several reranking models. Fifth, after 
pointing out causes that at times render the reranker ineffective, we develop and test some new models that attempt 
to sidestep these limitations. Lastly, after some significance testing results, we state our conclusions and remark 
on potential füture directions. 

2. Background and Motivation 

In this section, we motivate the desirability of exploring the use of n-best reranking of supertags. Although 
we give multiple motivations, we focus on justifying our approach as a promising alternative in improving the 
perfonnance of a füll parser. First, we review the supertagging task and its applications. Because supertagging 
requires the existence of a particular TAG, we subsequently introduce automatically extracted TAGs and motivate 
their use. Although extracted grammars have their advantages, supertagging using automatically extracted TAGs 
runs into damaging sparse data problems. We review n-best supertagging as one means of alleviating these prob-
lems. Lastly, we run experiments that show supertagging is potentially a viable option in order to speed up a füll 
parser. Throughout this section, we describe the kinds oflinguistic resources that we use in all of our experiments 
and the kinds of notation that we will employ in the rest of this paper. 

2.1. Supertagging 

Supertagging (Bangalore and Joshl, 1999) is the process of assigning the best TAG elementary tree, or su-
pertag, to each word in the input sentence. lt performs the task of parsing disambiguation to such an extent that it 
may be characterized as providing an almost parse. There exist linear time approaches to supertagging, providing 
one promising route to linear time parsing disambiguation. However, Srinivas (1997) shows that standard n-grarn 
modeling may be used to perform supertagging with accuracy that is adequate for partial parsing, but not for füll 
parsing. On the other hand, n-gram modeling of supertagging has been found tobe usefül in other applications such 
as infonnation retrieval (Chandrasekhar and Srinivas, l 997b) and text simplification (Chandrasekhar and Srinivas, 
1997a). 
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2.2. Automatically Extracted Grammars 

Recently, procedures have been developed that automatically extract TAGs from broad coverage treebanks 
(Xia, 1999; Chen and Vijay-Shanker, 2000; Chiang, 2000). They have the advantage that linguistically motivated 
TAGs can be extracted from widely available treebanks without a huge investment in manual labor. Furthermore, 
because of their direct extraction from a treebank, parameters can be easily and accurately estimated for building 
statistical TAG models for parsing (Chiang, 2000; Sarkar, 2001) or geoeration (Bangalore, Chen and Rambow, 
2001). 

In our experiments, we use an automatically extracted TAG grammar similar to the ones described by Chen 
and Vijay-Shanker (2000). This grammar has been extracted from Sections 02-21 of the Penn Treebank (Marcus, 
Santorini and Marcinkiewicz, 1993). lt contains 3964 tree frames (non-lexicalized elementary trees). The param-
eters of extraction are set as follows. Each tree frame contains nodes that are labeled using a label set similar to 
the XTAG (XTAG-Group, 2001) label set. Furthermore, tree frames are extracted corresponding to a "moderate" 
domain of Jocality. Also, only those empty elements in the Penn Treebank that are usually found in TAG (subject 
and object trace, for example) are included in this grammar. 

2.3. N-best Supertagging 

The efficacy of n-gram modeling of supertagging is limited by sparse data problems of very large TAGs, such 
as those that are automatically extracted from broad coverage treebanks. Chen and Vijay-Shanker (2000) show that 
supertagging using extracted TAGs is perfonned at a lower accuracy (around 80%) than accuracies that have been 
published for supertagging using hand-written TAGs (around 90%). Faced with this evidence, it might seem that 
it is a hopeless task to use supertagging using extracted TAGs as a preprocessing step to accelerate full parsing. 
On the other band, Chen, Bangalore and Vijay-Shanker (1999) investigate class-based supertagging, a variant of 
supertagging where a small set of supertags are assigned to each word instead of a single supertag. The idea is to 
make the sets small enough to represent a significant reduction in ambiguity so as to speed up a füll parser, but to 
construct the sets so that class-based supertagging is much more accurate than supertagging. 

One such promising class-based supertagging model is n-best supertagging, where a trigram model assigns up 
to n supertags for each word of the input sentence. Let W = w1, ... , Wn represent the sequence of words that is 
the input to a supertagger. Let Ttri = ti ,1, ... , tn,1 be the output ofthe (!-best) trigram supertagger. The output 
of the n-best supertagger is a sequence of n-best supertags NBEST(i) = t i,1, ... , ti,n(i) for each word Wi such 
that each supertag ti,j has an associated confidence score Ci,;. Assume that each sequence NBEST( i) is sorted in 
descending order according to tbese confidence scores. 

The n-best supertagger is obtained by a modification of the (1-best) trigram model of supertagging. Both 
supertaggers first use the Viterbi algorithm to find Ttri by computing the most likely path p(Ttri) through a lattice 
of words and pairs of supertags. In the trigram supertagger, each node k along the path p(Ttri) is associated with 
exactly one prefix probability (the highest). In contrast, the corresponding node k in the n-best supertagger is 
associated with the n highest prefix probabilities. This difference allows the n-best supertagger to associate up to 
n supertags for each word Wi. The confidence score Ci,i of supertag ti,j is the jth-best prefix probability of a node 
k divided by the least best prefix probability ofthe same node. 

2.4. Parsing with N-best Supertagger Output 

We claim that supertagging is a viable option to explore for use as a preprocessing step in order to speed up 
füll parsing. In order to substantiate this claim, we perform exploratory experiments that show the relationship 
between n-best supertagging and parsing performance. Using the grammar that is described in Section 2.2, we 
train n-best supertaggers on Sections 02-21 of the Perut Treebank. For each supertagger, we supertag Section 22, 
which consists of about 40,100 words in 1,700 sentences. We then feed the resulting output through the LEM 
parser, a head-driven TAG chart parser (Sarkar, 2000). Given an input sentence and a grammar, this parser either 
outputs nothing, or a packed derivation forest of every parse that can be assigned to the sentence by the grammar. 
lt does not retum partial parses. 

The results of these experiments are shown in Table 1. The input to the parser can be the output of either a 
1, 2, or 4-best supertagger. lt can also be sentences where each word is associated with all of the supertags with 
that word's part of speech, as detennined by a trigram part of speech tagger. This is labeled as "POS-tag" in the 
table. Lastly, it can simply be sentences where each word is associated with the correct supertag. This is labeled 
as "Key." The table shows the supertagging accuracy of each corpus that is input to the parser. lt also shows each 
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Table 1: Relationships between n-best supertagging and parsing 

Input % Supertagging Ambiguity % Sentences Timeto 
to Parser Accuracy (supertags/word) Receiving Parse 

SomeParse Corpus 
1-best 81.47 1.0 28.2 < 3 hours 
2-best 88.36 1.9 53.6 < 2 days 
4-best 91.41 3.6 76.7 2-3 weeks 
8-best 92.77 6.3 - -

POS-tag 97.30 441.3 - -
Key 100.00 1.0 97.0 < 5 hours 
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Figure 1: Percentage ofSentences That Were Parsed Versus Percent Supertagging Accuracy 

corpus's ambiguity in supertags per word, the percentage of sentences in the corpus which the parser successfülly 
found a parse, and also the time to parse the corpus. Parsing results are not available for "8-best" and "POS-tag" 
because of the unreasonable amount of time the parser takes for those kinds of corpora. 

Table l reveals some interesting aspects of the relationship between supertagging and parsing. For example, 
it shows that merely doing part of speech tagging is inadequate as a preprocessing step ifthe purpose is to signif-
icantly speed up füll parsing. In contrast, it also shows that the ! -best supertagger does speed up füll parsing, but 
at the cost of missing many parses of sentences. Row "Key" shows that if supertagging works accurately enough, 
then it would indeed fülfill the promise of speeding up a füll parser. 

The second column of Table 1 is plotted against its fourth column in Figure 1. It shows how the percentage 
ofparsed sentences in the test corpus increases as the supertagging accuracy on the test corpus increases. There is 
the obvious result that a high er supertagging accuracy · always leads to a greater percentage of sentences being able 
tobe parsed. There is apparently a less obvious result that this relationship is non-linear; the steepest increase in 
percentage ofparseable sentences occurs for supertagging accuracies between 88% and 92%. 

We have seen that füll parsing of automatically extracted TAG grammars is apparently quite slow. We have 
also seen that simply part of speech tagging the input sentences as a preprocessing step does not seem to reduce 
ambiguity to a sufficient degree in order to speed up füll parsing to a desirable extent. On the other hand, we 
have shown that 1-best supertagging does indeed speed up füll parsing considerably-at least more than tenfold. 
However, in order for supertagging to fully parse a considerable portion of a corpus, it is necessary to achieve 
sufficiently high supertagging accuracies. Regarding the use ofn-best supertagged input to a parser, we have seen 
that it is best to keep n :'.5 3 in order to prevent extreme degradation in parsing performance. 
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2.5. Summary 

We have seen that reranking the output of an n-best supertagger based on a TAG extracted from a treebank 
is attractive for a variety of reasons. Use of such a TAG is justified because parameters for stochastic models can 
be estimated easily and accurately. Use of an n-best supertagger is justified because of the considerable potential 
etror reduction and its implications. In particular, it can be clearly seen from Table 1 that an optimal reranking 
of the output of an 8-best supertagger would achieve a more than 50% reduction in supertagging error. lt is not 
unreasonable to believe that this would greatly improve the perfoxmance of applications based on supertagging, 
such as infonnation retrieval and text simplification. Furthennore, Figure 1 shows that this error reduction would 
greatly increase the viability of using supertagging as a preprocessing step to speed up parsing. 

3. Reranking an N-Best Supertagger 

Our reranker takes as input a set of sentences that has been supertagged by an 8-best supertagger, including a 
confidence score for each selected supertag. lt then ranks them according to its model. This model is trained using 
the machine learning program RankBoost (Freund et al„ 1998) which learns from sets of correctly supertagged 
sentences the same sentences that have been supertagged using an 8-best supertagger. 

We use the variant ofRankBoost introduced by (Collins, 2000). Further information aboutRank:Boost is found 
in (Schapire, 1999). RankBoost leams from a set of examples. For our purpose, an example is an occurrence of a 
word wi in a particular sentence along with its supertag ti,j selected by an n-best supertagger and its confidence 
score Ci,j. Each example is associated with a set of m binary indicator functions h8 ( ti,j ) for 1 ｾ＠ s ｾ＠ m. For 
example, UNI(w,s) is a two-argument feature template that states that the current word w has supertag s. When 
this template is instantiated with Wi =book and ti,j = aNXN, we obtain the following indicator function: function 
mightbe 

h (t· ·) _ { 1 i/ t i,j == aNXN ｡｟ｾ､ｷｩ＠ = book (l ) 
1234 

i,3 - 0 otherwise · 

Each indicator function hs is associated with its own parameter a8 • There is also a parameter ao associated with 
the confidence score. Training is a process of setting the parameters a to minimize the loss function: 

loss(a) = L e-( ao(ln(c1,1}-ln(c„;)}+ 2:. a.(h.(t;,1}-h.(t;,; ))) 

i,j 

(2) 

At the start of training, no features are selected, i.e„ all of the a8 's are set to zero. The optimization method that 
is used in training is greedy; at each iteration it picks a feature h8 which has the most impact on the loss function. 
The result is a set of indicator functions whose output on a given candidate is summed. These sums are used to 
rerank a set of candidates. Another set of examples-tuning data-is used to choose when to stop. 

4. Initial Experiments 

A set of features is required in order to train RankBoost to rerank supertags. As pointed out by Srinivas ( 1997), 
the traditional n-gram modeling of supertagging suffers from the fl.aw of only considering local dependencies when 
deciding how to supertag a given word. This is counter to one of the attractions of the TAG fonnalism, namely 
that even Iong distance dependencies are Iocalized within a given TAG (Schabes, Abeille and Joshi, 1988). Chen, 
Bangalore and Vijay-Sbanker (1999) provide an example sentence where non-Iocal context is needed to detennine 
the correct supertag: "Many Indians feared their country might split again." Here, tbe supertag for the word feared 
is partially detennined by the proximity ofthe word might. Cben, Bangalore and Vijay-Shanker (1999) introduce 
the notion of head supertag context which they show increases supertagging accuracy when suitably folded into a 
stochastic model. While the notion ofhead supertags can be useful, it cannot be straightforwardly applied to our 
current situation; determining head supertags was feasible in (Chen, Bangalore and Vijay-Shanker, 1999) because 
they used the XTAG grammar, whereas it is not immediately clear which supertags should be bead supertags in 
our extracted grammar, which is an order of magnitude larger than the XTAG grammar (3964 tree frames in the 
extracted grammar versus 500 tree frames in the XTAG gra.mmar). 

Chen, Bangalore and Vijay-Shanker (1999) make it clear, however, that both local and long distance features 
are important. In that spirit, we bave designed an initial set of feature templates that is sbown in Table 2. For 
example, UNI is a two-argument feature template that states that the current word w0 has the supertag to,1. Feature 
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Table 2: Feature Templates Used In Initial Experiments 

Wi ith word in input sentence relative to current word which is wo 
ti supertag of ith word in input sentence relative to current word which is Wo 

Name Parameter List Example oflnstantiation 

UNI wo, to,j w0 =book, to,j = a:NXN 
BI wo, t-1,1, to,j Wo =book,L1,1 = ßNn,to,j = aNXN 
TRI wo, t-2,1, t-1,1, to,j wo =book, L2,1 = ßDnx, t-1,1 = ßNn, to,j = a:NXN 
FORWARD-BI wo,to,j,t1,1 Wo =book, to,j = aNXN, t1,1 = anxOV 
FORWARD-TRI wo, to,j, t1,1, t2,1 wo =book,to,; = aNXN,t1,1 = anxOV,t2,1 = ßvxN 
LEFT-FAR-BI:i: (3 s X s 8) t-:i: ,i. t0.; L:i: ,1 = ßDnx, to,3 = a:NXN 
RIGHT-FAR-BI:i: (3 S x S 8) to,j , t:i: ,l to,; = aNXN, t:i:,1 = ßnxPnx 
LEFT-WIN:i: (x E { 4, 8, 16 }) Ly,i.to,j L 11 = a:nxOVnxl, 0 < y ｾ＠ x, to,j = aNXN 
RIGHT-Wll'{ z: (x E { 4, 8, 16 }) to,;, t11,1 to,j = a:NXN, ty,l = ßnxPnx, 0 < y $ x 

Figure 2: Sets ofFeatures That Are Used In Various Experiments 

templates exist that take into account local context and others that take into account long distance context. Local 
feature templates basically take into consideration the same context that a trigram model considers. They are UNI, 
BI, TRI, FORWARD-BI, and FORWARD-TRI. Long distance feature templates take into consideration extra-
trigram context. There are two kinds oflong distance feature templates: *-FAR-BI:i: and *-WIN:i:. The *-FAR-BI:i: 
kind states that the current word has the supertag to,j and there exists a supertag afixed distance x away from 
the current word having supertag l:i:,l· The *-WIN:i: kind offeature template states that the current word has the 
supertag to,j and there exists a supertag t 11,1 which lies within some distance y, 0 < y $ x, of the current word. 

The list of feature templates in Table 2 is somewhat long and unwieldy. In order to simplify our exposition of 
different reranking models, we have given names to various subsets of these feature templates. These are shown 
in Figure 2. The set of all *-FAR-BI:i: feature templates is called PART: The set of all *-WIN:i: feature templates 
is called WIN. PARTUWIN yields LONG. SHORT is the set of all trigram-context feature templates. NEAR is 
SHORT- UNI. 

Training RankBoost for reranking supertags requires n-best supertagged data. This is obtained by first ex-
tracting a TAG from the Penn Treebank as described in Section 2.2. 8-best supertaggers are then used to derive 
training, tuning, and test data. Ten-fold cross validation of Sections 02-11 and part of 12 provides the training 
data (475197 words). 8-best supertagged versions of the rest of Section 12 and Sections 13-14 serve as tuning 
data (94975 words). Testdata is derived from the output ofan 8-best supertagger trained on Sections 02-14 on 
Section 22 (40117 words). Note that for these experiments, a truncated version of the usual Penn Treebank train-
ing data-Sections 02-21, are used. This is done merely to expedite the training and testing of different reranking 
models. 

Table 3 shows the supertagging accuracy results for the n-best supertagger, before and after reranking by 
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Table 3: N-best supertagger results and Reranker results using different feature sets on Section 22. 

% Supertag Accuracy 
n-best Before SH ORT LONG LONG LONG W1N PART 

Re rank U SHORT UUNI UUNI UUNI 
l 80.20 80.77 80.13 81.73 81.39 81.63 81.04 
2 87.13 87.67 87.13 88.59 88.38 88.55 88.09 
3 89.24 89.73 89.24 90.24 90.16 90.25 89.88 
4 90.28 90.63 90.28 90.95 90.88 90.98 90.77 
5 90.84 91.07 90.83 91.33 91.27 91.33 9l.19 
6 91.22 91.38 91.20 91.54 91.50 91.54 91.44 
7 91.52 91.57 91.52 91.66 91.64 91.65 91.62 
8 91.73 91.73 91.73 91.73 91.73 91.73 91.73 

RankBoost. The n-best results for 1 $ n < 8 are derived by considering only the top n supertags proposed by 
the 8-best supertagger. The left half of the table shows three different models are trained using RankBoost, one 
that uses SHORT features only, one that uses LONG features only, and another that uses both LONG and SHORT 
features. The rules that are leamed by RankBoost are then applied to the 8-best supertags to rerank them. 

The results are encouraging. The 1-best supertagger achieves an accuracy of only 80.20%. Nevertheless, the 
8-best accuracy is 91. 73% which shows that an optimal reranking procedure would halve the error rate. Reranking 
using SHORT features results in a statistically significant errorreduction (p <0.05) of2.9% for 1-best. Reranking 
also using LONG features results in an error reduction of 7.7% for 1-best (and an error reduction of 13.3% with 
respect to the RankBoost topline of 91.73%). Therefore RankB'oost is obviously able to use LONG features 
effectively in conjunction with the SHORT features, despite a big increase in the number of parameters of the 
model. Note also that reranking improves the accuracy for all n-best results, 1 $ n < 8. 

Apparently, there is some interaction between LONG and SHORT features which makes model 
LONGUSHORT effective whereas model LONG is useless. In order to study this interaction, and also to detennine 
what kinds of LONG features help the most, we have tested models LONGUUNI, WINUUNI, and PARTUUNI. 
The results are shown in the righthalfofTable 3. Model LONGUUNiachieves much ofthe performance ofmodel 
LONGUSHORT, even though it only considers the uni gram feature. One possible explanation for this phenomenon 
is that SHORT features aid LONG features not because the local trigram context that is modeled by SHORT is so 
much more important, but instead it is lexicalization that is important, SHORT features being lexicalized whereas 
LONG features are not. Also note that model WINUUNI outperforms model PARTUUNI. This seems to indicate 
that PART feature templates are less useful in supertag disambiguation than W1N feature templates. 

5. Analysis of Some Initial Experiments 

At first glance, there does not seem to be much of a difference between model LONGUSHORT and model 
SHORT. The difference between them in terms of accuracy of 1-best supertagging reranking is slightly less than 
one percent, about five percent in terms of reduction in error. On the other hand, as Table 6 shows, this small 
difference is still statistically significant. In order to get a better grasp on the differences in behavior of model 
LONGUSHORT and model SHORT, and also to get a feeling about how one might improve reranking models for 
supertagging, we perfonn a semi-qualitative analysis of the 1-best reranked output of these two models. 

The ten most frequently mistagged supertags (i.e. those supertags that were most misclassified by the 
reranker), sorted by frequency, for model SHORT and model LONGUSHORT are shown in Table 4. At first 
glance, there is not much difference between the two models; they both mistag mostly the same kinds of supertags, 
and the supertags' rankings are about the same. However, certain differences can be discemed. Notably, the fre-
quency of mistagging o:NXN is 25% less in LONGUSHORT than it is in SH ORT. Also, there is somewhat less of 
a PP attachment problem in LONGUSHORT than there is in SHORT, as can be seen by the frequencies ofthe PP 
attachment supertags ßnxPnx and ßvx.Pnx. The fact that the frequency of mistaggings of o:nxOVnx 1 drops from 
168 in SHORT to 130 in LONGUSHORT is also noteworthy; apparently LONGUSHORT is performing better at 
resolving NP versus S subcat ambiguity. 

For each of several supertags in Table 4, we proceed to determine the most important features that 
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Table 4: Ten Most Frequently Mistagged Supertags, By Frequency, for SHORT and LONGUSHORT 

SH ORT LONGUSHORT 
Frequency Supertag Frequency Supertag Frequency Supertag Frequency Supertag 

650 aNXN 167 ßnxN 474 aNXN 155 ßVnx 
410 ßNnx 162 ßnxPunct 356 ßNnx 151 ßnx:Pnx 
303 ßvxPnx 148 ßnxPnx 289 ßvxPnx 147 aN 
216 ßAnx 130 ßucpPunct 203 ßAnx 144 ßnxPunct 
168 anxOVnxl 117 aN 166 ßnxN 130 anxOVnxl 

LONGUSHORT uses in order to choose the correct supertag. Our methodology is as follows. Given a supertag 
/, we determine the set of instances in the test corpus where LONGUSHORT reranked / to first place from an 
originally lower ranking. For each instance, we determine the features that caused LONGUSHORT to rank / more 
highly, tabulating the number of times each feature is used. We also record the multiset ef>( /) of supertags 1' :f:. 1 
such that LONGUSHORT replaced 1' with 'Y as the first ranked supertag. 

Consider supertag anxOVnx 1. Most frequently occurring members of ef>(anxOVnxl) include ßVvx, ßnxOVsl, 
O!INnxOVnxl (declarative transitive supertag with complernentizer), and ßvxINnxOVnxl. The most frequently 
used features that are used to rank o:nxOVnxl more highly are LEFT-WIN16(EOS,anx0Vnxl) and LEFT-
WIN8(EOS,anx0Vnxl), where EOS is a sentence delimiter, in this case the left sentence delimiter. Intu-
itively, these features seem to suggest that a:nxOVnxl should appear nearer to the beginning of the sentence 
than for example, ßvxINnxOVnxl, being a verbal postmodifier, should. Another frequently used feature is 
LEFT-WIN4(o:NXN,a:nxOVnxl). lt is apparently used to make sure there exists an NP to the left of the cur-
rent word that would fit in the subject slot of o:nxOVnxl. The existence :·of the frequently used feature LEFT-
WIN16(ßMDvx,O!nx0Vnxl) is also ofinterest. Apparently, this feature occurs because anxOVnxl often serves 
as the sentential complement of another verb to its left. This verb can take a variety of supertags, including 
ßnxOVsl and ßNOnxOVsl for example. Having a separate feature for each of these supertags would possibly 
lead to suboptimal rerank:ing perfonnance because of sparse data. Instead, apparently based on the generaliza-
tion that these supertags are usually modified by a modal verb ß:MDvx, RankBoost chooses the feature LEFT-
WIN 1s (ßMDvx,0!nxOVnx l ). 

All of the features that we have discussed are LONG. In fact, there is a preponderance of LONG features 
used to rank a:nxOVnxl: the ten most frequent features are LONG. There are however, some SHORT features 
that are heavily weighted, although they are not used quite as often. One notable SHORT feature is FORWARD-
Bl(has,ßVvx,ßDnx). Intuitively, it resolves the ambiguity between ßVvx and anxOVnxl by seeing whether an NP 
(prefixed by a detenniner) immediately follows the current word. 

Supertag aNXN presents another interesting case. The most frequently occurring members of ef>(aNXN) 
include anxON, ßnxN, and ßvxN. The most frequently used features that are used to prefer aNXN in-
clude LEFr-WIN1s(o:NXN,aNXN), RIGHT-WIN1s(aNXN,ßsPeriod), RIGHT-WIN16(0!NXN,ßnxPnx), LEFT-
WlN4(ßNn,aNXN). These features seem to encode the context that is likely to surround aNXN. Of course, these 
features also seem likely to surround other members of ef>(aNXN). Perhaps these features are chosen because of a 
general bias that the n-best supertagger has against supertagging head nouns appropriately. 

6. Further, Exploratory Experiments 

Based on our experience with reranking of n-best supertags, we have drawn some possible avenues for im-
provement of the reranking procedure. In the following, we list some common reasons for lack of optimum 
reranking performance and discuss how they might be eliminated. 

• The feature that would perfonn the appropriate reranking is not chosen because of sparse data. Note that the 
supertags that do instantiate feature templates tend to be very common. lt is not surprising, therefore, that there 
exists a feature such as LEFT-WIN4(o:NXN,anx0Vnxl). Recall that this appears to ensure that o:nxOVnxl has 
an NP subject to the left. An analogous feature is not Iikely to appear for an infrequently occurring supertag, 
such as ßNOnxOVsl. One possible solution would be to instantiate feature templates with certain aspects of 
supertags instead of entire supertags. Along this line, we perform some exploratory experiments in Section 6.1. 
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• The correct supertag for word w0 does not exist in the n-best supertagged output. One way to ameliorate this 
problem is to improve the performance ofthe first stage n-best trigram supertagger. Along this line, we perform 
some exploratory experiments in Section 6.2. 

• For words other than the current word, the feature template is instantiated only from the 1-best supertag output, 
which is not always correct. For example, the feature LEFT-WIN4(aNXN,anxOVnxl), depends on the fact that 
the supertags to the immediate left of the current word are, in fact, correctly supertagged, whereas they are only 
correctly supertagged about 80% of the time. Now, the training process should compensate for this somewhat 
because the inputs to the training process are (ftawed) supertagged sentences. On the other hand, perhaps a 
different approach would be more effective in tackling this problem. One avenue would be to rerank n-best 
paths of supertags, instead of n-best per word supertagged output. Along this line, we have implemented an 
n-best paths supertagger, based on a trigram model, but employing a search strategy similar to (Ratnaparkhi, 
1996). Trained on Sections 02-21 ofthe Penn Treebank, this supertagger achieves about 89% supertag accuracy 
only when the top 100 paths are chosen. lt remains tobe seen whether this will cause difficulties in terms of 
memory or space resources for training the reranker. 

6.1. Training the Reranker with Part of Speech Features 

Having features consider entire supertags is a limiting factor in contributing to the performance of the reranker 
not in the least because of sparse data. One possible solution is to base features on aspects of supertags instead of 
entire supertags. For example, one might take the approach of breaking down each supertag into a feature vector 
(Srinivas, 1997; Xia et al„ 1998; Xia et al„ 2000; Chen, 2001), and to base RankBoost features on elements ofthat 
vector. Another approach would be to consider each supertag as generated by a Markov process (Collins, 1997; 
Collins, 1999). In this case, one would base RankBoost features on individual steps in that process. Here, we 
consider using part of speech as a component in feature space. 

As implied by Section 2.2, the preterminal tag set for our extracted grammar is similar to the XTAG part of 
speech tag set. For our features, we can either choose to retain the XTAG parts of speech or use the more detailed 
Penn Treebank part of speecb tagset. This choice displays the usual tradeoffbetween assuaging sparse data (the 
fonner) and having detailed enough features to make appropriate decisions (the latter). We have chosen the latter 
because the Penn Treebank part of speech tagset (about 45 tags) is already an order of magnitude smaller than the 
supertag tagset (about 3900 tags), although we believe that it would also be interesting to repeat our experiments 
using the XTAG part of speech tagset (about 20 tags). 

For each feature template in LONGUSHORT, an analogous feature template is created with supertag parame-
ters other than the current word replaced with part of speech parameters. For example, LEFT-WIN4-POS(py,to,cur) 
is a feature template that states that the current word is supertagged with to,cur and there exists a word to the left 
that has part of speech Pu within a distance of four words of the current word. Furthennore, we give the same 
name to these new subsets offeature templates as is given to the previous subsets, affixed with -POS. For example, 
WIN-POS is the set offeature templates consisting ofLEFT-WIN:i:-POS and RIGHT-WIN:i:-POS. 

After the RankBoost training, tuning, and test corpora were suitably annotated using a trigram model Penn 
Treebank part of speech tagger, models NEAR-POSUSHORT and LONG-POSULONGUSHORT were trained 
and tested. The results are shown in the left half ofTable 5. Although the 1-best reranking accuracies are not 
significantly higher for the *-POS models than for the corresponding non-POS models (Table 6), it is important 
to keep in mind that these are preliminary results. We believe that the higher accuracies for the *-POS models 
indicate that there may exist other, untried models which use part of speech information more effectively. 

6.2. Reranking of Smoothed N-Best Supertagging 

There are many cases where the reranker cannot give the correct supertag the top ranking because it does not 
exist in the n-best output. One possible solution to this problem is to enhance the n-best supertagger by smoothing 
its ernit probability p( w!t), and then mn the reranker on the resulting output. Here, we perfonn such an experiment. 

Our experiment proceeds as follows. We choose to smooth p( wlt) using the approach mentioned in (Chen, 
2001). lt accounts especially forthe fairly large set of cases (about 5%) in which the word and the correct supertag 
have both been seen in the training data, but not in com.bination. These cases would nonnally be assigned a prob-
ability of zero by the supertagging model. Using this approach, we prepared training, tuning, and test data using 
the smoothed version of the n-best supertagger as appropriate. We subsequently trained model LONGUSHORT 
on this training and tuning data, and then tested the reranker as usual. 
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Table 5: N-best supertagger results, smoothing, and smoothing plus LONG U SH ORT reranker results 

% Supertag Accuracy 
Before NEAR-POS LONG-POSU Smoothed Smoothed and 

n-best Re rank USHORT LONGUSHORT LONGUSHORT 
1 80.20 80.97 82.04 81.64 82.99 
2 87.13 87.77 88.83 89.02 90.42 
3 89.24 89.77 90.38 91.24 92.31 
4 90.28 90.63 91.04 92.37 93.14 
5 90.84 91.07 91.34 93.07 93.59 
6 91.22 91.37 91.53 93.54 93.88 
7 91.52 91.57 91.65 93.84 94.05 
8 91.73 91.73 91.73 94.14 94.14 

Table 6: Differences in 1-best supertagging accuracy for all pairs of reranking models. Significant differences 
(p < 0.05) are marked with "*" 

Before s L LUS LUU wuu PUU SM SM& NPOS 
Re rank LUS US 

s +0.57 
L -0.07 -0.64 

LUS +l.53* +o.96* +1.60* ' 
LUU +1.19* +o.62 +l.26* -0.34 .. 
wuu +1.43* +0.86 +l.50* -0.10* +0.24 
PUU +0.84 +0.27 +0.91* -0.69 -0.35 -0.59 
SM +l.44* +o.87 +l.51 * -0.09 +o.25 +0.01 +0.60 

SM&LUS +2.79* +2.22* +2.86* +1.26* +1.60* +1.36* +1.95* +1.35* 
NPOSUS +o.77 +0.20 +0.84 -0.76 -0.42 -0.66 -0.07 -0.67 -2.02* 
LPOSU 
LUS +l.84* +l.27* +l.91* +o.31 +o.65 +0.41 +l.00* +0.40 -0.95* +l.07* 

The smoothing technique was successful in raising the 8-best supertagging accuracy to 94.14% from 91.73%. 
And, as can be seen in Table 5 Rank.Boost can still improve on the output, though to a slightly lesser extent. Overall, 
the error reduction increases to 14.1% over tbe unsmoothed, non-reranked 1-best supertags (ofwhich RankBoost 
contributes 6.9% absolute). As far as we know, these are the currently best results for supertagging using !arge 
supertag sets. 

7. Significance Testing 

We performed a one-way analysis of variance on tbe 1-best supertagging results of aU of the reranking models 
that are mentioned in this paper. Table 6 tabulates the differences between 1-best supertagging accuracies of the 
various models and marks significant differences, p < 0.05, with "*." The F-value is 18.11; the critical value for 
the Tukey test is 0.89. 

8. Conclusions and Future Work 

This paper has explored the use of RankBoost in order to rerank an n-gram supertagger. We have seen that 
such a reranking, perfonned effectively, is potentially useful in a variety of applications, including speeding up 
a parser. We have perfomled experiments that show that RankBoost can indeed produce models that perfonn 
reranking weil, to a statistically significant degree. We have identified specific features that explain why the 
reranker performs effectively. We have also identified causes that limit the reranker's perfonnance. Finally, we 
have perfonned other, exploratory experiments that ameliorate these limitations. 
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An advantage of using RankBoost is that numerous candidate features can be added robustly because Rank-
Boost learns to choose only the relevant ones. This invites the possibility of investigating kinds of features for 
reranking other than the ones mentioned in this paper. Bilexical features may be useful, along with features that 
take into account tree families, different kinds of parts of speech, punctuation, or the results of chunkers or even 
parsers. lt is also important to keep in mind that the performance of the reranker is limited by the performance of 
the n-best supertagger. Thus, novel means to increase the n-best supertagger's accuracy should also be explored. 
We also intend to investigate other ways of obtaining candidate supertag sets using other notions of class-based 
supertagging presented in (Chen, Bangalore and Vijay-Shanker, 1999). 

References 

Bangalore, Srinivas, John Chen and Owen Rambow. 2001. Impact of Quality and Quantity of Corpora on Stochastic Genera-
tion. In Proceedings of the 2001 Conference on Empirical Methods in Natural Langauge Processing, Pittsburgh, PA. 

Bangalore, Srinivas and A. K.. Joshi. 1999. Supertagging: An Approach to Almost Parsing. Computational Li11guistics, 25(2). 
Chandrasekhar, R. and B. Srinivas. 1997a. Automatie Induction of Rules for Text Simplification. Knowledge-Based Systems, 

10:183-190. 
Chandrasekhar, R. and B. Srinivas. 1997b. Using Supertags in Document Filtering: The Effect of Increased Context on 

Information Retrieval. In Proceedings ofRecent Advances in NLP '97. 
Chen, John. 2001. Towards Efficient Statistical Parsing Using Lexicalized Grammatical Information. Ph.D. thesis, University 

ofDelaware. 
Chen, John, Srinivas Bangalore and K. Vijay-Shanker. 1999. New Models for Improving Supertag Disambiguation. In 

Proceedings of the 9th Conference of the European Chapter of the Association for Computational Linguistics, Bergen, 
Norway. 

Chen, John and K. Vijay-Shanker. 2000. Automated Extraction ofTAGs from the Penn Treebank. In Proceedings of the Sixth 
International Workshop on Parsing Technologies, pages 65-76. 

Chiang, David. 2000. Statistical Parsing with an Automatically-Extracted Tree Adjoining Grammar. In Proceedings of the the 
38th Annual Meeting of the Associationfor Computational Linguistics, pages 456-463, Hong Kong. 

Collins, Michael. 1997. Three Generative Lexicalized Models for Statistical Parsing. In Proceedings of the 35th Annual 
Meeting of the Associationfor Computational Linguistics. · 

Collins, Michael. 1999. Head-Driven Statistical Modelsfor Natural Language Parsing. Ph.D. thesis, University of Permsyl-
vania. 

Collins, Michael. 2000. Discriminative Reranking for Natural Language Parsing. In Proceedings of the 17th International 
Conference on Machine Learning. 

Freund, Yoav, Raj Iyer, Robert E. Schapire and Yoram Singer. 1998. An Efficient Boosting Algorithm for Combining Prefer-
ences. In Machine Leaming: Proceedings of the Fifteenth International Conferece. 

Marcus, Mitchell, Beatrice Santorini and Mary Ann Marcinkiewicz. 1993. Building a Large Annotated Corpus ofEnglish: the 
Penn Treebank. Computational Linguistics, 19(2):313-330. 

Ratnaparkhi, Adwait. 1996. A Maximum Entropy Model for Part-of-Speech Tagging. In Proceedings of the Conference on 
Empirica/ Methods in Natural Language Processing, pages 133-142, Somerset, NJ. 

Sarkar, Anoop. 2000. Practical Experiments in Parsing using Tree Adjoining Grammars. In Proceedings of the Fifth Interna-
tional Workshop on Tree Adjoining Grammars and Related Frameworks, Paris, France. 

Sarkar, Anoop. 2001. Applying Co-Training Methods to Statistical Parsing. In Proceedings of Second Annua/ Meeting of the 
North American Chapter of the Associatwn for Computational Linguistics, Pittsburgh, PA. 

Schabes, Yves, AMe Abeille and Aravind K. Joshi. 1988. Parsing Strategies with 'Lexicalized' Grammars: Application to 
Tree Adjoining Grammars. In Proceedings of the l 2th International Conference 011 Computational Linguistics, Budapest, 
Hungary. 

Schapire, Robert E. 1999. A Briefintroduction to Boosting. In Prdceedings of the 16th International Joint Conference on 
Artificial Intel/igence. 

Srinivas, B. 1997. Performance Evaluation of Supertagging for Partial Parsing. In Proceedings of the Fifth International 
Workshop on Parsing Techno/ogies, pages 187-198, Cambridge, MA. 

van Halteren, H. 1996. Comparison ofTagging Strategies: A Prelude to Democratic Tagging. In Research in Humanities 
Computing 4. Clarendon Press, Oxford, England. 

Walker, Marilyn A„ Owen Rambow and Monica Rogati. 2001. SPoT: A Trainable Sentence Planner. In Proceedings of the 
Second Meeting of the North American Chapter of the Associationfor Computational Linguistics, pages 17-24. 

Xia, Fei. 1999. Extracting Tree Adjoining Grammars from Bracketed Corpora. InFifth Natural Language Processing Pacific 
Rim Symposium (NLPRS-99), Beijing, China. 

Xia, Fei, Chung hye Han, Martha Palmer and Aravind Joshi. 2000. Comparing Lexicalized Treebank Grammars Extracted 
from Chinese, Korean, and English Corpora. In Proceedings of the Second Chinese Language Processing Workshop 
(CLP-2000), Hong Kong, China. 

Xia, Fei, Martha Palmer, K. Vijay-Shanker and Joseph Rosenzweig. 1998. Consistent Grammar Development Using Partial-
Tree Descriptions for Lexicalized Tree Adjoining Grammars. In Fourth International Workshop on Tree Adjoining Gram-
mars and Re/ated Frameworks, pages 18()-183. 

XTAG-Group, The. 2001. A Lexicalized Tree Adjoining Grammar for English. Technical report, University of Pennsylvania. 
Updated version available at http://www.cis.upenn.edwxtag. 


