
Residuation, Structural Rules and Context Freeness

Gerhard Jäger
University of Potsdam/ZAS Berlin

1. Introduction

This paper deals with the issue of the generative capacity of a certain version of type logical categorial gram-
mar. Originally categorial grammar in the modern sense was invented in three varieties in the late fifties and early
sixties. Bar-Hillel (1953) developed applicative categorial grammar, a bidirectional version of older type theoretic
systems tracing back to the work of Polish logicians in the early twentieth century. Few years later, Lambek (1958)
proposed his calculus of syntactic types that is known as the (associative) “Lambek calculus” nowadays (abbrevi-
ated as “Ł”). A short time later he published a non-associative version of this calculus in (Lambek, 1961), which is
known as the “Non-associative Lambek calculus” NL. These two systems are the first instances of “Type Logical
Grammars”, i.e. the deductive machinery of the grammar formalism is a substructural type logical calculus.

The issue of the position of these grammar formalisms within the Chomsky hierarchy has intrigued mathe-
matical linguists from the beginning. It was settled first for applicative categorial grammar by Bar-Hillel, Gaifman
and Shamir (1960). They establish the weak equivalence of this version of categorial grammars with the context
free languages.

For the type logical categorial grammars, this problem was settled fairly late. Buszkowski (1986) established
the the product free fragment of the non-associative Lambek calculus defines exactly the context free languages,
and Kandulski (1988) showed that this result carries over to full NL. Finally, (Pentus, 1993) gives a proof that the
associative Lambek calculus Ł is weakly equivalent to the context free grammars as well.

It was already conjectured in (Chomsky, 1957) that context free grammars are not expressive enough to give
an adequate description of the grammar of natural languages. This was formally proved in (Shieber, 1985). So
it seems that none of the tree basic varieties of categorial grammar provides an adequate grammar formalism for
linguistics. This shortcoming motivated to move to multimodal systems, i.e. type logical grammars that employ
several families of connectives and certain interactions between them. This idea was first explored in (Moortgat,
1988) and (Morrill, 1990), and systematized in (Moortgat, 1996). There it is assumed that it is sufficient to use a
finite ensemble of residuation connectives plus some interaction postulates between them to come to terms with
the empirical facts of natural language. This idea is confirmed but trivialized by (Carpenter, 1999), where it is
proved that multimodal type logical grammars are equivalent in generative power to Turing machines.

Considering Carpenter’s proof, it seems intuitively obvious that the unrestricted use of interaction postulates
is responsible for this increase in generative capacity, while the notion of multimodality as such has no such effect.
This is partially confirmed by Jäger (2001). This article gives a proof that enriching the associative Lambek calcu-
lus with pairs of unary residuation connectives without interaction postulates does not increase generative power;
the resulting system still describes exactly the context free languages. This is established by a straightforward
extension of Pentus’ construction.

For a non-associative base logic, several important results in this connection have been obtained by Maciej
Kandulski (see (Kandulski, 1995; Kandulski, 2002)). He generalizes his result from (Kandulski, 1988) to the
commutative version of the non-associative Lambek calculus, and to multimodal logics comprising an arbitrary
number of different families of residuation connectives of any arity, but without structural rules.

Kandulski’s results are all based on an axiomatization of the type logics underlying the grammars in question
and a process of proof normalization within this axiomatic calculus. The present paper presents alternative proofs
of these theorems that are based on the Gentzen style sequent presentation of the logics involved. This new
proof strategy leads to generalizations of Kandulski’s results in two respects: Any combination of residuated
connectives with any of the structural rules Permutation, Contraction and Expansion lead to type logical grammars
that recognized only context free languages, and this also holds if we admit non-atomic designated types.

The structure of the paper is as follows. We first focus on the simplest multimodal extension of the non-
associative Lambek calculus, namely the calculus NL

�
from (Moortgat, 1996). In section 2 we introduce the

necessary technical notions, and section 3 presents the proof that grammars based on NL
�

recognized exactly the
context free languages. In section 4 we generalize these results to residuation modalities of arbitrary arity, and to

c
�

2002 Gerhard Jäger. Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and Related Frameworks
(TAG+6), pp. 151–158. Universitá di Venezia.

152 Proceedings of TAG+6

calculi using the structural rules Permutation, Contraction or Expansion. Section 5 summarizes the findings and
points to desiderata for further research.

2. Technical Preliminaries

2.1. NL

The non-associative Lambek calculus NL is the weakest substructural logic. Its logical vocabulary consists of
one binary product � and its left and right residuation, the two directed implications

�
and � . More formally, the

types of NL are defined recursively over some finite alphabet of atomic types � as

�����	� ��
 � � �
 � � �
 � � �
The calculus itself can be defined as a set of arrows, i.e. objects of the form ���� , where � and � are types

of NL. In its axiomatic presentation, the calculus comprises the identity axiom and the Cut rule. We use the upper
case Latin letter ���������������	� as meta-variables over types. ���

����
���� ���� ���! ����

The behavior of the logical connectives is governed by the residuation laws

�"#� � � iff � � �"$� iff ����%�&�
Lambek also gives a Gentzen style sequent presentation of NL. A sequent consists of an antecedent and a

succedent, where the antecedent is a binary tree over types and the succedent a single type. We write trees as terms
formed from types and the binary operation ' . Formally, the set of NL-trees is thus given by

(���	�)�
�* (' (�+
The upper case Latin letters ,-�/.0�213�4�	�	� are meta-variables over trees of types. ,65 .%7 is a tree , containing a

sub-tree . , and ,658197 is the result of replacing the sub-tree . in , by 1 .�:�
�<;#�

,=;#� .�5 �>7?;#� ���! .@5 ,A7B;#�
,65 �6'C�D7B;�� �&E,65 � � �D7B;��

,=;#� .F;�� �&G,H'C.";#� � �
,I;#� .�5 �D7B;�� � E.�5 �J�K�L'0,A7M;��

,N'C��;#� � G,=;����&�
,I;#� .�5 �D7B;�� � E.@5 ,N'C� � ��7M;��

�L'0,=;#� � G,I;#� � �
Figure 1: Sequent presentation of the non-associative Lambek calculus NL

We write “NL O@,I;�� ” iff the sequent ,=;�� is derivable in the sequent calculus. The axiomatic and the
sequent presentation of NL are equivalent in the sense that every derivable arrow is also a derivable sequent, and
replacing all occurrences of ' in a derivable sequent by the product � yields a derivable arrow.

It is easy to see that all rules in the sequent calculus except Cut have the subformula property. Lambek proved
Cut elimination for the sequent calculus, which establishes decidability.

Jäger 153

2.2. NL
�

(Moortgat, 1996) extends the format of type logics in two ways. He considers calculi that comprise more than
one family of residuated operators, and he generalizes Lambek’s binary operators to the � -ary case. In the present
paper, we will be mainly concerned with one of the simplest version of such a multimodal system, namely the
combination of one binary product and its accompanying implications with one unary product and its residuated
counterpart. The resulting logic is dubbed NL

�
.

The logical vocabulary of NL
�

extends the vocabulary of NL with two unary connectives,
�

and
���

. So the
set of NL

�
-types is over the atoms � is given by

� ����� �@
 � � �
 � � �
 � � �
 � �
 ��� �
They form a pair of residuated operators, i.e. their logical behavior is governed by the residuation law

�� � � iff
��� �<#�

The axiomatic presentation of NL
�

consists just of the axioms and rules of NL plus the above residuation law.
(Moortgat, 1996) also gives a sequent presentation of NL

�
. Now the trees that occur in the antecedent of a

sequent is composed from types by two operators, a binary one ('), and a unary one (
��� �

), corresponding to the two
products � and

�
. So we have

(�����)�
�* (' (+
 � (�

Moortgat’s sequent calculus for NL
�

is obtained by extending the sequent calculus for NL with the following
four rules, i.e. a rule of use and a rule of proof for both

�
and

� �
.

,=;�� � E� , � ; � �
,65 � � � 7M;#� � G,65 � �>7B;��

,65 �>7!;�� �	� G,65 � �	� � � 7?;#�
� , � ;#� � � G,I; ��� �

Figure 2: Sequent rules for the unary modalities in NL
�

As in NL, all sequent rules of NL
�

have the subformula property. By proving Cut elimination for NL
�

,
(Moortgat, 1996) thus establishes decidability, and he also proves the equivalence of the axiomatic with the sequent
presentation.

2.3. Logic and grammars

A type logic like NL
�

is the deductive backbone of a type logical grammar. The grammar itself consists just
of the lexicon, i.e. an assignment of types to lexical items, and a collection of designated types (which is sometimes
tacitly assumed to be the singleton set
��� , but I assume a more general notion of grammar here).

Definition 1 (NL
�

-grammar) An NL
�

-grammar over an alphabet � is a pair
��� ��� �

, where
�

, the lexicon, is a
finite relation between ��� and the set of NL

�
-types

�
, and the set of designated types � is a finite subset of

�
.

(The definitions for “NL-grammar”, “Ł-grammar” etc. are identical.) A string from ��� is recognized by an
NL

�
-grammar � if it is a concatenation of lexical items, and replacing each of these items by one of their lexical

types leads to the yield of some binary tree of types from which a designated category is derivable. Formally this
reads as follows:

Definition 2 (Recognition) Let � � ��� ��� �
be an NL

�
-Grammar over � . A string ������� is recognized by �

iff

� � ����� � �!� ��"
,

� there are � � �4���4�K��� " � � such that for all #%$
�
$ � � � ��& �/� & � � �

,

154 Proceedings of TAG+6

� there is a tree , and a type
� � � such that NL

� O�,=; �
, and � � �4���/� " is the yield of , .

The notion of recognition for other categorial calculi is similar—the only difference being the underlying
calculus and thus the derivability relation in the last clause.

3. Generative Capacity

In this section I will present and discuss the main result of this paper, the weak generative equivalence between
context free grammars and NL

�
-grammars. The inclusion of the context free languages in the class of NL

�
-

recognizable languages is easy to show; the proof immediately follows from Kandulski’s (1988) analogous proof
for NL (which is itself a straightforward adaption of the corresponding proof for applicative categorial grammars
from (Bar-Hillel, Gaifman and Shamir, 1960)).

Lemma 1 Every context free language E is recognized by some NL
�

-grammar.

Proof: Kandulski (1988) proves that the class of NL-grammars recognizes exactly the context free languages.
Thus there is an NL-Grammar � � ��� � � �

that recognizes E . From the facts that all sequent rules of cut-free
NL

�
have the subformula property and that all sequent rules of NL are also rules of NL

�
it follows that NL

�
is

a conservative extension of NL. In other words, if an NL
�

-sequent , ; � is derivable in NL
�

and does not
contain occurrences of

� � ���
, and

��� �
, it is also NL-derivable. The structural connective

� � �
only cooccurs with

the modalities
�

or
�	�

in derivable sequents. (This can easily be shown by induction over sequent derivations.)
So if a derivable NL

�
-sequent does neither contain

�
nor

� �
, it is also NL-derivable. To decide whether a string

is recognized by � or not it is sufficient to restrict attention to sequents that only involve types from
�

or � . For
this fragment, the derivability relations defined by NL and NL

�
coincide. Therefore � still recognizes E if it is

conceived as an NL
�

-grammar. �

To prove that a given variety of type logical grammar recognizes only context free languages, it is sufficient to
show that the relevant fragment of the underlying logic can be axiomatized by using only finitely many axioms and
the Cut rule. (This strategy has in fact been pursued in all such proofs from the literature that were mentioned in the
introduction.) Pentus (1993) proof for the context freeness of Ł is an especially simple and elegant implementation
of this idea (even though the proof for the correctness of his construction is quite complex). Consider an Ł-grammar
� � ��� � � �

. It comprises finitely many types (either as lexical or as designated types), and hence there is some
upper limit � for the complexity of types in � , where the complexity of a type is identified with the number of
connectives occurring in it. The first important insight of his proof is that to one does not need the entire calculus Ł
but just those fragment of it that only uses types with a complexity $ � to determine which language � recognizes.
Let us call this fragment of Ł Ł * � + . The central lemma of the proof establishes that Ł * � + can be axiomatized by
the set of its sequents that have at most two antecedent types, and the Cut rule. Since there are only finitely many
types occurring in Ł * � + , this set of axiom is finite.

The same construction can be applied to NL
�

as well. The adequacy of the construction is in fact much easier
to prove here then for Ł. We first show that every NL

�
-sequent can be represented as the result of Cut in such a

way that the premises of this Cut rule do not involve types that are more complex than the most complex type in
the original sequent. Furthermore, any position in the original sequent can be chosen as the target position for the
Cut application.

Lemma 2 Let ,65 .%7M;�� be a theorem of NL
�

. Then there is a type � such that

1. NL
� O@.";#�

2. NL
� O�,65 �D7!;��

3. There is a type occurring in ,65 .%7M;#� which contains at least as many connectives as � .

Proof: We prove the lemma by induction over sequent derivations. For the base case

���
the lemma is obviously

true. So let us suppose the lemma holds for the premises of a sequent rule. We have to demonstrate that it holds
for the conclusion as well. If NL

� O ,65 .%70; � and � has the required properties, we call � a witness for .
(with respect to the sequent ,65 .D7B;#�).

Suppose that ,L5 .%7 ; � is a premise of a sequent rule and ,�� 5 .���7 ; � is the conclusion, where .�� is the
substructure corresponding to . . Then for any type � , if O .�; � , then O .�� ; � . (Either . and .�� are

Jäger 155

identical, or .�� is the result of applying a rule of use to . , which is derivability preserving.) Furthermore, ifO ,65 � 7C; � for some type
�

, then O6, � 5 � 79; � as well. (Either ,65 � 7 and , � 5 � 7 are simply identical, or, � is the result of applying a rule of use to , with . as an inactive part. In the latter case, it does not matter for
derivability if we replace . with

�
.) Finally (Moortgat, 1996) proves that the sequent calculus of NL

�
enjoys

the subformula property. Thus if � is a witness for . in the premise, it is also a witness for . � in the conclusion
(because the most complex type from the premise occurs in the conclusion as subtype). So to complete the
induction step, we only have to consider cases where a substructure in the conclusion does not correspond to any
substructure in any of the premises of a sequent rule. This applies to all types that are created via a left introduction
rule. It is obvious though that each type is a witness for itself, so the induction step holds for these cases as
well. So the only cases that remain to be considered are the left hand sides of the conclusions in �&G and

� G . In
either case, the type on the right hand side is a witness for the left hand side as a whole. This completes the proof. �

From this it follows immediately that a Pentus style axiomatization is possible for NL
�

as well.

Lemma 3 Let NL
� * � + �
 �=; �
NL

� O �I; ��������� *
	�����	 � + $ � �
 � � � ; �@
NL
� O � � � ;��������� *�	�����	�� + $ � ���
 � ' � ; �
NL

� O � ' � ; ��������� *�	 � ��	�����	J� + $ � , where 	�� is the
number of connectives occurring in � . Furthermore, let ,#;$� be an NL

�
-derivable sequent such that no type

in it contains more than � connectives. Then ,=;#� is derivable from NL
� * � + and Cut.

Proof: We prove the lemma by induction over the number of structural operators (i.e. ' and
� � �

) in , . If, is a single type, the lemma is obviously true. So let us assume that , � .�58197 , where 1 � � � 'D�� or1 � � � �
. According to lemma 2, there is a witness � for 1 such that O 1 ;$� , .�5 � 7B;�� , and 	J� $ � . Then1 ; � � NL

� * � + by definition and 1 ; � is derivable from NL
� * � + and Cut by induction hypothesis. Thus,=;#� is derivable from NL

� * � + and Cut as well. �

This leads directly to the inclusion of the class of NL
�

-recognizable languages in the class of context free
languages.

Lemma 4 Every NL
�

-recognizable language is context free.

Proof: Let an NL
�

-grammar � ��� ��� ��� �
(with

�
being the lexicon and � the set of designated types) be

given. We construct an equivalent CFG � � in the following way: The terminal elements of � � are the lexical items
of � �

. The non-terminals are all NL
�

-types � with 	�� $ � , where � is the maximal number of connectives in a
single type occurring in � �

. Besides we have a fresh non-terminal
�

which is the start symbol. Productions are

�
 � #�
 ��;�� � NL
� * � + ��

�
 � #�
 � � � ;�� � NL
� * � + ��

�
 � #�����
 �<'9� ;#� � NL
� * � + ��

�
 � �
 � � ��� � � � ��
�
 � #��
 � � �

If
��� �4��� ��� is recognized by � �

, then there is a NL
�

-derivable sequent ,#; � such that � is a designated
category, the yield of , is � � �4��� � � , and

� ��& �/� & � � �
for # $

�
$�� . By the construction of � � , � ����� � .

Due to lemma 3 and the construction of � � , thus
� ����� � � ���4�/� " , and by the construction of � � , this leads to� ����� � � �4��� � " . So

� � ���4� � " is recognized by ��� .
No suppose

� � �4��� � � is recognized by ��� . This means that
� ����� � � �4��� � " . By the construction of ��� ,

there must be a � � � and � � ���4�/� " with
� � & ��� & � � �

such that � �� � � � �4��� � " . Hence there must be a
derivation from � to some structure , such that � � �4���/� " is the yield of , . All rules involved in this derivation
originate from NL

� * � + , and since all rules in NL
� * � + are NL

�
-derivable, O�, ; � . Hence

� � ���4� � " is
recognized by � �

. �

The Lemmas 1 and 4 jointly give the main result of this section:

Theorem 1 NL
�

-grammars recognize exactly the context free languages.

Proof: Immediate. �

156 Proceedings of TAG+6

4. Generalizations

The concept of residuated logical connectives can readily be generalized to � -ary operations for arbitrary � .
Such this systems have been considered at various places in the context of categorial grammar, including (Moortgat,
1996) and (Kandulski, 2002). A multimodal logic of pure residuation (“LPR” henceforth) is characterized by a
family of modes

�
and a function � that assigns each mode an arity, i.e. a natural number. If � � � is a

mode of arity � *�� + � � , it defines ��� # � -ary connectives: an � -ary product operator ��� , and � implications

�� &	
 # $

�
$�� . As for NL and NL

�
, there is an axiomatic formulation for any LPR having the identity axiom

as only axiom, the Cut rule and a collection of residuation laws. The laws for the binary and unary operators given
above are generalized to the general case in the following way:

 �

�
$�� *�� + � �� * � � � �!� � �/��������� + �� iff � & �� &	 * � � �4���4�K��� &�� � �/���/� & � � �4���4�4����������� + &

The sequent calculus for a given LPR over the set of modes
�

is also a straightforward extrapolation from
NL

�
. Antecedents of sequents are now terms built from types by means of structural operators. There is one

structural operator �� for every � ��� with arity � *�� + .�:�
��;#�

,=;�� .�5 �>7M;�� ���! .�5 ,A7M;#�

 � $�� *�� + � , & ;#� & � � E��� * , � � �!� � � , ���!�"� + ;����)* � � � � �!� ����������� +

,65 � � * � � � �!� � �/��������� + 7B;#� � � G,65 �� * � � � �!� � �/��������� + 7B;#�

 � $#� *�� + �

�%$�#& � , & ;#� & .�5 �D7B;�� � 	 E.�5 ��� * , � � �!�!� � , &�� � �'� 	 * � � � �!� � �/� &(� � �����/� & � � �!� � �������!�"� + � , &
�
� � �!� � � , ���!�"� + 7B;��

��� * � � � � �!� ��� &�� � � ,-��� & � � � �!� � �/��������� + ;�� � 	 G,=;�� 	 * � � � �!� � �/� &(� � ������� & � � � �!� � �/��������� +
Figure 3: Sequent rules for LPR

The equivalence of the axiomatic with the sequent presentation, as well as Cut elimination for all instances of
LPR can be proven by arguments that are entirely parallel to the corresponding proofs for NL.

The results from the previous section on NL
�

carry over to all instances of LPR without further ado.

Lemma 5 Let ,65 .%7M;�� be a theorem of LPR. Then there is a type � such that

1. LPR O@.";#�
2. LPR O�,65 �D7B;#�
3. There is a type occurring in ,65 .%7M;#� which contains at least as many connectives as � .

Proof: Parallel to the proof of lemma 2. �

So there is a finite axiomatization of any fragment of an LPR that has an upper limit for the complexity of
the types involved. The notions of an LPR-grammar and of the language recognized by such a grammar can be
adapted from the corresponding notions related to NL

�
in an obvious way. Finite axiomatizability thus amounts

to the fact that every LPR-grammar is equivalent to some context free grammar. On the other hand, any NL-
grammar is an LPR-grammar, and since any context free language is recognized by some NL-grammar, we obtain
the following generalization of theorem 1:

Theorem 2 LPR-grammars recognize exactly the class of context free languages.

Proof: Analogous to the corresponding proof for NL
�

. �

Jäger 157

Up to now we only considered calculi of pure residuation, i.e. calculi that do without any structural rules. One
might wonder what impact the presence of structural rules has on the generative capacity. We will consider the
structural rules Associativity (�), Permutation (

�
), Contraction (�), Expansion (�) and Weakening (�) in the

sequel, as applying to some distinguished binary mode � . For simplicity, we write ' instead of � � below. The
sequent versions of these rules are given in figure 4. (The double line in � indicates that these are actually two
rules, left associativity and right associativity.)

,65 .�'�* 1 '�� + 7M;#�� � � � � � � � � � � � � � � � �,65	* .�'>1 + '��<7M;#�
,65 .�'>1>7M;#� �
,65 16'C.%7B;#�

,65 .�'C.%7M;#� �,65 .D7M;#�
,65 .%7M;��

�,65 .�'C.D7B;#�
,L5 .%7B;#�

�,L5 . '>1>7M;#�
Figure 4: Structural Rules

Would the proof for lemma 5 still go through if we add some of these rules to the calculus? Certainly not for� . If the induction hypothesis would hold for the sequent on top, this would not guarantee that there is a witness
for . ' 1 , and likewise for the opposite direction. Likewise, the induction step would not work for � , because
the induction hypothesis—the lemma holds for the premise sequent—does not guarantee that there is a witness for1 . It doesn’t work for � either because we cannot be sure whether the witness for the two occurrences of . in
the premise are identical. If they aren’t, contraction cannot be applied anymore after replacing the two . s by their
witnesses. However,

�
and � are well-behaved.

Lemma 6 Let � be some multimodal calculus that comprises the sequent rules for LPR and a subset of the
structural rules
 � ��� for each binary mode of � . Let ,65 .D70; � be a theorem of � . Then there is a type �
such that

1. �"O�.";#�
2. �"O�,65 ��7M;#�
3. There is a type occurring in ,65 .%7M;#� which contains at least as many connectives as � .

Proof: By induction over sequent derivations. For the logical rules, the induction step was established above.
As for

�
, the witness of any substructure of , in the conclusion is identical to the corresponding witness in

the premise, and likewise for substructures of . and 1 . As for � , the witness for a substructure of , in the
conclusion is inherited from the premise. Suppose . has a substructure 1 , and we want to know whether there is
a witness for the occurrence of 1 in the left occurrence of . in the conclusion. By hypothesis, we know that for
some type � with a complexity that is not more complex than the most complex type in the premise sequent, it
holds that � OA,65 .�5 ��7�7 ; � , and � OA� ; 1 . By applying � , we obtain � O ,L5 .�5 �D7 '9.�5 �D7	7 ; � , and by
Cut we get �"O�,65 .�5 �D7	7 'C.�58197B;#� . �

Thus we have

Theorem 3 A type logical grammar that is based on a calculus which extends a version of LPR with
�

or � for
some of its binary modes recognizes only context free languages.

Proof: Immediate. �

Let me conclude this section with some remarks on the relation of my results to (Kandulski, 1995) and (Kan-
dulski, 2002). The central theorem of the latter work is almost identical to my theorem 2 (and my theorem 1 is
just a corollary of this). Kandulski gives an axiomatization for LPRusing Cut as the only rule, and he shows that
derivations in this axiomatic calculus can be normalized in such a way that only finitely instances of the axioms are
relevant for a given LPR-grammar. There is a minor difference between his results and mine: Kandulski requires

158 Proceedings of TAG+6

that the set of designated types of a type logical grammar is a singleton containing only one atomic type. The
restriction to atomic types is in fact essential for his proof to go through. The same holds ceteris paribus for the
context freeness proof for NL in (Kandulski, 1988). In this respect the results from the present paper are somewhat
more general. Furthermore, (Kandulski, 1995) presents a proof that grammars based on NL+

�
only recognize

context free languages. Again, the proof makes essential use of the restriction to atomic designated types.
Even though the results obtained in the present paper have an considerable overlap with Kandulski’s prior

work, the proof strategy used here is novel, and arguably simpler. It is also easier to generalize, as the application
to Expansion illustrates.

5. Conclusion

In this paper a new strategy for proving the context freeness of a class of type logical grammars was proposed.
The basic idea for the construction of context free grammars from type logical grammars is adapted from (Pentus,
1993). The proof of the correctness of the construction is different (and much simpler) though; it is based on
a property of sequent derivations that can be seen as a variant of Roorda’s (1991) interpolation lemma. It was
shown that this property is shared by all multimodal logics of pure residuation, i.e. any pure or mixed calculi using
only families of residuated operators of arbitrary arity. Prominent instances of this family of logics are NL and
NL

�
. It was furthermore proved that this property of sequent calculi is preserved by adding the structural rules

of Permutation or Expansion. Any categorial grammar based on one of these logics recognizes a context free
language. Conversely, by a slight variation of Cohen’s (1967) argument for Ł it can be shown that any context free
language is recognized by some LPR comprising at least one binary product, but no structural rules.

Further work is required to gain a deeper understanding on the impact of structural rules on generative ca-
pacity. The proof strategy that was proposed in this paper can be used as a recipe to establish context freeness
for extensions of LPR with certain structural postulates, including interaction postulates involving several modes.
However, it is not always applicable, as the example of the associative Lambek calculus demonstrates. So it would
be desirable to identify sufficient conditions when structural rules preserve context freeness.

References

Bar-Hillel, Yehoshua. 1953. A quasi-arithmetical notation for syntactic description. Language, 29:47–58.
Bar-Hillel, Yehoshua, C. Gaifman and E. Shamir. 1960. On Categorial and Phrase Structure Grammars. Bulletin of the

Research Council of Israel, F(9):1–16.
Buszkowski, Wojciech. 1986. Generative Capacity of Nonassociative Lambek Calculus. Bulletin of the Polish Academy of

Sciences: Mathematics, 34:507–518.
Carpenter, Bob. 1999. The Turing-completeness of multimodal categorial grammars. Papers presented to Johan van Benthem

in honor of his 50th birthday. European Summer School in Logic, Language and Information, Utrecht.
Chomsky, Noam. 1957. Syntactic Structures. The Hague: Mouton.
Cohen, Joel M. 1967. The equivalence of two concepts of Categorial Grammar. Information and Control, 10:475–484.
Jäger, Gerhard. 2001. On the Generative Capacity of Multimodal Categorial Grammars. to appear in Journal of Language and

Computation.
Kandulski, Maciej. 1988. The equivalence of nonassociative Lambek categorial grammars and context-free grammars.

Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 34:41–52.
Kandulski, Maciej. 1995. On commutative and nonassociative syntactic calculi and categorial grammars. Mathematical Logic

Quarterly, 41:217–135.
Kandulski, Maciej. 2002. On Generalized Ajdukiewicz and Lambek Calculi and Grammars. manuscript, Poznan University.
Lambek, Joachim. 1958. The Mathematics of Sentence Structure. American Mathematical Monthly, 65:154–170.
Lambek, Joachim. 1961. On the Calculus of Syntactic Types. In Roman Jakobson, editor, Structure of Language and Its

Mathematical Aspects. Providence, RI.
Moortgat, Michael. 1988. Categorial Investigations. Logical and Linguistic Aspects of the Lambek Calculus. Dordrecht: Foris.
Moortgat, Michael. 1996. Multimodal linguistic inference. Journal of Logic, Language and Information, 5(3/4):349–385.
Morrill, Glyn. 1990. Intensionality and Boundedness. Linguistics and Philosophy, 13:699–726.
Pentus, Martin. 1993. Lambek grammars are context-free. In Proceedings of the 8th Annual IEEE Symposium on Logic in

Computer Science. Montreal.
Roorda, Dirk. 1991. Resource logics: Proof-theoretical investigations. Ph.D. thesis, University of Amsterdam.
Shieber, Stuart. 1985. Evidence against the non-context-freeness of natural language. Linguistics and Philosophy, 8:333–343.

