
Context-Free Parsing of a Tree Adjoining Grammar Using
Finite-State Machines

Alexis Nasr
�
, Owen Rambow

�
, John Chen

�
, and Srinivas Bangalore �� Université Paris 7,

�
University of Pennsylvania,

�
AT&T Labs – Research

nasr@linguist.jussieu.fr, rambow@unagi.cis.upenn.edu, jchen@research.att.com,
srini@research.att.com

1. Introduction: A Dependency-Only Parser

In this paper, we describe work in progress that originated with the goal of creating a dependency parser
which does not use phrase structure, but does use an explicit generative (and of course lexicalized) encoding of the
grammar.1 The motivation for this goal is threefold.

� First, we believe that the phrase structure used by many (if not most) linguistic theories is useful only in deriving
the syntactic behavior of lexical heads (or classes of lexical heads) from more general principles(which is of
course the goal of syntactic theory); once derived, the syntactic behavior can be expressed in simpler terms that
can be easier to manipulate in a computational setting.2 Furthermore, applications need as output from a parser
something close to dependency (typically, lexical predicate-argument structure), but not phrase-structure.

� Second, we prefer an explicit encoding of a grammar in an inspectable declarative syntactic formalism over
an implicit encoding in a computational framework. While we believe that explicit grammars have various
advantages, such as the ability to test different syntactic hypotheses, or the possibility of hand-crafting grammars
for limited domains (as is commonly done in commercial speech-based systems), we do not attempt to justify
this preference further.

� Third, we believe that generative formalisms have certain advantages over constraint-based formalisms, in par-
ticular computational advantages. A large body of research on parsing in generative formalisms can be reused
for different formalisms if they share certain basic properties, and we exploit this fact.

The formalism we used is based on that presented in (Kahane et al., 1998), but in the first phase we have
omitted the non-projectivity, leaving us with a simple generative algorithm which allows us to lexicalize a context-
free grammar by allowing regular expressions in the right-hand side.3 We call this formalism GDG,or Generative
Dependency Grammar. Its parsing algorithm, naturally, expresses the regular expressions as finite-state machines
(FSMs), and the chart parser records FSMs and the state they are in during the parse.

It is well known that the derivation tree of a Tree Adjoining Grammar (TAG) is a dependency tree if the
grammar is lexicalized (though not always the linguistically most plausible one), and as a result, there are many
parallels between a dependency analysis and a TAG analysis if we abstract from the phrase structure of the latter
(Rambow and Joshi, 1997). In fact, a dependency parse can be seen as a direct parse of a TAG derivation tree.
And furthermore, we can derive a grammar in our lexicalized GDG formalism from a TAG grammar in a relatively
straightforward manner. This has advantages in grammar reuse. Given the close relation between dependency and
TAG, our approach can be seen as an exercise in applying the FSM-based parsing techniques of Evans and Weir
(1997) and (1998) to the Tree Insertion Grammars (TIG) of Schabes and Waters (1995), though the different origin
of the approach (dependency parsing vs. TAG parsing) translates to differences in the way the FSMs are used to
parse.

In this overview, we introduce GDG and its parsing algorithm in Section 2, and describe how we compile a
TAG to a GDG in Section 3. We discuss the empirical adequacy and speed of the parser in Section 4, and conclude
with a discussion of how our projected work relates to other current work in parsing. We postpone a discussion of
related work in formalizing dependency to another publication.

1. We would like to thank David Chiang, Anoop Sarkar, and three insightfully critical anonymous reviewers for their com-
ments, explanations, and suggestions.
2. We leave open whether this point also has cognitive relevance.
3. In this we follow a suggestion made by Abney (1996), essentially extending the formalism of (Gaifman, 1965).

c
�

2002 Alexis Nasr, Owen Rambow, John Chen, Srinivas Bangalore. Proceedings of the Sixth International Workshop on Tree
Adjoining Grammar and Related Frameworks (TAG+6), pp. 96–101. Universitá di Venezia.

Nasr et al. 97

2. GDG and Parsing GDG

An Extended Context-Free Grammar (or ECFG for short) is like a CFG, except that the right-hand side is a
regular expression over the terminal and nonterminal symbols of the grammar.4 At each step in a derivation, we
first choose a rewrite rule (as we do in CFG), and then we choose a string of terminal and nonterminal symbols
which is in the language denoted by the regular expression associated with the rule. This string is then treated
like the right-hand side of a CFG rewrite rule. A Generative Dependency Grammar (GDG) is a lexicalized ECFG.
For our formalism, this means that the regular expression in a production is such that each string in its denoted
language contains at least one terminal symbol. When we use a GDG for linguistic description, its left-hand side
nonterminal will be interpreted as the lexical category of the lexical item and will represent its maximal projection.
The right-hand side symbols represent the active valency of the lexical head of the rule, i.e., the categories that
must or may (depending on whether the symbol is optional) be dependents on this lexical head for it to be the root
of a well-formed subtree. Passive valency (a representation of where and to what other heads a lexical head may
attach itself) is not explicitly encoded.

The parsing algorithm is a simple extension of the CKY algorithm for CFG. The difference is in the use of
finite state machines in the items in the chart to represent the right-hand sides of the rules of the ECFG. A rule with
category

�
as its left-hand side will give rise to a finite state machine which we call a

�
-FSM; its final states mark

the completed recognition of a constituent of label
�

. Let � be the parse table for input sentence � and GDG �
such that ����� � contains 	�
����� iff
 is a

�
-FSM, � is one of the final states of
 , and we have a derivation

�
of

substring � ������� � � from
�

in � .
Initialization: We start by adding, for each � , ��������� , � � to � ��� � .
Completion: If ��� � � contains either the input symbol � or an item 	�
����� such that � is a final state of
 , and

 is a
�

-FSM, then add to ����� � all 	!
#"����$"%� such that
&" is a rule-FSM which transitions from a start state to state
� " on input � or

�
.

Scanning: If 	�
(')���*'�� is in � � � + , and � +-, ' � � contains either the input symbol � or the item 	�
(.��/��.�� where ��.
is a final state and
0. is a

�
-FSM, then add 	!
(')�/��� to � ��� � (if not already present) if
(' transitions from �)' to �

on either � or
�

.
Note that because we are using a dependency grammar (or, in TAG terms, parsing the derivation tree directly),

each scanning step corresponds to one attachment of a lexical head to another (or, in TAG terms, to an adjunction
or a substitution). At the end of the parsing process, a packed parse forest has been built. The nonterminal nodes
are labeled with pairs 	�
����� where
 is an rule FSM and � a state of this FSM.

Obtaining the dependency trees from the packed parse forest is performed in two stages. In a first stage, a
forest of binary syntagmatic trees is obtained from the packed forest and in a second stage, each syntagmatic tree
is transformed into a dependency tree.

3. Compilation of a TAG into GDG

In fact, we do not derive a formal GDG from a TAG but instead directly compile a set of FSMs which are
used by the parser (though we consider the distinction irrelevant, as FSMs and regular expressions are easily inter-
convertible). To derive a set of FSMs from a TAG, we do a depth-first traversal of each elementary tree in the
grammar (but excluding the root and foot nodes of adjunct auxiliary trees) to obtain a sequence of nonterminal
nodes. Each node becomes two states of the FSM, one state representing the node on the downward traversal on
the left side (the left node state), the other representing the state on the upward traversal, on the right side (the
right node state). For leaf nodes, the two states immediately follow one another. The states are linearly connected
with 1 -transitions, with the left node state of the root node the start state, and its right node state the final state
(except for predicative auxiliary trees – see below). To each non-leaf state, we add one self loop transition for each
tree in the grammar that can adjoin at that state from the specified direction (i.e., for a state representing a node
on the downward traversal, the auxiliary tree must adjoin from the left), labeled with the tree name. For each pair
of adjacent states representing a substitution node, we add transitions between them labeled with the names of the
trees that can substitute there. For the lexical head, we add a transition on that head. For footnodes of predicative

4. ECFG has been around informally since the sixties (e.g., the Backus-Naur form); for formalizations see (Madsen and
Kristensen, 1976) or Albert et al. (1999).

98 Proceedings of TAG+6

auxiliary trees which are left auxiliary trees (in the sense of Schabes and Waters (1995), i.e., all nonempty frontier
nodes are to the left of the footnode), we take the left node state as the final state. There are no other types of leaf
nodes since we do not traverse the passive valency structure of adjunct auxiliary tees. Note that the treatment of
footnodes makes it impossible to deal with trees that have terminal, substitution or active adjunction nodes on both
sides of a footnode. It is this situation (iterated, of course) that makes TAG formally more powerful than CFG; in
linguistic uses, it is very rare.5 The result of this phase of the conversion is a set of FSMs, one per elementary tree
of the grammar, whose transitions refer to other FSMs. We give a sample grammar and the result of converting it
to FSMs in Figure 1.

The construction treats a TAG as if were a TIG (or, put differently, it coerces a TAG to be a TIG): during the
traversal, both terminal nodes and nonterminal (i.e., substitution) nodes between the footnode and the root node
are ignored (because the traversal stops at the footnode), thus imposing the constraint that the trees may not be
wrapping trees and that no further adjunction may occur to the right of the spine in a left auxiliary tree. Further-
more, by modeling adjunction as a loop transition, we adopt the definition of adjunction of Schabes and Shieber
(1994), as does TIG. Chiang (2000) also parses with an automatically extracted TIG, but unlike our approach, he
uses standard TAG/TIG parsing techniques. Rogers (1994) proposes a different context-free variant, “regular-form
TAG”. The set of regular-form TAGs is a superset of the set of TIGs, and our construction cannot capture the added
expressive power of regular-form TAG.

As mentioned above, this approach is very similar to that of Evans and Weir (1997). One important difference
is that they model TAG, while we model TIG. Another difference is that they use FSMs to encode the sequence
of actions that need to be taken during a standard TAG parse (i.e., of the derived tree), while we encode the active
valency of the lexical head in the FSM. A result, in retrieving the derivation tree, each item in the parse tree
corresponds to an attachment of one word to another, and there are fewer items. Furthermore, our FSMs are built
left-to-right, while Evans and Weir only explore FSMs constructed bottom-up from the lexical anchor of the tree.
As a result, we can perform a strict left-to-right parse, which is not straightforwardly possible in TAG parsing using
FSMs.

4. Adequacy of GDG and Initial Run-Time Results

To investigate the adequacy of a context-free parser for English, as well as the speed of the parser, we use
an automatically extracted grammar called “Bob” (Chen, 2001). Bob has been extracted from Sections 02-21 of
the Penn Treebank. Parameters of extraction have been set so that the tree frames of the resulting grammar have
a “moderate” domain of locality, and preserve many but not all of the empty elements that are found in the Penn
Treebank (typically those cases where empty elements are found in the XTAG grammar, such as PRO subjects).
Bob consists of 4909 tree frames. We tested our parser with Bob on 1,814 sentences of Section 00 of the PTB
with an average sentence length of 21.2 words (excluding pure punctuation, i.e., punctuation which does not play
a syntactic role such as conjunction or apposition). We evaluate performance using accuracy, the ratio of the
number of dependency arcs which are correctly found (same head and daughter nodes) in the best parse for each
sentence to the number of arcs in the entire test corpus. We also report the percentage of sentences for which we
find the correct analysis (along with many others, of course).

To show that GDG is adequate for parsing English (an empirical question), we use the correct supertag as-
sociated with each input word and evaluate the performance of the parser. We expect only those sentences which
do not have a context-free analysis not to have any analysis at all. This is indeed the case: there is no case of
non-projectivity in the test corpus. Note that since we analyze matrix verbs as depending on their embedded
verb, following the TAG analysis, long-distance wh-movement is not in fact non-projective or us. However, the
punctuation mark associated with the matrix verb does cause non-projectivity, but since we are disregarding true
punctuation, this does not affect our result.

The average run-time for each sentence is 56ms (parsing using the correct supertag for each word, and no other
supertag), which to our knowledge is significantly quicker than existing full-fledged TAG parsers.6 We show the

5. Our construction cannot handle Dutch cross-serial dependencies (not surprisingly), but it can convert the TAG analysis of
wh-movement in English and similar languages.
6. Note that the extracted grammar does not have any features, so no feature unification is performed during parsing. Agree-
ment phenomena can be enforced by using extended label sets, at the cost of increasing the size of the grammar. (This is
a parameter in the extraction algorithm.) Of course, features in TAG are always bounded in size anyway, and hence always
equivalent to an extended label set.

Nasr et al. 99

Name Tree FSM
t1[no]

NP

DT
�

NP �
0 1

no

t4[bearing]
t4[force] NP

NN
�

0

t1
t43

1
bearing

t47
t5

t31[has]
S

NP � VP

VBZ
�

NP �

0 1
t4

2
has

3
t4

t30

t34[it]
NP

PRP
�

0

t30

1
it

t47

t36[our]
NP

PRP
�

NP � 0 1
our

t43[work]
NP

NN
�

NP � 0 1
work

t47[today]
NP

NP � NP

NN
�

0

t1
t43

1
today

t47
t5

Figure 1: Bob subgrammar for sentence It has no bearing on our workforce today and set of FSMs that corresponds
to that subgrammar

100 Proceedings of TAG+6

dependence of parse time on sentence length in Figure 2. As is known both theoretically and empirically (Sarkar,
1998), lexical ambiguity has a drastic effect on parse time. We have not yet run experiments to show the relation
(and, as mentioned above, this is where we hope to profit from using FSMs).

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 35 40 45

se
co

nd
s

sentence length

avg parse time
x ** 3 * 3.527687e-06

Figure 2: Average analysis time (in ms) against sentence length

5. Parsing Using Lexicalized Grammars

Recently, parsers using bilexical stochastic models which are derived from phrase-structure corpora with the
aid of “head percolation tables” have been successfully developed (Magerman, 1995; Collins, 1997)). In some
sense, these approaches use an unlexicalized formalism (CFG) and implicitly lexicalize it.7 The use of the same
tool (head percolation tables), often the same tables, in automatically extracting TAG grammars raises the question
whether a stochastic TAG parser or TIG parser (such as (Chiang, 2000)) using bilexical stochastic models can ever
outperform the implicitly lexicalized approaches, since they use the same kind of data, though packaged differ-
ently (David Chiang, personal communication). We suggest that the interest in pursuing parsing using explicitly
lexicalized grammar formalisms such as TAG, TIG, or GDG lies not in a simple replication of the results obtained
previously using head percolation. Rather, the lexicalized formalisms allow for a different approach, which is not
possible with the implicitly lexicalized approaches: namely gathering as much syntactic information as possible
about the syntactic properties of the words of the input sentence using very fast algorithms prior to (or interleaved
with, but separate from) parsing.8 The best-known such approach is supertagging (Bangalore and Joshi, 1999).
While supertagging has been explored in the past (Bangalore and Joshi, 1999; Chen, 2001), we are not aware of a
systematic investigation into the relation between the quality of supertagging, the use of n-best supertagging, parse
quality, and parse time (but see initial results in Chen et al. (2002)). We intend to perform such investigations
using the framework we have developed, and hope that the use of an explicit lexicalized grammar formalism can
be shown to be useful precisely because it allows us to use other disambiguation techniques which the implicitly
lexicalized formalisms do not support.

7. Of course, this work can also be interpreted as a rediscovery of the core insight of TAG.
8. Some parsers make use of prior part-of-speech parsing, which provides some very shallow syntactic information.

Nasr et al. 101

References

Abney, Steven (1996). A grammar of projections. Unpublished manuscript, Universität Tübingen.
Albert, Jürgen; Guammarresi, Dora; and Wood, Derick (1999). Extended context-free grammars and normal form algorithms.

In Champarnaud, Jean-Marc; Maurel, Denis; and Ziadi, Djelloul, editors, Automata Implementations: Third International
Workshop on Implementing Automata (WIA’98), volume 1660 of LNCS, pages 1–12. Springer Verlag.

Bangalore, Srinivas and Joshi, Aravind (1999). Supertagging: An approach to almost parsing. Computational Linguistics,
25(2):237–266.

Chen, John (2001). Towards Efficient Statistical Parsing Using Lexicalized Grammatical Information. PhD thesis, University
of Delaware.

Chen, John; Bangalore, Srinivas; Collins, Michael; and Rambow, Owen (2002). Reranking an n-gram SuperTagger. In
Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and Related Formalisms (TAG+6), Venice,
Italy.

Chiang, David (2000). Statistical parsing with an automatically-extracted tree adjoining grammar. In 38th Meeting of the
Association for Computational Linguistics (ACL’00), pages 456–463, Hong Kong, China.

Collins, Michael (1997). Three generative, lexicalised models for statistical parsing. In Proceedings of the 35th Annual Meeting
of the Association for Computational Linguistics, Madrid, Spain.

E. Black et al. (1991). A procedure for quantitatively comparing the syntactic coverage of english grammars. In Proceedings
of the February 1991 DARPA Speech and Natural Language Workshop. DARPA.

Evans, Roger and Weir, David (1997). Automaton-based parsing for lexicalized grammars. In 5th International Workshop on
Parsing Technologies (IWPT97), pages 66–76.

Evans, Roger and Weir, David (1998). A structure-sharing parser for lexicalized grammars. In 36th Meeting of the Association
for Computational Linguistics and 17th International Conference on Computational Linguistics (COLING-ACL’98), pages
372–378, Montréal, Canada.

Gaifman, Haim (1965). Dependency systems and phrase-structure systems. Information and Control, 8:304–337.
Kahane, Sylvain; Nasr, Alexis; and Rambow, Owen (1998). Pseudo-projectivity: A polynomially parsable non-projective de-

pendency grammar. In 36th Meeting of the Association for Computational Linguistics and 17th International Conference
on Computational Linguistics (COLING-ACL’98), pages 646–652, Montréal, Canada.

Madsen, O.L. and Kristensen, B.B. (1976). LR-parsing of extended context-free grammars. Acta Informatica, 7:61–73.
Magerman, David (1995). Statistical decision-tree models for parsing. In 33rd Meeting of the Association for Computational

Linguistics (ACL’95).
Rambow, Owen and Joshi, Aravind (1997). A formal look at dependency grammars and phrase-structure grammars, with

special consideration of word-order phenomena. In Wanner, Leo, editor, Recent Trends in Meaning-Text Theory, pages
167–190. John Benjamins, Amsterdam and Philadelphia.

Rogers, James (1994). Capturing cfls with Tree Adjoining Grammars. In 32nd Meeting of the Association for Computational
Linguistics (ACL’94). ACL.

Sarkar, Anoop (1998). Conditions on Consistency of Probabilistic Tree Adjoining Grammars. In 36th Meeting of the Associa-
tion for Computational Linguistics and 17th International Conference on Computational Linguistics (COLING-ACL’98),
pages 1164–1170, Montreal.

Schabes, Yves and Shieber, Stuart (1994). An alternative conception of tree-adjoining derivation. Computational Linguistics,
1(20):91–124.

Schabes, Yves and Waters, Richard C. (1995). Tree Insertion Grammar: A cubic-time, parsable formalism that lexicalizes
Context-Free Grammar without changing the trees produced. Computational Linguistics, 21(4):479–514.

