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1. Introduction

This paper describes a lexicalized tree adjoining grammar (LTAG) based parsing system for Korean which
combines corpus-based morphological analysis and tagging with a statistical parser. Part of the challenge of
statistical parsing for Korean comes from the fact that Korean has free word order and a complex morphological
system. The parser uses an LTAG grammar which is automatically extracted using LexTract (Xia et al., 2000) from
the Penn Korean TreeBank (Han et al., 2002). The morphological tagger/analyzer is also trained on the TreeBank.
The tagger/analyzer obtained the correctly disambiguated morphological analysis of words with 95.78/95.39%
precision/recall when tested on a test set of 3,717 previously unseen words. The parser obtained an accuracy of
75.7% when tested on the same test set (of 425 sentences). These performance results are better than an existing
off-the-shelf Korean morphological analyzer and parser run on the same data.

In section 2, we introduce the Korean TreeBank and we discuss how an LTAG grammar for Korean was
extracted from this TreeBank. Also, we discuss how the derivation trees extracted from the TreeBank are used in
the training of the statistical parser. Section 3 presents the overall approach of the morphological tagger/analyzer
that we use in the parser. A detailed discussion about the parser is presented in section 4. This section also presents
the method we used to combine the morphological information into the statistical LTAG parser. We also provide
the experimental evaluation of the statistical parser on unseen test data in section 4.

2. Automatically Extracted LTAG Grammar for Korean

In this section we describe the Penn Korean TreeBank and the nature of the extracted LTAG grammar from
this TreeBank.

2.1. Korean TreeBank

The LTAG grammar we use in the parser is extracted using LexTract (Xia et al., 2000) from the Penn Korean
TreeBank. The derivation trees obtained by using LexTract on the Treebank are used to train the statistical parser.
The TreeBank has 54,366 words and 5,078 sentences. The annotation consists of a phrase structure analysis for
each sentence, with head/phrase level tags as well as function tags (e.g., -SBJ, -OBJ) and empty category tags for
traces (*T*) and dropped arguments (*pro*). Each word is morphologically analyzed, where the lemma and the
inflections are identified. The lemma is tagged with a part-of-speech (POS) tag (e.g., NNC: noun, NPN: pronoun,
VV: verb, VX: auxiliary verb), and the inflections are tagged with inflectional tags (e.g., PCA: case, EAU: inflection
on verbs followed by an auxiliary verb, EPF: tense, EFN: sentence type). Example TreeBank trees are given in
Figure 1. The figure on the left is an example of a bracketed structure for a simple declarative with canonical
subject-object-verb order. The figure on the right is an example with a displaced constituent. In this example, the
object NP ‘

�����
’ appears before the subject, while its canonical position is after the subject. The sentences used

to illustrate bracketing structures in Figure 1 are romanized, glossed and translated in the following examples:

(1) a. Cey-ka
I-Nom

kwanchuk
observation

sahang-ul
item-Acc

pokoha-yess-supnita.
report-Past-Decl

‘I reported the overvation items.’

b. Kwenhan-ul
authority-Acc

nwukwu-ka
who-Nom

kaci-ko
have-AuxConnective

iss-ci?
be-Int

‘Who has the authority?’
�
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Figure 1: Example TreeBank Trees

2.2. LTAG formalism

LTAGs are based on the Tree Adjoining Grammar formalism developed by Joshi and his colleagues (Joshi,
Levy and Takahashi, 1975; Joshi and Schabes, 1997). The primitive elements of an LTAG are elementary trees
which are of two types: initial trees ( � trees) and auxiliary trees ( � trees). Initial trees are minimal linguistic struc-
tures that contain no recursion. They include trees containing the phrasal structures of simple sentences, NPs and
so forth. Auxiliary trees represent recursive structures, which are adjuncts to basic structures, such as adverbials,
adjectivals and so forth. Auxiliary trees have unique leaf node, called the foot node ( � ), which has the same syn-
tactic category as the root node. Each elementary tree is associated with a lexical item (anchor) and encapsulates
all arguments of the anchor, possessing an extended domain of locality. Elementary trees are combined by two
operations: substitution and adjunction. In the substitution operation, a node marked for substitution ( � ) in an
elementary tree is replaced by another elementary tree whose root category is the same as the substitution-marked
node. In an adjunction operation, an auxiliary tree is inserted into an initial tree. The root and the foot nodes of the
auxiliary tree must match the node label at which the auxiliary tree adjoins. The combination of elementary trees
produces two structures: derived and derivation trees. Derived trees correspond to phrase structure representation
and derivation trees are a record of the history of the combination process.

2.3. Extracted LTAG grammar

We use LexTract (Xia et al., 2000) to convert the phrase structure trees of the Korean TreeBank into LTAG
derivation trees. Each node in these derivation trees is an elementary tree extracted from the Korean TreeBank by
LexTract. The elementary trees of the LTAG Korean grammar are exactly the set of elementary trees used in the
derivation trees obtained using LexTract. For example, the elementary trees extracted from the TreeBank bracketed
structures in Figure 1 are given in Figure 2. The entire extracted grammar contains 632 elementary tree template
types and 13,941 lexicalized elementary tree types (Xia et al., 2001).

As mentioned earlier, in addition to the elementary trees, LexTract produces derived and derivation trees
for each TreeBank tree. For instance, for the second TreeBank tree in Figure 1, �� ��� ��

and !" �" trees are each
substituted into �$#&%(' tree, and )+*, tree is adjoined onto the VP node of �$#&%(' tree. This produces the derived and
derivation trees in Figure 3.

3. TreeBank-trained Morphological Tagger/Analyzer

Korean is an agglutinative language with a very productive inflectional system. This means that for any NLP
application on Korean to be successful, some amount of morphological analysis is necessary. Without it, the
development of a statistical based parser would not be feasible due to the sparse data problem bound to exist in the
training data.

To avoid this problem in our parsing system, we use a morphological tagger/analyzer. This tagger/analyzer
also performs statistical disambiguation and it was trained on 91% of the Korean TreeBank. The tagger/analyzer
takes raw text as intput and returns a lemmatized disambiguated output in which for each word, the lemma is
labeled with a POS tag and the inflections are labeled with inflectional tags. This system is based on a simple sta-
tistical model combined with a corpus-driven rule-based approach, comprising a trigram-based tagging component
and a morphological rule application component.
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Figure 2: Some examples of Extracted Elementary Trees
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Figure 3: Extracted Derived and Derivation Trees
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The tagger/analyzer follows several sequential steps to label the raw text with POS and inflectional tags. After
tokenization (mostly applied to punctuations), all morphological contractions in the input string are uncontracted
(STRING CONVERSION). The known words are then tagged with tag sequences of the form POS + inflectional-
tag (e.g., NNC+PCA, VV+EPF+EFN) extracted from the TreeBank, and unknown words are tagged with NNC
(common noun) tag, NNC being the most frequent tag for unknown words (MORPH TAGGING). Tags for unknown
words are then updated using inflectional templates extracted from the TreeBank (UPDATE TAGGING). And then
using the inflection dictionary and stem dictionary extracted from the TreeBank, the lemma and the inflections
are identified, splitting the inflected form of the word into its constituent stem and affixes (LEMMA/INFLECTION

IDENTIFICATION), creating the final output. This process is summarized in Figure 4. The proposed approach to
morphological analysis is different from other approaches in that the tagging phase precedes the morphological
analysis phase. This allows morphological analysis to be done deterministically through using the information
obtained from tagging. An example input to the tagger/analyzer and the final output are shown in Figure 5.

Tokenization

String Conversion

Morph Tagging

Update Morph Tagging

Lemma/Inflection
Identification

OUTPUT

INPUT

Figure 4: Overview of the Tagger/Analyzer

Input:
% � �$# �� ���� ��� # � �� )� 	 
� �� ��, �� � !+'�� # .

Output:
% � /NPN+ �$# /PCA �� ���� � /NNC � # � �� /NNC+ )� 	 /PCA 
� �� � # /VV+ )��, /EPF+ �� � !+'�� # ./SFN

Figure 5: Input and output from the morphological tagging phase

The performance of the morphological analyzer/tagger has been evaluated on the 9% of the Treebank. The test
set consists of 3,717 word tokens and 425 sentences. Both precision and recall were computed by comparing the
morpheme/tag pairs in the test file and the gold file. The precision corresponds to the percentage of morpheme/tag
pairs in the gold file that match the morpheme/tag pairs in the test file. And the recall corresponds to the percentage
of morpheme/tag pairs in the test file that match the morpheme/tag pairs in the gold file. This approach yielded a
precision/recall score of 95.79/95.39%.

An off-the-shelf morphological analyzer/tagger (Yoon et al., 1999) was tested on the same test set. This system
is reported to have obtained 94.7% tagging accuracy on a test set drawn from the same corpus as it was trained on.
For the sake of fair comparison, the output of the off-the-shelf tagger was converted to look as close as possible
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precision/recall (%)

Treebank trained 95.78/95.39
Off-the-Shelf 29.42/31.25

Table 1: Evaluation of the Morphological Analyzer/Tagger

to the Treebank trained analyzer/tagger output, including the tagset. However, not all tokenization mismatches in
the off-the-shelf system could be resolved. The results (in Table 1) show, not surprisingly, that better performance
on test data from a particular domain is obtained by training on annotated data from the same domain. Even so,
the results from another system on the same data provide at least a baseline performance to compare against our
results.

4. Statistical LTAG Parser

The use of lexical information plays a prominent role in statistical parsing models for English. In this section,
we discuss how to extend a statistical parser that relies on bigrams of lexical dependencies to a morphologically
complex language like Korean. While these types of parsers have to deal with sparse data problems, this problem
is exacerbated in the case of Korean due to the fact that several base-forms of words can appear with a wide array
of morphological affixes. This problem is addressed by incorporating the morphological tagger/analyzer described
above, which significantly improves performance.

Apart from the use of a specialized morphological tagger/analyzer for Korean, our methods are language
independent and have been tested in previous work on the WSJ Penn English TreeBank (Marcus, Santorini and
Marcinkiewicz, 1993). As described in above, we use Lextract to convert the TreeBank (the same method is used
for both the English and the Korean TreeBanks) into a parser derivation tree for each sentence. The statistical
parsing model is then trained using these derivation trees.

4.1. Probability Models

The statistical parser uses three probabilistic models: one model for picking a tree as the start of a derivation;
and two models for the probability of one tree substituting or adjoining into another tree. Each of these models
can be trained directly using maximum likelihood estimation from the Lextract output. The probabilistic models
of substitution and adjunction provide a natural domain to describe the dependencies between pairs of words in a
sentence.

(Resnik, 1992) provided some early motivation for a stochastic version of Tree Adjoining Grammars and
gave a formal definition of stochastic TAG. Simultaneously, (Schabes, 1992) also provided an identical stochastic
version of TAG and also extended the Inside-Outside algorithm for CFGs (Lari and Young, 1990) to stochastic
TAGs. (Schabes, 1992) also performed experiments to show that a stochastic TAG can be learnt from the ATIS
corpus.

A stochastic LTAG derivation proceeds as follows (Schabes, 1992; Resnik, 1992). An initial tree is selected
with probability

���
and subsequent substitutions are performed with probability

���
and adjunctions are performed

with probability
���

.
For each � that can be valid start of a derivation:

�
	
����
 ������

Each subsequent substitution or adjunction occurs independently. For possible substitutions defined by the
grammar:

�
�
� � 
 ������� �������

where, � is substituting into node � in tree � . For possible adjunctions in the grammar there is an additional factor
which is required for the probability to be well-formed:
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��� 
 ������� NA � � � � ��� 
 ������� � �����

where, � is adjoining into node � in tree � , and
� � 
 ����� � NA � is the probability that there is no adjunction (NA)

at node � in � .
Each LTAG derivation � is built starting from some initial tree � . Let us consider the probability of a deriva-

tion � which was constructed using � substitutions and � adjunctions and � internal nodes which had no adjunction.
If we assume that each elementary tree is lexicalized (anchored) by exactly one word, then the length of the sen-
tence � ��� � � � � . In fact, in the experiments we report on in this paper, each elementary tree has exactly one
lexical item as an anchor.

� � 
 � �	� ��
��������
��� � (2)� � 
 ����
 � �� � � � � 
 ����� ��
�� ��� ��
�� ���
�
� ��� 
 ����� ��
 � � � ��
 � ��
�
� ��� 
 ����� ��
 � NA �

This derivation � can be drawn graphically as a tree where each node in this derivation tree is an elementary
tree in the original LTAG (this is the standard notion of a TAG derivation tree).���

and
���

can be written as the following lexicalized conditional probabilities which can be estimated from
the training data.

� � 
 �� � � � 
 ����
 �"!$# � ���� 
 ���� � ��� � ��� 
 ����
 � � ����� ��
 �����
 ����� � � � � ��� 
 � ��
 � � ����� ��
 �
Events for each of these probability models can be directly read from the LexTract output. Using maximum

likelihood estimation we convert these events into the above parameter values in our statistical parser.
For further details about decomposing these probabilities further to generalize over particular lexical items

and to make parsing and decoding easier see (Chiang, 2000). (Chiang, 2000) also has details about the standard
use of prior probabilities in statistical parsing for pruning which we use in our implementation.

The probability of a sentence � computed using this model is the sum of all the possible derivations of the
sentence.

��
 � � � �&% � � 
(' �)� �
A generative model can be defined instead of a conditional probability to obtain the best derivation � BEST

given a sentence � . The value for (3) is computed using the Equation 2.

� BEST � arg max� *�+ 
 �,�-� �
� arg max� *�+ 
 � �	���*�+ 
 � �
� arg max� *�+ 
 � �	��� (3)

The particular definition of a stochastic TAG is by no means the only way of defining a probabilistic grammar
formalism with TAG. There have been some variants from the standard model that have been published since the
original stochastic TAG papers.
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For example, the restriction of one adjunction per node could be dropped and a new variant of standard
TAG can be defined which permits arbitrary number of modifications per node. This variant was first introduced
by (Schabes and Shieber, 1992; Schabes and Shieber, 1994). Tree Insertion Grammar (Schabes and Waters, 1995)
is a variant of TAG where the adjoining operation is restricted in a certain way and this restricted operation is
named insertion. TIGs are weakly equivalent to CFGs but they can produce structural descriptions that are not
obtainable by any CFG.

A stochastic version of insertion (Schabes and Waters, 1996) was defined in the context of Tree Insertion
Grammar (TIG). In this model, multiple trees can be adjoined to the left and to the right of each node with the
following probabilities:

� � � 
 ����� � NA � � � � 	�� � � � 
 ������� � � �����
� � � 
 ������� NA � � � � 	 � � � � 
 ����� � � � �����

In our parser, we allow multiple adjunctions at a node and also we exploit TIG style probabilities
� � � and� � � . This was done so that the output easily convertible to the earlier dependency style parser that was used in the

project (with which we compare performance in our evaluation).
There are many other probability measures that can be used with TAG and its variants. One can easily go

beyond the bi-lexical probabilities that have been the main focus in this chapter to probabilities that invoke greater
amounts of structural or lexical context. (Carroll and Weir, 1997), for example, gives some additional probability
models one might consider useful when using TAGs.

An example output from the statistical parser is shown in Figure 6. In the parser (and in the Lextract output),
each elementary tree is anchored by exactly one lexical item. The gloss and translation for the example in Figure
6 is given in the following example:

(4) Motun
every

hochwul
call

tayho-nun
sign

mayil
everyday

24
24

si-ey
hour-at

pakkwui-key
switch-AuxConnect

toy-ciyo.
be-Decl
‘Every call sign is switched at midnight everyday.’

Index Word POS tag Elem Anchor Node Subst/Adjoin
(morph) Tree Label Address into (Index)

0 ��� DAN � NP*=1 anchor root 2
1 ��� NNC � NP*=1 anchor root 2
2 �	� + 
 NNC+PAU � NP=0 anchor 0 6
3 �� ADV � VP*=25 anchor 1 6
4 24 NNU � NP*=1 anchor 0 5
5 � + � NNX+PAD � VP*=17 anchor 1 6
6 ��� + � VV+ECS � S-NPs=23 anchor - TOP
7 � + ��� VX+EFN � VP*=13 anchor 1 6
8 . SFN - - - -

Figure 6: Example derivation of a sentence reported by the statistical parser

4.2. Incorporating the Morphological Information into the Parser

In this section we describe how the morphological tagger (described earlier) is incorporated into the smoothing
of the probability models that are used in the statistical parser.

The smoothing using the morphological tagger is handled as follows. The statistical parser has various proba-
bility models associated with it. One of the most crucial models is the one that decides on parser actions by using
statistics collected on pairs of words. For example,

� �
is the probability of combination of two trees anchored by
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On training data On test data
Current Work 97.58 75.7
(Yoon, Kim and Song, 1997) – 52.29/51.95 P/R

Table 2: Parser evaluation results

words 
 and 
 � via adjunction of those trees. Here 
 and 
 � are the inflected forms of the word, while � and � � are
selected elements of the disambiguated morphological analysis of the inflected forms taken from the output of the
morphological tagger described above. Based on the part of speech, we might want to select different components
of the morphological analysis. For example, for nouns we might want to pick the final element which usually
corresponds to the case marking, while for verbs we might want to pick the stem which is the first element of the
analysis. We have the flexibility in the parser to choose which element should be picked. The best results were
obtained when we chose the stem. That is, for the results reported here we always pick the first element of the
morphological analysis for each inflected form.

� � 
 � � �(� � ��
 � � � � � ��
 � � �
We decompose this conditional probability into the following components:

� � 
 � � � � � ��
 � � � � � ��
 �(� � �� � 
 � � � � � � ��
 �(� ��� � 
 � � � � � ��� � � ��
 � � ��� � 
 
 � �)� � � � � ��� � � ��
 �(� �
For each of the equations above, we use a backoff model which is used to handle sparse data problems. We

compute a backoff model as follows. Let ��� stand for the original lexicalized model and ��� be the backoff level
which only uses the output of the morphological tagger described above:

� ���	� � � � 
 � � � � � � ��
 �(� �� ����
 � � � 
 � � � � � � � � �
The backoff model is computed as follows:

� 
� �� � ���	� � 
 ��� � 
� ���� � ����

where

� 
� ��� ��
���

%
� .  � count


 � � is the total count for each conditional probability model
�

, where
��
�� �"� � .'

is the diversity of
� � � � . diversity is defined as the number of distinct counts for

� � � � . Note that this backoff
model is implemented for each lexicalized model used in the statistical parser.

4.3. Experimental Results

In order to evaluate the statistical parser (combined with the tagger as described above), our parser was trained
on the derivations and corresponding LTAG grammar extracted from 91% of the TreeBank (4653 sentences). The
parser was then tested on 9% of the TreeBank which was reserved as unseen data (425 sentences). Note that the
parser did not have access to any grammar information from LexTract or lexicon information which was taken
from the unseen data.

For comparison, another parser (Yoon, Kim and Song, 1997) was tested on the same test set. For the sake of
fair comparison, the output of this parser was converted to look as close as possible to our output. Even so, the
number of node labels did not match, due to the difference in tokenization schemes for certain lexical elements
such as copulas and auxiliary verbs. We thus report precision/recall in the comparison. We report word-to-word
dependency accuracy compared with the gold standard for our parser. The evaluation results are summarized in
Table 2. Not surprisingly, the results show that better performance on test data from a particular domain is obtained
by training on annotated data from the same domain. The results from another parser on the same data provide a
baseline performance to compare against our results. Also, the performance achieved on our test set is competetive
with the state-of-the-art English statistical parsers when trained on similar amounts of data.



56 Proceedings of TAG+6

5. Conclusion

Our work is significant in that it is the first LTAG-based parsing system for Korean. We have shown that
LTAG-based statistical parsing is feasible for a language with free word order and complex morphology. Our
system has been successfully incorporated into a Korean/English machine translation system as source language
analysis component (Han et al., 2000; Palmer et al., 2002). The LTAG parser produces a single-best analysis
of the input Korean sentence. We showed that the tagger/analyzer described in this paper obtained the correctly
disambiguated morphological analysis of words with 95.78/95.39% precision/recall when tested on a test set of
3,717 previously unseen words. The statistical parser described in this paper obtained an accuracy of 75.7% when
tested on the same test set (of 425 sentences). These performance results are better than an existing off-the-shelf
Korean morphological analyzer and parser run on the same data.
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