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Abstract 

We present an overview of Amalgam, a 
sentence realization module that combines 
machine-learned and knowledge-
engineered components to produce natural 
language sentences from logical form in-
puts. We describe the decomposition of 
the task of sentence realization into a lin-
guistically informed series of steps, with 
particular attention to the linguistic issues 
that arise in German. We report on the 
evaluation of component steps and of the 
overall system. 

1 Introduction 

Since the mid 1990s, there has been increasing in-
terest in the application of statistical and machine 
learning techniques to various aspects of natural 
language generation, ranging from learning plans 
for high-level organization of texts and dialogues 
(Zukerman et al., 1998; Duboue and McKeown, 
2001) or ensuring that the macro properties of gen-
erated texts such as the distribution of sentence 
lengths and lexical variety mirror the properties of 
naturally occurring texts (Oberlander and Brew, 
2000) to sentence planning (Walker et al., 2001.). 
As generation proceeds through successively less 
abstract stages, nearing the final output string, it 
would appear that current generation systems are 
still likely to employ knowledge-engineered ap-
proaches. Indeed Walker et al. (2001), commenting 
on sentence realization, rather succinctly summa-
rize what is no doubt a widely-held belief, namely 
that “This phase is not a planning phase in that it 
only executes decisions made previously.” Al-
though the kinds and number of decisions to be 
made during sentence realization will depend on 

the nature of the prior sentence planning phase and 
on the linguistic complexity of the domain, myriad 
encoding decisions must still be made. Machine 
learning approaches have been successfully ap-
plied to such aspects of sentence realization as de-
termining the appropriate form of referring 
expressions (Poesio et al., 1999) and the gram-
matical relations of noun phrases (Corston-Oliver, 
2000) as well as performing lexical selection 
(Bangalore and Rambow, 2000b). Traditional 
knowledge engineering approaches to sentence 
realization founder on our inadequate understand-
ing of the mapping from propositional content to 
surface form, a mapping that encompasses such 
problems as equi-NP deletion, movement opera-
tions such as extraposition and left-dislocation, 
ordering of modifiers within constituents, and 
voice alternations. Research in knowledge engi-
neered solutions to these problems continues (see 
for example, Aikawa et al., 2001). However, the 
task of broad-coverage sentence realization would 
appear to be of comparable complexity to sentence 
analysis, and equally difficult to adapt to new do-
mains. Sentence realization therefore appears to be 
an ideal candidate for statistical and machine-
learned approaches. 

Some recently described systems have at-
tempted to side-step the encoding decisions in-
volved in sentence realization by proposing 
alternative realizations of an input semantic form 
and leaving it to a word-level language model to 
select the most likely candidate sentence for out-
put. The Nitrogen system (Langkilde and Knight, 
1998a, 1998b), for example, uses a rather permis-
sive knowledge-engineered component to propose 
candidate output sentences that are then scored 
using word bigrams. Statistics garnered from ac-
tual texts are thus used as a substitute for deeper 
knowledge. The addition of syntactic information, 
either to constrain the range of candidate sentences 



or to augment the n-gram model, has produced fa-
vorable improvements over n-gram models used 
alone (Bangalore and Rambow, 2000a; Ratna-
parkhi, 2000). 

In the current paper we describe an on-going 
research project code-named Amalgam. Amalgam 
is a (predominantly) machine-learned generation 
module that performs sentence realization and a 
small degree of lexical selection. Amalgam takes 
as input a logical form graph. Proceeding through a 
series of machine-learned and knowledge-
engineered steps, it transforms that graph into a 
fully articulated tree structure from which an out-
put sentence can be read. Amalgam has been suc-
cessfully applied to the realization of non-trivial 
German sentences in diverse technical domains. 
An extended description is given in Gamon et al. 
(2002a). 

2 Linguistic issues in German generation 

Although English and German are closely related 
languages, they now differ typologically in dra-
matic ways. German makes a three-way distinction 
in lexical gender (masculine, feminine, neuter). 
Nominal elements are morphologically marked for 
one of four grammatical cases (nominative, accu-
sative, dative and genitive), with adjectives and 
determiners agreeing in gender, number and case. 
Verbal position is fixed, and is sensitive to clause 
type; the order of other constituents is relatively 
free. So-called “separable prefixes” are elements 
that may occur prefixed to verbs or as separate 
elements at a great distance from the verb to which 
they are syntactically dependent. Extraposition, a 
rare phenomenon in English text, is pervasive: de-
pending on genre, one quarter to one third of all 
relative clauses in natural German texts are extra-
posed (Gamon et al., 2002b; Uszkoreit et al., 
1998). Relatively free constituent order, separable 
prefixes and extraposition force us to deal with 
long distance dependencies much more frequently 
than in the analysis and generation of English sen-
tences. 

3 The logical form representation 

The logical form representation that we employ is 
a graph data structure that expresses the proposi-
tional content of a sentence. Nodes in the graph 
contain lemmas (citation forms) of content words 

with additional annotations for definiteness, num-
ber, person and so on. Relations between nodes are 
indicated by labeled arcs. The logical form normal-
izes surface syntactic alternations. For example, 
active and passive alternations receive the same 
graph representation, differing only in the presence 
of the [+Pass] feature on the verbal head of the 
logical form that results from the analysis of the 
passive. Since the logical form is a graph, nodes 
may have more than one parent. Figure 1, Hans 
isst die Kartoffeln auf, die er gestern geernet hat, 
“Hans eats the potatoes up, which he has gathered 
yesterday” (i.e., “Hans eats up the potatoes which 
he gathered yesterday”), illustrates the graph na-
ture of the representation.1 A given node may be in 
more than one relationship to the same parent, as is 
the case with Hans, which functions both as the 
underlying subject of aufessen “to eat up” and the 
logical topic of the sentence. A given node may 
also be dependent on more than one parent node, 
as is the case with Kartoffel “potato”, which func-
tions as both the object of aufessen and the object 
of ernten “to gather”. Long distance dependencies 
receive a rather direct representation in the logical 
form, as shown in the representation of the extra-
posed relative clause die er gestern geernet hat, 
“that he gathered yesterday”, which is represented 
in the logical form as directly dependent on Kartof-
fel, which it modifies semantically. 
  

                                                           
1 In order to simplify the visual representation of the logical 
form, the display attempts to minimize crossing lines. Nodes 
sharing the same lemma and numerical index are in fact the 
same node in the underlying data structures. 



 
Figure 1 Logical form for the sentence Hans isst die Kartoffeln auf, die er gestern geernet hat. 

 
4 The sentence realization process 

For our experiments, we begin with a broad-
coverage grammar of German (in the framework 
described in (Heidorn, 2000)) that parses sentences 
to produce a syntactic analysis. Additional process-
ing yields a logical form analysis. Our task is es-
sentially to learn the mapping from the output 
logical forms to the input sentences, with reference 
to the intermediate syntactic analysis. The goal is 
to apply Amalgam to the realization of sentences in 
contexts such as machine translation in which the 
input logical form is constructed by transfer opera-
tions. In the interim, using logical forms that result 
from the analysis of German text frees us from is-
sues related to noise introduced by the process of 
transfer. We do not require an annotated corpus; 
we are able to create unlimited (though imperfect) 
quantities of training data by application of the 
German analysis system. We have been using a 
corpus of 100,000 German sentences drawn from 
technical manuals and computer help files. De-
pending on the phenomenon of interest, each sen-
tence typically produces multiple training cases. 
For some models, such as the punctuation model, 
the use of the full set of sentences yielded as many 
as one million cases. 
The first stage in the Amalgam process is a proce-
dure that converts the input logical form into a 
more manageable tree data structure in which lin-
ear order has not been determined. Nodes with 
multiple parents in the input logical form are du-
plicated and co-indexed in the tree data structure. 
By consultation of the system dictionary, each 
node is annotated with lexical features such as sub-
categorization information that is not otherwise 
needed in the logical form. Nouns with nominal 
modifiers are collapsed to form compounds. 2 

                                                           
2
 Work in progress. 

Most of the remaining stages involve machine 
learning. With the exception of the generative lan-
guage model used to determine intra-constituent 
order, all machine-learned modules have been im-
plemented as decision tree classifiers using the 
WinMine toolkit (Chickering, nd.). Decision trees 
provide an easily accessible inventory of the se-
lected features and some indication of their relative 
importance in predicting the target features in 
question. Significantly, decision trees built by 
WinMine predict a probability distribution over all 
possible target values. We formulate a series of 
questions that lend themselves to implementation 
in decision tree classifiers. For example, we ask, 
“What case should this NP have?”, “Which deter-
miner from the set {NULL, definite determiner, 
indefinite determiner, …} should modify this 
NP?”, “Should this constituent be realized?”. Fea-
tures are extracted from each node, its parent and 
grandparent. Knowledge-engineered approaches 
have been employed for problems for which there 
were insufficient data to train models, for certain 
graph and tree manipulation operations, and for 
straightforward operations such as performing con-
tractions. 

The next major stage fleshes out the logical 
form tree. Each node is labeled (NP, VP, SUBCL 
etc). Function words are inserted, including place-
holders for determiners, e.g., DefDet, which serves 
as a placeholder for a definite determiner and Rel-
Pro, which serves as a placeholder for a relative 
pronoun (the exact inflected forms cannot be de-
termined until subsequent processing has resolved 
intra-constituent ordering and morphological case), 
auxiliaries, the infinitival marker zu, the subordi-
nating conjunctions dass and ob, expletive subject 
es, reflexive pronouns, the adverbial wie, the nega-
tor nicht, and the passive markers von and durch. 
A simple function produces the contracted preposi-
tional proforms such as dadurch and damit. Logi-
cal subjects and objects are assigned a probability 



of being realized in the surface string. For exam-
ple, logical subjects of infinitival clauses do not 
usually receive overt expression. Finally, morpho-
logical case features and verb position features 
(verb second, verb final, verb initial) are assigned. 

The third major stage deletes logical subjects 
and objects whose probability of being realized is 
below a given threshold. The degraphed logical 
form is transformed deterministically into a repre-
sentation that more closely resembles a syntactic 
constituent representation, albeit with linear order 
still unspecified. Non-terminal nodes are given the 
syntactic labels that were chosen previously. A 
function splits separable prefixes from verbal 
stems, based on verb-position features assigned in 
the previous stage, and based on lexical informa-
tion. A simple tree transformation reverses the 
headedness of constituents in which the syntactic 
head is not the semantic head, e.g., in cases involv-
ing quantification such as viele der Leute “many of 
the people”. 

Processing proceeds to global movement opera-
tions, i.e., movement that reattaches nodes, as dis-
tinct from ordering within a constituent. 
Mandatory movement, whether raising, Wh-
movement, or the movement of relative pro-
nouns/relative expressions, are handled by three 
simple functions—these phenomena, which have 
received considerable attention in the theoretical 
literature, have extremely low text frequency in the 
technical corpus that we use, with the result that 
there were insufficient examples for training deci-
sion tree classifiers. Extraposition of relative, in-
finitival and complement clauses is based on a 
decision tree classifier which decides for each in-
stance of such a clause whether it should move up 
one step and attach to the parent of its parent (Ga-
mon et al., 2002b). Once reattached there, the next 
“hop” is evaluated, until a position is found where 
the probability of further movement is less than the 
probability of staying put (i.e., it falls below 0.5). 

Now that the basic constituency has been re-
solved, two functions set morphological properties 
of verbs, copying tense information to the finite 
verb (which might be an auxiliary that was inserted 
during flesh-out), and copying participial informa-
tion onto the non-finite verb. The verb is made to 
agree with the subject, which is identified as the 
first nominative NP in the domain of the finite 
verb. 

Next, linear order within each constituent is de-
termined by consulting a generative statistical lan-
guage model (see Ringger et al., in preparation 
(A)). For a given constituent, the ordering stage 
employs a beam search to select the optimal order-
ing of modifiers relative to one another and to the 
head, in the context of the syntactic category of the 
parent constituent and the head part-of-speech. In 
addition to leveraging the constituency, the order 
model is sensitive to the semantic relation between 
each modifier and the head as well as the syntactic 
category of the modifier. 

A series of operations cleans up the tree. Deci-
sion tree classifiers select the appropriate forms to 
replace the placeholders for determiners and rela-
tive pronouns. This is a non-trivial task in Ger-
man—the training data contain 55 different lexical 
realizations of determiners and 23 different lexical 
realizations of relative pronouns. Reflexive pro-
nouns, which also received an abstract form during 
insertion in flesh-out, are converted into their sur-
face form by a simple function. Finally, we must 
perform conjunction reduction, reducing sentences 
such as the grammatical but dysfluent Hans hat die 
Kartoffeln gekocht, und Hans hat die Kartoffeln 
gegessen “Hans has cooked the potatoes, and Hans 
has eaten the potatoes” to the more fluent Hans hat 
die Kartoffeln gekocht und gegessen “Hans has 
cooked and eaten the potatoes”. A decision tree 
classifier assigns a probability to each NP under 
coordination that it will be overtly realized. A sim-
ple function then selects only the most likely NP to 
be realized. A final housekeeping function re-
moves duplicated prepositions and auxiliaries that 
remain as artifacts of earlier degraphing opera-
tions. 

Although there are extensive prescriptive de-
scriptions of German punctuation conventions 
(e.g., Duden, 2000), we have implemented two 
decision tree classifiers. One classifier decides 
whether a punctuation symbol should be inserted 
after a given constituent. The other classifier de-
cides whether a symbol should be inserted before a 
given constituent. The most probable symbol (in-
cluding the NULL symbol) is inserted between 
each terminal node. Finally, a knowledge-
engineered module performs morphological inflec-
tion. The output sentence is then read off from the 
terminal nodes of the tree. 



5 Evaluation 

Table 1 presents the accuracy of the various deci-
sion tree classifiers. Extended discussion of these 
and other classifiers is given in Gamon et al. (in 
preparation), including precision/recall figures for 
each value of the target feature. The baseline is 
calculated by predicting the most frequent value in 
the held-out test data. This proved easier to calcu-
late from the intermediate WinMine data files, and 
is a slightly higher bar than predicting the most 
frequent value from the training data. All decision 
tree classifiers outperform the baseline. The accu-
racy for the extraposition model is based on a sin-
gle “hop”, i.e., for a single decision concerning 
whether an extraposable clause ought to ascend 
one level in the syntax tree. For a more extensive 

evaluation that considers the final attachment site 
after a clause has undergone multiple hops, see 
Gamon et al. (2002b). 

We evaluate the overall system by parsing a 
blind test set of 564 German sentences to produce 
logical forms and then applying Amalgam to gen-
erate output strings from those logical forms. For 
this sample, 71.1% of the words are correctly in-
flected and occur in the correct position in the sen-
tence. We also compute the word-level string edit 
distance of the generated output from the original 
reference string: the number of errors (insertions, 
deletions, and substitutions) is 44.7% of the num-
ber of words in the reference string. 

 
 

 
Classifier Values predicted Accuracy Baseline 
Syntactic label Determiner phr., complement cl., VP, quantifier phr., 

adverbial NP, imperative main cl., adverb phr., label, 
appositive NP, question main cl., auxiliary phr., nomi-
nal relative, adjective phr., abbreviated cl., relative cl., 
NP, possessor, present participial cl., comment, infini-
tival cl., PP, finite subordinate cl., declarative main cl., 
past participial cl. 

0.9823 0.3480 

Placeholder for deter-
miner 

NULL, Wh, proximal demonstrative, definite, indefi-
nite 

0.9763 0.5769 

Auxiliary NULL, sein_werden, sein, haben, werden 0.9986 0.8136 
Passive marker NULL, von, durch 0.9915 0.9704 
Insert zu Yes, No 0.9977 0.9566 
Insert negator Yes, no 0.9094 0.8079 
Subordinating conj NULL, dass, ob 0.9547 0.5455 
Insert expletive es Yes, No 0.9965 0.9949 
Realization of NP Yes, No 0.8859 0.6819 
Morphological case Dat, Acc, Gen, Nom 0.9602 0.4626 
Extraposition Yes, No 0.8820 0.6711 
Determiner form Das, dasselbe, dem, demselben, den, denjenigen, 

denselben, der, derjenigen, derselbe, derselben, des, 
desselben, die, diejenige, diejenigen, dies, diese, 
dieselbe, dieselben, diesem, diesen, dieser, dieses, ein, 
ein_und_demselben, ein_und_derselbe, 
ein_und_derselben, eine, einem, einen, einer, eines, ihr, 
ihre, ihrem, ihren, ihrer, ihres, mein, meine, meinem, 
meiner, meines, sein, seine, seinem, seinen, seiner, 
seines, welche, welchem, welchen, welcher, welches 

0.9077 0.2165 

Relative pron. form das, das/der, dem, den, denen, der, deren, derer, dessen, 
die, die/der, warum, was, welche, welcher, welches, 
wo, wobei, wodurch, woher, womit, woraus, wozu 

0.8779 0.5359 

Conjunction reduction Spell out: first, last or medial instance 0.9710 0.8501 
Preceding punctuation NULL, comma, dash, semi-colon, colon, others 0.9865 0.8961 
Following punctuation NULL, comma, dash, semi-colon, colon 0.9848 0.9498 

Table 1 Accuracy of decision classifiers 



 
String edit distance is a harsh measure of sen-

tence realization accuracy. Because string edit dis-
tance does not consider movement as an edit 
operator, movements appear as both deletions and 
insertions, yielding a double penalty. Furthermore, 
as observed earlier, some edits have a greater im-
pact on the intelligibility of the output than others, 
especially the position of the German verb. Work 
in progress on a tree edit distance metric addresses 
both of these issues (Ringger et al., in preparation 
(B)). Closely related work includes that of Banga-
lore, Rambow and Whittaker (2000). 

It is possible that generated sentences might dif-
fer from the reference sentences and yet still prove 
satisfactory. We therefore had five independent 
human evaluators assess the quality of the output 
for a random sample of 564 sentences.3 These sen-
tences had been analyzed to yield logical forms 
from which Amalgam generated output sentences. 
The evaluators assigned an integer score to each 
sentence, comparing it to the reference sentence 
using the scoring system given in Table 2.4 

The average score was 2.96 with a standard de-
viation of 0.81. The mode was 4, occurring 104 
times, i.e. 104/564 sentences, or 18.4% received 
the maximum score. In 63 of these cases, the score 
of 4 had been automatically assigned because the 
output sentence was identical to the reference sen-
tence. In the other 41 cases, all five human evalua-
tors had assigned a score of 4, i.e., the output 
differed from the reference sentence, but was still 
“Ideal”. 

 

                                                           
3 We extract a random sample of generated sentences. We take 
the first n sentences in the sample necessary to ensure 500 
sentences that differ from the reference sentence. 
4 These guidelines were originally intended for assessing the 
quality of machine translation, measuring fluency and transfer 
of semantic content from the source language. Evaluating the 
sentence realization component is conceptually a case of Ger-
man-to-German translation. 

1. “Unacceptable”. Absolutely not comprehensible 
and/or little or no information transferred 
accurately. 

2. “Possibly Acceptable”. Possibly comprehensible 
(given enough context and/or time to work 
it out); some information transferred accu-
rately. 

3. “Acceptable”. Not perfect (stylistically or 
grammatically odd), but definitely com-
prehensible, AND with accurate transfer of 
all important information. 

4. “Ideal”. Not necessarily a perfect translation, but 
grammatically correct, and with all infor-
mation accurately transferred. 

Table 2 Evaluation guidelines 

6 Conclusion 

Some elements of the approach to sentence realiza-
tion presented here are peculiar to our logical form 
representations, e.g., the fact that negation is repre-
sented as a feature on a node rather than as an op-
erator with scope over a sub-graph, or the 
procedural operations necessary to prune artifacts 
introduced by the degraphing process. The more 
linguistic aspects of the procedure deal with issues 
that would be problems for any approach that pro-
ceeds from a representation of propositional con-
tent to a surface string, such as extraposition and 
conjunction reduction. As with more traditional 
knowledge-engineered approaches to sentence re-
alization (e.g., Aikawa et al. 2001), we have at-
tempted to model such linguistic phenomena in 
terms of syntactic constituency. Unlike these tradi-
tional approaches we have implemented the solu-
tions to these problems in machine-learned 
components. 

Direct comparison to the Nitrogen system 
(Langkilde and Knight, 1998a, 1998b) is instruc-
tive at this point, since in some aspects it is the 
system that is most philosophically similar to 
Amalgam. The knowledge-engineered component 
in Nitrogen that proposes candidate sentences in-
serts function words and inflectional variants of 
existing words. Although this makes the generation 
process robust to underspecified input, the search 
space rapidly explodes. If the addition of inflec-
tional variants for English, a language with a rela-
tively impoverished repertoire of inflectional 
morphemes, can lead to hundreds of thousands of 



candidate output sentences in the examples that 
Langkilde and Knight give, it is doubtful whether 
it would be practical for a language such as Ger-
man with a rich inflectional morphology. We be-
lieve that a linguistically informed approach allows 
for a more direct model of the underlying phenom-
ena, which constrains the search space and reduces 
the burden on the generative language model by 
presenting it with fewer spurious candidate sen-
tences. 

Although our exposition has focused on the pre-
ferred value (the mode) predicted by the models, 
decision trees built by WinMine predict a probabil-
ity distribution over all possible target values. For 
a system such as Amalgam, built as a pipeline of 
stages, this point is critical, since finding the best 
final hypothesis will require the consideration of 
multiple hypotheses and the concomitant combina-
tion of probabilities assigned by the various mod-
els in the pipeline to all possible target values. In 
its current implementation, Amalgam follows a 
greedy search, but in future research we intend to 
experiment with a beam search that entertains mul-
tiple intermediate hypotheses. 
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