
An overview of Amalgam:
A machine-learned generation module

Simon Corston-Oliver, Michael Gamon, Eric Ringger, Robert Moore
 Microsoft Research

Redmond, WA 98052
{simonco, mgamon, ringger, bobmoore}@microsoft.com

Abstract

We present an overview of Amalgam, a
sentence realization module that combines
machine-learned and knowledge-
engineered components to produce natural
language sentences from logical form in-
puts. We describe the decomposition of
the task of sentence realization into a lin-
guistically informed series of steps, with
particular attention to the linguistic issues
that arise in German. We report on the
evaluation of component steps and of the
overall system.

1 Introduction

Since the mid 1990s, there has been increasing in-
terest in the application of statistical and machine
learning techniques to various aspects of natural
language generation, ranging from learning plans
for high-level organization of texts and dialogues
(Zukerman et al., 1998; Duboue and McKeown,
2001) or ensuring that the macro properties of gen-
erated texts such as the distribution of sentence
lengths and lexical variety mirror the properties of
naturally occurring texts (Oberlander and Brew,
2000) to sentence planning (Walker et al., 2001.).
As generation proceeds through successively less
abstract stages, nearing the final output string, it
would appear that current generation systems are
still likely to employ knowledge-engineered ap-
proaches. Indeed Walker et al. (2001), commenting
on sentence realization, rather succinctly summa-
rize what is no doubt a widely-held belief, namely
that “This phase is not a planning phase in that it
only executes decisions made previously.” Al-
though the kinds and number of decisions to be
made during sentence realization will depend on

the nature of the prior sentence planning phase and
on the linguistic complexity of the domain, myriad
encoding decisions must still be made. Machine
learning approaches have been successfully ap-
plied to such aspects of sentence realization as de-
termining the appropriate form of referring
expressions (Poesio et al., 1999) and the gram-
matical relations of noun phrases (Corston-Oliver,
2000) as well as performing lexical selection
(Bangalore and Rambow, 2000b). Traditional
knowledge engineering approaches to sentence
realization founder on our inadequate understand-
ing of the mapping from propositional content to
surface form, a mapping that encompasses such
problems as equi-NP deletion, movement opera-
tions such as extraposition and left-dislocation,
ordering of modifiers within constituents, and
voice alternations. Research in knowledge engi-
neered solutions to these problems continues (see
for example, Aikawa et al., 2001). However, the
task of broad-coverage sentence realization would
appear to be of comparable complexity to sentence
analysis, and equally difficult to adapt to new do-
mains. Sentence realization therefore appears to be
an ideal candidate for statistical and machine-
learned approaches.

Some recently described systems have at-
tempted to side-step the encoding decisions in-
volved in sentence realization by proposing
alternative realizations of an input semantic form
and leaving it to a word-level language model to
select the most likely candidate sentence for out-
put. The Nitrogen system (Langkilde and Knight,
1998a, 1998b), for example, uses a rather permis-
sive knowledge-engineered component to propose
candidate output sentences that are then scored
using word bigrams. Statistics garnered from ac-
tual texts are thus used as a substitute for deeper
knowledge. The addition of syntactic information,
either to constrain the range of candidate sentences

or to augment the n-gram model, has produced fa-
vorable improvements over n-gram models used
alone (Bangalore and Rambow, 2000a; Ratna-
parkhi, 2000).

In the current paper we describe an on-going
research project code-named Amalgam. Amalgam
is a (predominantly) machine-learned generation
module that performs sentence realization and a
small degree of lexical selection. Amalgam takes
as input a logical form graph. Proceeding through a
series of machine-learned and knowledge-
engineered steps, it transforms that graph into a
fully articulated tree structure from which an out-
put sentence can be read. Amalgam has been suc-
cessfully applied to the realization of non-trivial
German sentences in diverse technical domains.
An extended description is given in Gamon et al.
(2002a).

2 Linguistic issues in German generation

Although English and German are closely related
languages, they now differ typologically in dra-
matic ways. German makes a three-way distinction
in lexical gender (masculine, feminine, neuter).
Nominal elements are morphologically marked for
one of four grammatical cases (nominative, accu-
sative, dative and genitive), with adjectives and
determiners agreeing in gender, number and case.
Verbal position is fixed, and is sensitive to clause
type; the order of other constituents is relatively
free. So-called “separable prefixes” are elements
that may occur prefixed to verbs or as separate
elements at a great distance from the verb to which
they are syntactically dependent. Extraposition, a
rare phenomenon in English text, is pervasive: de-
pending on genre, one quarter to one third of all
relative clauses in natural German texts are extra-
posed (Gamon et al., 2002b; Uszkoreit et al.,
1998). Relatively free constituent order, separable
prefixes and extraposition force us to deal with
long distance dependencies much more frequently
than in the analysis and generation of English sen-
tences.

3 The logical form representation

The logical form representation that we employ is
a graph data structure that expresses the proposi-
tional content of a sentence. Nodes in the graph
contain lemmas (citation forms) of content words

with additional annotations for definiteness, num-
ber, person and so on. Relations between nodes are
indicated by labeled arcs. The logical form normal-
izes surface syntactic alternations. For example,
active and passive alternations receive the same
graph representation, differing only in the presence
of the [+Pass] feature on the verbal head of the
logical form that results from the analysis of the
passive. Since the logical form is a graph, nodes
may have more than one parent. Figure 1, Hans
isst die Kartoffeln auf, die er gestern geernet hat,
“Hans eats the potatoes up, which he has gathered
yesterday” (i.e., “Hans eats up the potatoes which
he gathered yesterday”), illustrates the graph na-
ture of the representation.1 A given node may be in
more than one relationship to the same parent, as is
the case with Hans, which functions both as the
underlying subject of aufessen “to eat up” and the
logical topic of the sentence. A given node may
also be dependent on more than one parent node,
as is the case with Kartoffel “potato”, which func-
tions as both the object of aufessen and the object
of ernten “to gather”. Long distance dependencies
receive a rather direct representation in the logical
form, as shown in the representation of the extra-
posed relative clause die er gestern geernet hat,
“that he gathered yesterday”, which is represented
in the logical form as directly dependent on Kartof-
fel, which it modifies semantically.

1 In order to simplify the visual representation of the logical
form, the display attempts to minimize crossing lines. Nodes
sharing the same lemma and numerical index are in fact the
same node in the underlying data structures.

Figure 1 Logical form for the sentence Hans isst die Kartoffeln auf, die er gestern geernet hat.

4 The sentence realization process

For our experiments, we begin with a broad-
coverage grammar of German (in the framework
described in (Heidorn, 2000)) that parses sentences
to produce a syntactic analysis. Additional process-
ing yields a logical form analysis. Our task is es-
sentially to learn the mapping from the output
logical forms to the input sentences, with reference
to the intermediate syntactic analysis. The goal is
to apply Amalgam to the realization of sentences in
contexts such as machine translation in which the
input logical form is constructed by transfer opera-
tions. In the interim, using logical forms that result
from the analysis of German text frees us from is-
sues related to noise introduced by the process of
transfer. We do not require an annotated corpus;
we are able to create unlimited (though imperfect)
quantities of training data by application of the
German analysis system. We have been using a
corpus of 100,000 German sentences drawn from
technical manuals and computer help files. De-
pending on the phenomenon of interest, each sen-
tence typically produces multiple training cases.
For some models, such as the punctuation model,
the use of the full set of sentences yielded as many
as one million cases.
The first stage in the Amalgam process is a proce-
dure that converts the input logical form into a
more manageable tree data structure in which lin-
ear order has not been determined. Nodes with
multiple parents in the input logical form are du-
plicated and co-indexed in the tree data structure.
By consultation of the system dictionary, each
node is annotated with lexical features such as sub-
categorization information that is not otherwise
needed in the logical form. Nouns with nominal
modifiers are collapsed to form compounds. 2

2
 Work in progress.

Most of the remaining stages involve machine
learning. With the exception of the generative lan-
guage model used to determine intra-constituent
order, all machine-learned modules have been im-
plemented as decision tree classifiers using the
WinMine toolkit (Chickering, nd.). Decision trees
provide an easily accessible inventory of the se-
lected features and some indication of their relative
importance in predicting the target features in
question. Significantly, decision trees built by
WinMine predict a probability distribution over all
possible target values. We formulate a series of
questions that lend themselves to implementation
in decision tree classifiers. For example, we ask,
“What case should this NP have?”, “Which deter-
miner from the set {NULL, definite determiner,
indefinite determiner, …} should modify this
NP?”, “Should this constituent be realized?”. Fea-
tures are extracted from each node, its parent and
grandparent. Knowledge-engineered approaches
have been employed for problems for which there
were insufficient data to train models, for certain
graph and tree manipulation operations, and for
straightforward operations such as performing con-
tractions.

The next major stage fleshes out the logical
form tree. Each node is labeled (NP, VP, SUBCL
etc). Function words are inserted, including place-
holders for determiners, e.g., DefDet, which serves
as a placeholder for a definite determiner and Rel-
Pro, which serves as a placeholder for a relative
pronoun (the exact inflected forms cannot be de-
termined until subsequent processing has resolved
intra-constituent ordering and morphological case),
auxiliaries, the infinitival marker zu, the subordi-
nating conjunctions dass and ob, expletive subject
es, reflexive pronouns, the adverbial wie, the nega-
tor nicht, and the passive markers von and durch.
A simple function produces the contracted preposi-
tional proforms such as dadurch and damit. Logi-
cal subjects and objects are assigned a probability

of being realized in the surface string. For exam-
ple, logical subjects of infinitival clauses do not
usually receive overt expression. Finally, morpho-
logical case features and verb position features
(verb second, verb final, verb initial) are assigned.

The third major stage deletes logical subjects
and objects whose probability of being realized is
below a given threshold. The degraphed logical
form is transformed deterministically into a repre-
sentation that more closely resembles a syntactic
constituent representation, albeit with linear order
still unspecified. Non-terminal nodes are given the
syntactic labels that were chosen previously. A
function splits separable prefixes from verbal
stems, based on verb-position features assigned in
the previous stage, and based on lexical informa-
tion. A simple tree transformation reverses the
headedness of constituents in which the syntactic
head is not the semantic head, e.g., in cases involv-
ing quantification such as viele der Leute “many of
the people”.

Processing proceeds to global movement opera-
tions, i.e., movement that reattaches nodes, as dis-
tinct from ordering within a constituent.
Mandatory movement, whether raising, Wh-
movement, or the movement of relative pro-
nouns/relative expressions, are handled by three
simple functions—these phenomena, which have
received considerable attention in the theoretical
literature, have extremely low text frequency in the
technical corpus that we use, with the result that
there were insufficient examples for training deci-
sion tree classifiers. Extraposition of relative, in-
finitival and complement clauses is based on a
decision tree classifier which decides for each in-
stance of such a clause whether it should move up
one step and attach to the parent of its parent (Ga-
mon et al., 2002b). Once reattached there, the next
“hop” is evaluated, until a position is found where
the probability of further movement is less than the
probability of staying put (i.e., it falls below 0.5).

Now that the basic constituency has been re-
solved, two functions set morphological properties
of verbs, copying tense information to the finite
verb (which might be an auxiliary that was inserted
during flesh-out), and copying participial informa-
tion onto the non-finite verb. The verb is made to
agree with the subject, which is identified as the
first nominative NP in the domain of the finite
verb.

Next, linear order within each constituent is de-
termined by consulting a generative statistical lan-
guage model (see Ringger et al., in preparation
(A)). For a given constituent, the ordering stage
employs a beam search to select the optimal order-
ing of modifiers relative to one another and to the
head, in the context of the syntactic category of the
parent constituent and the head part-of-speech. In
addition to leveraging the constituency, the order
model is sensitive to the semantic relation between
each modifier and the head as well as the syntactic
category of the modifier.

A series of operations cleans up the tree. Deci-
sion tree classifiers select the appropriate forms to
replace the placeholders for determiners and rela-
tive pronouns. This is a non-trivial task in Ger-
man—the training data contain 55 different lexical
realizations of determiners and 23 different lexical
realizations of relative pronouns. Reflexive pro-
nouns, which also received an abstract form during
insertion in flesh-out, are converted into their sur-
face form by a simple function. Finally, we must
perform conjunction reduction, reducing sentences
such as the grammatical but dysfluent Hans hat die
Kartoffeln gekocht, und Hans hat die Kartoffeln
gegessen “Hans has cooked the potatoes, and Hans
has eaten the potatoes” to the more fluent Hans hat
die Kartoffeln gekocht und gegessen “Hans has
cooked and eaten the potatoes”. A decision tree
classifier assigns a probability to each NP under
coordination that it will be overtly realized. A sim-
ple function then selects only the most likely NP to
be realized. A final housekeeping function re-
moves duplicated prepositions and auxiliaries that
remain as artifacts of earlier degraphing opera-
tions.

Although there are extensive prescriptive de-
scriptions of German punctuation conventions
(e.g., Duden, 2000), we have implemented two
decision tree classifiers. One classifier decides
whether a punctuation symbol should be inserted
after a given constituent. The other classifier de-
cides whether a symbol should be inserted before a
given constituent. The most probable symbol (in-
cluding the NULL symbol) is inserted between
each terminal node. Finally, a knowledge-
engineered module performs morphological inflec-
tion. The output sentence is then read off from the
terminal nodes of the tree.

5 Evaluation

Table 1 presents the accuracy of the various deci-
sion tree classifiers. Extended discussion of these
and other classifiers is given in Gamon et al. (in
preparation), including precision/recall figures for
each value of the target feature. The baseline is
calculated by predicting the most frequent value in
the held-out test data. This proved easier to calcu-
late from the intermediate WinMine data files, and
is a slightly higher bar than predicting the most
frequent value from the training data. All decision
tree classifiers outperform the baseline. The accu-
racy for the extraposition model is based on a sin-
gle “hop”, i.e., for a single decision concerning
whether an extraposable clause ought to ascend
one level in the syntax tree. For a more extensive

evaluation that considers the final attachment site
after a clause has undergone multiple hops, see
Gamon et al. (2002b).

We evaluate the overall system by parsing a
blind test set of 564 German sentences to produce
logical forms and then applying Amalgam to gen-
erate output strings from those logical forms. For
this sample, 71.1% of the words are correctly in-
flected and occur in the correct position in the sen-
tence. We also compute the word-level string edit
distance of the generated output from the original
reference string: the number of errors (insertions,
deletions, and substitutions) is 44.7% of the num-
ber of words in the reference string.

Classifier Values predicted Accuracy Baseline
Syntactic label Determiner phr., complement cl., VP, quantifier phr.,

adverbial NP, imperative main cl., adverb phr., label,
appositive NP, question main cl., auxiliary phr., nomi-
nal relative, adjective phr., abbreviated cl., relative cl.,
NP, possessor, present participial cl., comment, infini-
tival cl., PP, finite subordinate cl., declarative main cl.,
past participial cl.

0.9823 0.3480

Placeholder for deter-
miner

NULL, Wh, proximal demonstrative, definite, indefi-
nite

0.9763 0.5769

Auxiliary NULL, sein_werden, sein, haben, werden 0.9986 0.8136
Passive marker NULL, von, durch 0.9915 0.9704
Insert zu Yes, No 0.9977 0.9566
Insert negator Yes, no 0.9094 0.8079
Subordinating conj NULL, dass, ob 0.9547 0.5455
Insert expletive es Yes, No 0.9965 0.9949
Realization of NP Yes, No 0.8859 0.6819
Morphological case Dat, Acc, Gen, Nom 0.9602 0.4626
Extraposition Yes, No 0.8820 0.6711
Determiner form Das, dasselbe, dem, demselben, den, denjenigen,

denselben, der, derjenigen, derselbe, derselben, des,
desselben, die, diejenige, diejenigen, dies, diese,
dieselbe, dieselben, diesem, diesen, dieser, dieses, ein,
ein_und_demselben, ein_und_derselbe,
ein_und_derselben, eine, einem, einen, einer, eines, ihr,
ihre, ihrem, ihren, ihrer, ihres, mein, meine, meinem,
meiner, meines, sein, seine, seinem, seinen, seiner,
seines, welche, welchem, welchen, welcher, welches

0.9077 0.2165

Relative pron. form das, das/der, dem, den, denen, der, deren, derer, dessen,
die, die/der, warum, was, welche, welcher, welches,
wo, wobei, wodurch, woher, womit, woraus, wozu

0.8779 0.5359

Conjunction reduction Spell out: first, last or medial instance 0.9710 0.8501
Preceding punctuation NULL, comma, dash, semi-colon, colon, others 0.9865 0.8961
Following punctuation NULL, comma, dash, semi-colon, colon 0.9848 0.9498

Table 1 Accuracy of decision classifiers

String edit distance is a harsh measure of sen-

tence realization accuracy. Because string edit dis-
tance does not consider movement as an edit
operator, movements appear as both deletions and
insertions, yielding a double penalty. Furthermore,
as observed earlier, some edits have a greater im-
pact on the intelligibility of the output than others,
especially the position of the German verb. Work
in progress on a tree edit distance metric addresses
both of these issues (Ringger et al., in preparation
(B)). Closely related work includes that of Banga-
lore, Rambow and Whittaker (2000).

It is possible that generated sentences might dif-
fer from the reference sentences and yet still prove
satisfactory. We therefore had five independent
human evaluators assess the quality of the output
for a random sample of 564 sentences.3 These sen-
tences had been analyzed to yield logical forms
from which Amalgam generated output sentences.
The evaluators assigned an integer score to each
sentence, comparing it to the reference sentence
using the scoring system given in Table 2.4

The average score was 2.96 with a standard de-
viation of 0.81. The mode was 4, occurring 104
times, i.e. 104/564 sentences, or 18.4% received
the maximum score. In 63 of these cases, the score
of 4 had been automatically assigned because the
output sentence was identical to the reference sen-
tence. In the other 41 cases, all five human evalua-
tors had assigned a score of 4, i.e., the output
differed from the reference sentence, but was still
“Ideal”.

3 We extract a random sample of generated sentences. We take
the first n sentences in the sample necessary to ensure 500
sentences that differ from the reference sentence.
4 These guidelines were originally intended for assessing the
quality of machine translation, measuring fluency and transfer
of semantic content from the source language. Evaluating the
sentence realization component is conceptually a case of Ger-
man-to-German translation.

1. “Unacceptable”. Absolutely not comprehensible
and/or little or no information transferred
accurately.

2. “Possibly Acceptable”. Possibly comprehensible
(given enough context and/or time to work
it out); some information transferred accu-
rately.

3. “Acceptable”. Not perfect (stylistically or
grammatically odd), but definitely com-
prehensible, AND with accurate transfer of
all important information.

4. “Ideal”. Not necessarily a perfect translation, but
grammatically correct, and with all infor-
mation accurately transferred.

Table 2 Evaluation guidelines

6 Conclusion

Some elements of the approach to sentence realiza-
tion presented here are peculiar to our logical form
representations, e.g., the fact that negation is repre-
sented as a feature on a node rather than as an op-
erator with scope over a sub-graph, or the
procedural operations necessary to prune artifacts
introduced by the degraphing process. The more
linguistic aspects of the procedure deal with issues
that would be problems for any approach that pro-
ceeds from a representation of propositional con-
tent to a surface string, such as extraposition and
conjunction reduction. As with more traditional
knowledge-engineered approaches to sentence re-
alization (e.g., Aikawa et al. 2001), we have at-
tempted to model such linguistic phenomena in
terms of syntactic constituency. Unlike these tradi-
tional approaches we have implemented the solu-
tions to these problems in machine-learned
components.

Direct comparison to the Nitrogen system
(Langkilde and Knight, 1998a, 1998b) is instruc-
tive at this point, since in some aspects it is the
system that is most philosophically similar to
Amalgam. The knowledge-engineered component
in Nitrogen that proposes candidate sentences in-
serts function words and inflectional variants of
existing words. Although this makes the generation
process robust to underspecified input, the search
space rapidly explodes. If the addition of inflec-
tional variants for English, a language with a rela-
tively impoverished repertoire of inflectional
morphemes, can lead to hundreds of thousands of

candidate output sentences in the examples that
Langkilde and Knight give, it is doubtful whether
it would be practical for a language such as Ger-
man with a rich inflectional morphology. We be-
lieve that a linguistically informed approach allows
for a more direct model of the underlying phenom-
ena, which constrains the search space and reduces
the burden on the generative language model by
presenting it with fewer spurious candidate sen-
tences.

Although our exposition has focused on the pre-
ferred value (the mode) predicted by the models,
decision trees built by WinMine predict a probabil-
ity distribution over all possible target values. For
a system such as Amalgam, built as a pipeline of
stages, this point is critical, since finding the best
final hypothesis will require the consideration of
multiple hypotheses and the concomitant combina-
tion of probabilities assigned by the various mod-
els in the pipeline to all possible target values. In
its current implementation, Amalgam follows a
greedy search, but in future research we intend to
experiment with a beam search that entertains mul-
tiple intermediate hypotheses.

Acknowledgements
Our thanks go to Max Chickering for assistance
with the WinMine decision tree tools, to Zhu
Zhang who made significant contributions to the
development of the extraposition and punctuation
models and to Karin Berghöfer and the five
anonymous evaluators from the Butler Hill Group
for assistance with evaluation.

References
T. Aikawa, M. Melero, L. Schwartz, and A. Wu. 2001.

Multilingual Sentence Generation. In Proceedings of
8th European Workshop on Natural Language Gen-
eration. Toulouse, France. 57-63.

S. Bangalore and O. Rambow. 2000a. Exploiting a
probabilistic hierarchical model for generation. In
Proceedings of the 18th International Conference on
Computational Linguistics (COLING 2000). Saar-
brücken, Germany. 42-48.

S. Bangalore and O. Rambow. 2000b. Corpus-based
lexical choice in natural language generation. In Pro-
ceedings of the 38th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL 2000).
Hong Kong, PRC. 464-471.

S. Bangalore, O. Rambow, and S. Whittaker. 2000.
Evaluation metrics for generation. International Con-
ference on Natural Language Generation (INLG
2000). Mitzpe Ramon, Israel. 1-13.

D. Max. Chickering. nd. WinMine Toolkit Home Page.
http://research.microsoft.com/~dmax/WinMine/
Tooldoc.htm

S. Corston-Oliver. 2000. Using Decision Trees to Select
the Grammatical Relation of a Noun Phrase. In Pro-
ceedings of the 1st SIGDial workshop on discourse
and dialogue. Hong Kong, PRC. 66-73.

P. Duboue and K. McKeown. 2001. Empirically esti-
mating order constraints for content planning in gen-
eration. In Proceedings of the 39th Annual Meeting of
the Association for Computational Linguistics (ACL-
2001). Toulouse, France. 172-179.

Duden. 2000. Die deutsche Rechtschreibung. Duden-
Verlag: Mannheim, Leipzig, Wien, Zürich.

M. Gamon, E. Ringger and S. Corston-Oliver. 2002a.
Amalgam: A Machine-learned Generation Module.
Microsoft Research Tech Report. To appear.

M. Gamon, S. Corston-Oliver, E. Ringger, Z. Zhang, B.
Moore. 2002b. Extraposition of relative clauses: A
case study in German sentence realization. To appear
in Proceedings of COLING 2002, Taipei, Republic of
China.

G. Heidorn. 2000. Intelligent Writing Assistance. In R.
Dale, H. Moisl, and H. Somers (eds.), A Handbook
of Natural Language Processing: Techniques and
Applications for the Processing of Language as Text.
Marcel Dekker, New York. 181-207.

I. Langkilde and K. Knight. 1998a. The practical value
of n-grams in generation. In Proceedings of the 9th
International Workshop on Natural Language Gen-
eration, Niagara-on-the-Lake, Canada. 248-255.

I. Langkilde and K. Knight. 1998b. Generation that ex-
ploits corpus-based statistical knowledge. In Pro-
ceedings of the 36th Annual Meeting of the
Association for Computational Linguistics and 17th
International Conference on Computational Linguis-
tics (COLING-ACL 1998). Montréal, Québec, Can-
ada. 704-710.

J. Oberlander and C. Brew. 2000. Stochastic text gen-
eration. To appear in Philosophical Transactions of
the Royal Society of London, Series A, volume 358.

M. Poesio, R. Henschel, J. Hitzeman and R. Kibble.
1999. Statistical NP generation: A first report. In
Proceedings of the ESSLLI Workshop on NP Gen-
eration. Utrecht, Netherlands.

A. Ratnaparkhi. 2000. Trainable methods for surface
natural language generation. In Proceedings of the 6th
Applied Natural Language Processing Conference
and the 1st Meeting of the North American Chapter of
the Association of Computational Linguistics
(ANLP-NAACL 2000). Seattle, Washington, USA.
194-201.

E. Ringger, B. Moore, M. Gamon, S. Corston-Oliver. In
preparation (A). A linguistically-informed generative
language model for intra-constituent ordering during
sentence realization.

E. Ringger, R. Moore, M. Gamon, S. Corston-Oliver. In
preparation (B). A tree edit distance metric for
evaluation of natural language generation.

H. Uszkoreit, T. Brants, D. Duchier, B. Krenn, L.
Konieczny, S. Oepen and W. Skut. 1998. Aspekte der
Relativsatzextraposition im Deutschen. Claus-Report
Nr.99, Sonderforschungsbereich 378, Universität des
Saarlandes, Saarbrücken, Germany.

M. Walker, O. Rambow, and M. Rogati. 2001. SPoT: A
trainable sentence planner. In Proceedings of the
North American Meeting of the Association for
Computational Linguistics.

I. Zukerman, R. McConachy and K. Korb. 1998. Bayes-
ian reasoning in an abductive mechanism for argu-
ment generation and analysis. AAAI98
Proceedings—the Fifteenth National Conference on
Artificial Intelligence, pp. 833-838, Madison, Wis-
consin.

