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Abstract
We describe the use of a suite of highly flexible
XML -basedNLP tools in a project for processing and
interpreting text in the medical domain. The main
aim of the paper is to demonstrate the central role
that XML mark-up andXML NLP tools have played
in the analysis process and to describe the resultant
annotated corpus ofMEDLINE abstracts. In addition
to theXML tools, we have succeeded in integrating
a variety of non-XML ‘off the shelf’ NLP tools into
our pipelines, so that their output is added into the
mark-up. We demonstrate the utility of the anno-
tations that result in two ways. First, we investigate
how they can be used to improve parse coverage of a
hand-crafted grammar that generates logical forms.
And second, we investigate how they contribute to
automatic lexical semantic acquisition processes.

1 Introduction
In this paper we describe our use ofXML for an anal-
ysis of medical language which involves a number
of complex linguistic processing stages. The ulti-
mate aim of the project is to to acquire lexical se-
mantic information fromMEDLINE through parsing,
however, a fundamental tenet of our approach is that
higher-levelNLP activities benefit hugely from be-
ing based on a reliable and well-considerered initial
stage of tokenisation. This is particularly true for
language tasks in the biomedical and other technical
domains since general purposeNLP technology may
stumble at the first hurdle when confronted with
character strings that represent specialised techni-
cal vocabulary. Once firm foundations are laid then
one can achieve better performance from e.g. chun-
kers and parsers than might otherwise be the case.
We show how well-founded tools, especiallyXML -
based ones, can enable a variety ofNLP components
to be bundled together in different ways to achieve
different types of analysis. Note that in fields such
as information extraction (IE) it is common to use

statistical text classification methods for data anal-
ysis. Our more linguistic approach may be of as-
sistence inIE: see Craven and Kumlien (1999) for
discussion of methods forIE from MEDLINE.

Our processing paradigm isXML -based. As a
mark-up language forNLP tasks, XML is expres-
sive and flexible yet constrainable. Furthermore,
there exist a wide range ofXML -based tools forNLP

applications which lend themselves to a modular,
pipelined approach to processing whereby linguis-
tic knowledge is computed and added asXML an-
notations in an incremental fashion. In processing
MEDLINE abstracts we have built a number of such
pipelines using as key components the programs
distributed with theLT TTT and LT XML toolsets
(Grover et al., 2000; Thompson et al., 1997). We
have also successfully integrated non-XML public-
domain tools into our pipelines and incorporated
their output into theXML mark-up using theLT XML

programxmlperl(McKelvie, 2000).
In Section 2 we describe our use ofXML -based

tokenisation tools and techniques and in Sections 3
and 4 we describe two different approaches to
analysingMEDLINE data which are built on top of
the tokenisation. The first approach uses a hand-
coded grammar to give complete syntactic and se-
mantic analyses of sentences. The second approach
performs a shallower statistically-based analysis
which yields ‘grammatical relations’ rather than
full logical forms. This information about gram-
matical relations is used in a statistically-trained
model which disambiguates the semantic relations
in noun compounds headed by deverbal nominali-
sations. For this second approach we compare two
separate methods of shallow analysis which require
the use of two different part-of-speech taggers.

2 Pre-parsing of Medline Abstracts
For the work reported here, we have used the
OHSUMED corpus ofMEDLINE abstracts (Hersh et



<RECORD>
<ID>395</ID>
<MEDLINE-ID>87052477</MEDLINE-ID>
<SOURCE>Clin Pediatr (Phila) 8703; 25(12):617-9</SOURCE>
<MESH>
Adolescence; Alcoholic Intoxication/BL/*EP; Blood Glucose/AN; Canada; Child; Child, Preschool;
Electrolytes/BL; Female; Human; Hypoglycemia/ET; Infant; Male; Retrospective Studies.
</MESH>
<TITLE>Ethyl alcohol ingestion in children. A 15-year review.</TITLE>
<PTYPE>JOURNAL ARTICLE.</PTYPE>
<ABSTRACT>
<SENT><W P=’DT’>A</W> <W P=’JJ’>retrospective</W>
<W P=’NN’ LM=’study’ >study</W> <W P=’VBD’ LM=’be’ >was</W>
<W P=’VBN’ LM=’conduct’>conducted</W> <W P=’IN’>by</W> <W P=’NN’ LM=’chart’ >chart</W>
<W P=’NNS’ LM=’review’>reviews</W> <W P=’IN’ >of</W> <W P=’CD’>27</W>
<W P=’NNS’ LM=’patient’>patients</W> <W P=’IN’>with</W> <W P=’JJ’>documented</W>
<W P=’NN’ LM=’ethanol’>ethanol</W> <W P=’NN’ LM=’ingestion’>ingestion</W><W P=’.’>.</W>
</SENT> <SENT> .. . </SENT> <SENT> .. . </SENT>
</ABSTRACT>
<AUTHOR>Leung AK.</AUTHOR>
</RECORD>

Figure 1: A sample from theXML -marked-upOHSUMED Corpus

al., 1994) which contains 348,566 references taken
from the years 1987–1991. Not every reference
contains an abstract, thus the total number of ab-
stracts in the corpus is 233,443. The total number of
words in those abstracts is 38,708,745 and the ab-
stracts contain approximately 1,691,383 sentences
with an average length of 22.89 words.

By pre-parsing we mean identification of word
tokens and sentence boundaries and other lower-
level processing tasks such as part-of-speech (POS)
tagging and lemmatisation. These initial stages of
processing form the foundation of ourNLP work
with MEDLINE abstracts and our methods are flex-
ible enough that the representation of pre-parsing
can be easily tailored to suit the input needs of sub-
sequent higher-level processors. We start by con-
verting theOHSUMED corpus from its original for-
mat to anXML format (see Figure 1). From this
point on we pass the data through pipelines which
are composed of calls to a variety ofXML -based
tools from theLT TTT and LT XML toolsets. The
core program in our pipelines is theLT TTT program
fsgmatch, a general purpose transducer which pro-
cesses an input stream and rewrites it using rules
provided in a hand-written grammar file, where the
rewrite usually takes the form of the addition of
XML mark-up. Typically, fsgmatchrules specify
patterns over sequences ofXML elements and use a

regular expression language to identify patterns in-
side the character strings (PCDATA) which are the
content of elements. For example, the following
rule for decimals such as “.25” is searching for a
sequence of twoS elements where the first contains
the string “.” as itsPCDATA content and the second
has been identified as a cardinal number (C=‘CD’,
e.g. any sequence of digits). When these twoS el-
ements are found, they are wrapped in aW element
with the attributeC=‘CD’ (targ sg). (HereS ele-
ments encode character sequences, see below, and
W elements encode words.)

<RULE name="decimal" targ_sg="W[C=‘CD’]">
<REL match="S/#˜ˆ[\.]$"></REL>
<REL match="S[C=‘CD’]"></REL>

</RULE>

Subparts of a pipeline can be thought of as dis-
tinct modules so that pipelines can be configured to
different tasks. A typical pipeline starts with a two-

<S C=’UCA’>A</S><S C=’LCA’>rterial</S>
<S C=’WS’> </S><S C=’UCA’>P</S>
<S C=’LCA’>a</S><S C=’UCA’>O</S>
<S C=’CD’>2</S><S C=’WS’> </S>
<S C=’LCA’>as</S><S C=’WS’> </S>
<S C=’LCA’>measured</S>

Figure 2: Character Sequence (S) Mark-up



stage process to identify word tokens within ab-
stracts. First, sequences of characters are bundled
into S (sequence) elements usingfsgmatch. For each
class of character a sequence of one or more in-
stances is identified and the type is recorded as the
value of the attributeC (UCA=upper case alphabetic,
LCA=lower case alphabetic,WS=white space etc.).
Figure 2 shows the stringArterial PaO2 as mea-
suredmarked up forS elements (line breaks added
for formatting purposes). Every single character in-
cluding white space and newline is contained inS

elements which become building blocks for the next
call to fsgmatchwhere words are identified. An al-
ternative approach would find words in a single step
but our two-step method provides a cleaner set of
word-level rules which are more easily modified and
tailored to different purposes: modifiability is criti-
cal since the definition of what is a word can differ
from one subsequent processing step to another.

A pipeline which first identifies words and then
performs sentence boundary identification andPOS

tagging followed by lemmatisation is shown in Fig-
ure 3 (somewhat simplified and numbering added
for ease of exposition). The Perl program in step 1
wraps the input inside anXML header and footer
as a first step towards conversion toXML . Step 2
calls fsgmatchwith the grammar fileohsumed.grto
identify the fields of anOHSUMEDentry and convert
them intoXML mark-up: each abstract is put inside
a RECORDelement which contains sub-structure re-
flecting e.g. author, title,MESH code and the ab-
stract itself. From this point on, all processing is di-
rected at theABSTRACT elements through the query
“.*/ ABSTRACT”1. Steps 3 and 4 make calls tofsg-
matchto identify S and W (word) elements as de-
scribed above and after this point, in step 5, theS

mark-up is discarded (using theLT TTT program
sgdelmarkup) since it has now served its purpose.

Step 6 contains a call to the other mainLT TTT

program, ltpos (Mikheev, 1997), which performs
both sentence identification andPOS tagging. The
subquery (-qs ) option picks outABSTRACTs as the
elements withinRECORDs (-q option) that are to
be processed; the-qw option indicates that the in-
put has already been segmented into words marked

1The query language that theLT TTT andLT XML tools use
is a specialisedXML query language which pinpoints the part
of the XML tree-structure that is to be processed at that point.
This query language pre-dates XPath and in expressiveness it
constitutes a subset of XPath except that it also allows regular
expressions over text content. Future plans include modifying
out tools to allow for the use of XPath as a query language.

up asW elements; the-sent option indicates that
sentences should be wrapped asSENT elements; the
-tag option is an instruction to outputPOStags and
the-pos attr option indicates thatPOStags should
be encoded as the value of the attributeP on W ele-
ments. The finalresource.xml names the resource
file that ltpos is to use. Note that the tagset used
by ltpos is the Penn Treebank tagset (Marcus et al.,
1994).

1. ohs2xml.perl \
2. | fsgmatch -q ".*/TEXT" ohsumed.gr \
3. | fsgmatch -q ".*/ABSTRACT" pretok.gr \
4. | fsgmatch ".*/ABSTRACT" tok.gr \
5. | sgdelmarkup -q ".*/S" \
6. | ltpos -q ".*/RECORD" -qs ".*/ABSTRACT" \

-qw ".*/W" -sent SENT \
-tag -pos_attr P resource.xml \

7. | xmlperl lemma.rule

Figure 3: Basic Tokenisation Pipeline

Up to this point, each module in the pipeline has
used one of theLT TTT or LT XML programs which
are sensitive toXML structure. There are, however,
a large number of tools available from theNLP com-
munity which could profitably be used but which are
not XML -aware. We have integrated some of these
tools into our pipelines using theLT XML program
xmlperl. This is a program which makes underly-
ing use of anXML parser so that rules defined in
a rule file can be directed at particular parts of the
XML tree-structure. The actions in the rules are de-
fined using the full capabilities of Perl. This gives
the potential for a much wider range of transforma-
tions of the input thanfsgmatchallows and, in par-
ticular, we use Perl’s stream-handling capabilities
to pass the content ofXML elements out to a non-
XML program, receive the result back and encode it
back in theXML mark-up. Step 7 of the pipeline in
Figure 3 shows a call toxmlperl with the rule file
lemma.rule . This rule file invokes Minnen et al.’s
(2000)morphalemmatiser: thePCDATA content of
each verbal or nominalW element is passed to the
lemmatiser and the lemma that is returned is en-
coded as the value of the attributeLM. A sample
of the output from the pipeline is shown in Figure 1.

3 Deep Grammatical Analysis
As part of our work with OHSUMED, we have
been attempting to improve the coverage of a hand-
crafted, linguistically motivated grammar which



provides full-syntactic analysis paired with logical
forms. The grammar and parsing system we use
is the wide-coverage grammar, morphological anal-
yser and lexicon provided by the Alvey Natural Lan-
guage Tools (ANLT) system (Carroll et al. 1991,
Grover et al. 1993). Our first aim was to increase
coverage up to a reasonable level so that parse rank-
ing techniques could then be applied.

TheANLT grammar is a feature-based unification
grammar based on theGPSGformalism (Gazdar et
al., 1985). In this framework, lexical entries carry
a significant amount of information including sub-
categorisation information. Thus the practical parse
success of the grammar is significantly dependent
on the quality of the lexicon. TheANLT grammar
is distributed with a large lexicon and, while this
provides a core of commonly-occurring lexical en-
tries, there remains a significant problem of inade-
quate lexical coverage. If we try to parseOHSUMED

sentences using theANLT lexicon and no other re-
sources, we achieve very poor results (2% coverage)
because most of the medical domain words are sim-
ply not in the lexicon and there is no ‘robustness’
strategy built intoANLT. Rather than pursue the
labour-intensive course of augmenting the lexicon
with domain-specific lexical resources, we have de-
veloped a solution which does not require that new
lexicons be derived for each new domain type and
which has robustness built into the strategy. Fur-
thermore, this solution does not preclude the use of
specialist lexical resources if these can be used to
achieve further improvements in performance.

Our approach relies on the sophisticatedXML -
based tokenisation andPOStagging described in the
previous section and it builds on this by combin-
ing POStag information with the existingANLT lex-
ical resources. We preservePOStag information for
content words (nouns, verbs, adjectives, adverbs)
since this is usually reliable and informative and
we dispose ofPOS tags for function words (com-
plementizers, determiners, particles, conjunctions,
auxiliaries, pronouns, etc.) since theANLT hand-
written entries for these are more reliable and are
tuned to the needs of the grammar. Furthermore,
unknown words are far more likely to be content
words, so knowledge of thePOStag will most often
be needed for content words.

Having retained content word tags, we use them
during lexical look-up in one of two ways. If the
word exists in the lexicon with the same basic cat-
egory as thePOStag then thePOStag plays a ‘dis-

ambiguating’ role, filtering out entries for the word
with different categories. If, on the other hand, the
word is not in the lexicon or it is not in the lexicon
with the relevant category, then a basic underspeci-
fied entry for thePOStag is used as the lexical entry
for the word, thereby allowing the parse to proceed.
For example, if the following partially tagged sen-
tence is input to the parser, it is successfully parsed.

We studied VBD the value NN of
transcutaneous JJ carbon NN dioxide NN
monitoring NN during transport NN

Without the tags the parse would fail since the word
transcutaneousis not in theANLT lexicon. Further-
more,monitoring is present in the lexicon but as a
verb and not as a noun. For both these words, or-
dinary lexical look-up fails and the entries for the
tags have to be used instead. Note that the case
of monitoring would be problematic for a strategy
where tagging is used only in case lexical look-up
fails, since here it is incomplete rather than failed.
The implementation of our wordtag pair look-up
method is specific to theANLT system and uses its
morphological analysis component to treat tags as a
novel kind of affix. Space considerations preclude
discussion of this topic here but see Grover and Las-
carides (2001) for further details.

Another impediment to parse coverage is the
prevalence of technical expressions and formulae in
biomedical and other technical language. For ex-
ample, the following sentence has a straightforward
overall syntactic structure but theANLT grammar
does not contain specialist rules for handling ex-
pressions such as5.0+/-0.4 grams tensionand thus
the parse would fail.

Control tissues displayed a reproducible response to
bethanechol stimulation at different calcium
concentrations with an ED50 of 0.4 mM calcium
and a peak response of 5.0+/-0.4 grams tension.

Our response to issues like these is to place a fur-
ther layer of processing in between the output of
the initial tokenisation pipeline in Figure 3 and the
input to the parser. Since theANLT system is not
XML -based, we already usexmlperl to convert sen-
tences to theANLT input format of one sentence per
line with tags appended to words using an under-
score. We can add a number of other processes at
this point to implement a strategy of usingfsgmatch
grammars to package up technical expressions so as
to render them innocuous to the parser. Thus all
of the following ‘words’ have been identified using



fsgmatchrules and can be passed to the parser as
unanalysable units. The classification of these ex-
amples as nouns reflects a hypothesis that they can
slot into the correct parse as noun phrases but there
is room for experimentation since the conversion to
parser input format can rewrite the tag in any way.

<W P=‘NN’>P less than 0.001</W>
<W P=‘NN’>166 +/- 77 mg/dl</W>
<W P=‘NN’>2 to 5 cc/day</W>
<W P=‘NN’>2.5 mg i.v.</W>

In addition to these kinds of examples, we also
package up other less technical expressions such as
common multi-word words and spelled out num-
bers:

<W P=‘CD’>thirty-five</W> thirty-five CD
<W P=‘CD’>Twenty one</W> Twenty∼oneCD
<W P=‘IN’>In order to</W> In∼order∼to IN
<W P=‘JJ’>in vitro</W> in∼vitro JJ

In order to measure the effectiveness of our at-
tempts to improve coverage, we conducted an ex-
periment where we parsed 200 sentences taken at
random fromOHSUMED. We processed the sen-
tences in three different ways and gathered parse
success rates for each of the three methods. Ver-
sion 1 established a ‘no-intervention’ baseline by
using the initial pipeline in Figure 3 to identify
words and sentences but otherwise discarding all
other mark-up. Version 2 addressed the lexical ro-
bustness issue by retainingPOS tags to be used by
the grammar in the way outlined above. Version 3
applied the full set of preprocessing techniques in-
cluding the packaging-up of formulaic and other
technical expressions. The parse results for these
runs are as follows:

Version 1 Version 2 Version 3

Parses 4 (2%) 32 (16%) 79 (39.5%)

Even in Version 3, coverage is still not very high but
the difference between the three versions demon-
strates that our approach has made significant in-
roads into the problem. Moreover, the increase in
coverage was achieved without any significant al-
terations to the general-purpose grammar and the
tokenisation of formulaic expressions was by no
means comprehensive.

4 Shallow Analysis
In contrast to the full syntactic analysis experi-
ments described in the previous section, here we

describe two distinct methods of shallow analy-
sis from which we acquire frequency information
which is used to predict lexical semantic relations
in a particular kind of noun compound.

4.1 The Task

The aim of the processing in this task is to pre-
dict the relationship between a deverbal nominalisa-
tion head and its modifier in noun-noun compounds
such astube placement, antibody response, pain re-
sponse, helicopter transport. In these examples, the
meaning of the head noun is closely related to the
meaning of the verb from which it derives and the
relationship between this noun and its modifier can
typically be matched onto a relationship between
the verb and one of its arguments. For example,
there is a correspondence between the compound
tube placementand the verb plus direct object string
place the tube. When we interpret the compound
we describe the role that the modifier plays in terms
of the argument position it would fill in the corre-
sponding verbal construction:

tube placement object
antibody response subject
pain response to-object
helicopter transport by-object

We can infer thattube in tube placementfills the
object role in theplace relation by gathering in-
stances from the corpus of the verbplaceand dis-
covering thattubeoccurs more frequently in object
position than in other positions and that the object
interpretation is therefore more probable.

To interpret such compounds in this way, we need
access to information about the verbs from which
the head nouns are derived. Specifically, for each
verb, we need counts of the frequency with which
it occurs with each noun in each of its argument
slots. Ultimately, in fact, in view of the sparse data
problem, we need to back off from specific noun in-
stances to noun classes (see Section 4.4). The cur-
rent state-of-the-art inNLP provides a number of
routes to acquiring grammatical relations informa-
tion about verbs, and for our experiment we chose
two methods in order to be able to compare the tech-
niques and assess their utility.

4.2 Chunking with Cass

Our first method of acquiring verb grammatical re-
lations is that used by Lapata (2000) for a similar
task on more general linguistic data. This method
uses Abney’s (1996) Cass chunker which uses the



finite-state cascade technique. A finite-state cas-
cade is a sequence of non-recursive levels: phrases
at one level are built on phrases at the previous
level without containing same level or higher-level
phrases. Two levels of particular importance are
chunksand simplex clauses. A chunk is the non-
recursive core of intra-clausal constituents extend-
ing from the beginning of the constituent to its head,
excluding post-head dependents (i.e.,NP, VP, PP),
whereas a simplex clause is a sequence of non-
recursive clauses (Abney, 1996). Cass recognizes
chunks and simplex clauses using a regular expres-
sion grammar without attempting to resolve attach-
ment ambiguities. The parser comes with a large-
scale grammar for English and a built-in tool that
extracts predicate-argument tuples out of the parse
trees that Cass produces. Thus the tool identifies
subjects and objects as well asPPs without how-
ever distinguishing arguments from adjuncts. We
consider verbs followed by the prepositionby and
a head noun as instances of verb-subject relations.
Our verb-object tuples also include prepositional
objects even though these are not explicitly iden-
tified by Cass. We assume thatPPs adjacent to the
verb and headed by either of the prepositionsin, to,
for, with, on, at, from, of, into, through, uponare
prepositional objects.

The input to the process is the entireOHSUMED

corpus after it has been converted toXML , to-
kenised, split into sentences andPOS tagged us-
ing ltpos as described in Section 2. The output of
this tokenisation is converted to Cass’s input format
which is a non-XML file with one word per line and
tags separated by tab. We achieve this conversion
using xmlperl with a simple rule file. The output
of Cass and the grammatical relations processor is a
list of each verb-argument pair in the corpus:

manage :obj refibrillation
respond :subj psoriasis
access :to system

4.3 Shallow Parsing with the Tag Sequence
Grammar

Our second method of acquiring verb grammati-
cal relations uses the statistical parser developed by
Briscoe and Carroll (1993, 1997) which is an ex-
tension of theANLT grammar development system
which we used for our deep grammatical analysis as
reported in Section 3 above. The statistical parser,
known as the Tag Sequence Grammar (TSG), uses a
hand-crafted grammar where the lexical entries are

for POStags rather than words themselves. Thus it
is strings of tags that are parsed rather than strings
of words. The statistical part of the system is the
parse ranking component where probabilities are as-
sociated with transitions in anLR parse table. The
grammar does not achieve full-coverage but on the
OHSUMED corpus we were able to obtain parses for
99.05% of sentences. The number of parses found
per sentence ranges from zero into the thousands
but the system returns the highest ranked parse ac-
cording to the statistical ranking method. We do
not have an accurate measure of how many of the
highest ranked parses are actually correct but even a
partially incorrect parse may still yield useful gram-
matical relations data.

In recent developments (Carroll and Briscoe,
2001), theTSG authors have developed an algorithm
for mappingTSG parse trees to representations of
grammatical relations within the sentence in the fol-
lowing format:

These centres are efficiently trapped in proteins at low
temperatures
(|ncsubj| |trap| |centre| |obj|)
(|iobj| |in| |trap| |protein|)
(|detmod| |centre| |These|)
(|mod| |trap| |efficiently|)
(|aux| |trap| |be|)
(|ncmod| |temperature| |low|)
(|ncmod| |at| |trap| |temperature|)

This format can easily be mapped to the same for-
mat as described in Section 4.2 to give counts of the
number of times a particular verb occurs with a par-
ticular noun as its subject, object or prepositional
object.

As explained above, theTSG parses sequences
of tags, however it requires a different tagset from
that produced byltpos, namely theCLAWS2 tagset
(Garside, 1987). To prepare the corpus for parsing
with theTSG we therefore tagged it with Elworthy’s
(1994) tagger and since this is a non-XML tool we
usedxmlperl to invoke it and to incorporate its re-
sults back into theXML mark-up. Sentences were
then prepared as input to theTSG—this involved us-
ing xmlperlto replace words by their lemmas and to
convert toANLT input format:

These DD2 centre NN2 be VBR efficiently RR
trap VVN in II protein NN2 at II low JJ
temperature NN2

The lemmas are needed in order that theTSG out-
puts them rather than inflected words in the gram-
matical relations output shown above.



4.4 Compound Interpretation

Having collected two different sets of frequency
counts from the entireOHSUMED corpus for verbs
and their arguments, we performed an experiment to
discover (a) whether it is possible to reliably predict
semantic relations in nominalisation-headed com-
pounds and (b) whether the two methods of col-
lecting frequency counts make any significant dif-
ference to the process.

To collect data for the experiment we needed to
add to the mark-up already created by the basic
pipeline in Figure 3, (a) to mark up deverbal nomi-
nalisations with information about their verbal stem
to give nominalisation-verb equivalences and (b) to
mark up compounds in order to collect samples of
two-word compounds headed by deverbal nominal-
isations. For the first task we combined further use
of the lemmatiser with the use of lexical resources.
In a first pass we used themorpha lemmatiser to
find the verbal stem for-ing nominalisations such
asscreeningand then we looked up the remaining
nouns in a nominalisation lexicon which we created
by combining the nominalisation list which is pro-
vided byUMLS (2000) with theNOMLEX nominali-
sation lexicon (MacLeod et al., 1998) As a result of
these stages, most of the deverbal nominalisations
can be marked up with aVSTEM attribute whose
value is the verbal stem:

<W P=’NN’ LM=’reaction’ VSTEM=’react’>reaction</W>
<W P=’NN’ LM=’growth’ VSTEM=’grow’ >growth</W>
<W P=’NN’ LM=’control’ VSTEM=’control’ >control</W>
<W P=’NN’ LM=’coding’ VSTEM=’code’>coding</W>

To mark up compounds we developed anfsgmatch
grammar for compounds of all lengths and kinds
and we used this to process a subset of the first two
years of the corpus.

We interpret nominalisations in the biomedical
domain using a machine learning approach which
combines syntactic, semantic, and contextual fea-
tures. Using theLT XML program sggrep we
extracted all sentences containing two-word com-
pounds headed by deverbal nominalisations and
from this we took a random sample of 1,000 nom-
inalisations. These were manually disambiguated
using the following categories which denote the
argument relation between the deverbal head and
its modifier: SUBJ (age distribution), OBJ (weight
loss), WITH (graft replacement), FROM (blood elim-
ination), AGAINST (seizure protection), FOR (non-
stress test), IN (vessel obstruction), BY (aerosol ad-

ministration), OF (water deprivation), ON (knee op-
eration), andTO (treatment response). We also in-
cluded the categoriesNA (non applicable) for nom-
inalisations with relations other than the ones pre-
dicted by the underlying verb’s subcategorisation
frame (e.g.,death stroke) andNV (non deverbal) for
compounds that were wrongly identified as nomi-
nalisations.

We treated the interpretation of nominalisations
as a classification task and experimented with dif-
ferent features using the C4.5 decision tree learner
(Quinlan, 1993). Some of the features we took into
account were the context surrounding the candidate
nominalisations (encoded as words orPOS-tags), the
number of times a modifier was attested as an argu-
ment of the verb corresponding to the nominalised
head, and the nominalisation affix of the deverbal
head (e.g.,-ation, -ment). In the face of sparse
data, linguistic resources such as WordNet (Miller
and Charles, 1991) andUMLS were used to recre-
ate distributional evidence absent from our corpus.
We obtained several different classification models
as a result of using different marked-up versions of
the corpus, different parsers, and different linguistic
resources. Full details of the results are described
in Grover et al. (2002); we only have space for a
brief summary here. Our best results achieved an
accuracy of 73.6% (over a baseline of 58.5%) when
using the type of affixation of the deverbal head, the
TSG, and WordNet for recreating missing frequen-
cies.

5 Conclusions

We have performed a number of differentNLP tasks
on the OHSUMED corpus of MEDLINE abstracts
ranging from low-level tokenisation through shal-
low parsing to deep syntactic and semantic analy-
sis. We have usedXML as our processing paradigm
and we believe that without the coreXML tools the
task would have become extremely hard. Further-
more, we have built fully-automatic pipelines and
have not resorted to hand-coding at any point so that
our output annotations are completely reproducable
and our resources are reusable on new data. Our
approach of building a firm foundation of low-level
tokenisation has proved invaluable for a variety of
higher-level tasks.

TheXML -annotatedOHSUMED corpus which has
resulted from our project will be useful for a num-
ber of different tasks in the biomedical domain. For
this reason we are developing a web-site from which



many of our resources (including the pipelines
described in this paper) are available:http://
www.ltg.ed.ac.uk/disp/ . In addition, we pro-
vide various marked-up and tokenised versions of
OHSUMED, including the output of the parsers de-
scribed here.
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