
Adapting Existing Grammars: The XLE Experience

Ronald M. Kaplan and Tracy Holloway King and John T. Maxwell III
Palo Alto Research Center
Palo Alto, CA 94304 USA

kaplan, thking, maxwell @parc.com

Abstract

We report on the XLE parser and grammar develop-
ment platform (Maxwell and Kaplan, 1993) and de-
scribe how a basic Lexical Functional Grammar for
English has been adapted to two different corpora
(newspaper text and copier repair tips).

1 Introduction

Large-scale grammar development platforms should
be able to be used to develop grammars for a wide
variety of purposes. In this paper, we report on the
the XLE system (Maxwell and Kaplan, 1993), a
parser and grammar development platform for Lex-
ical Functional Grammars. We describe some of the
strategies and notational devices that enable the ba-
sic English grammar developed for the ParGram
project (Butt et al., 1999; Butt et al., 2002) to be
adapted to two corpora with different properties.

1.1 The Corpora

The STANDARD Pargram English grammar covers
the core phenomena of English (e.g., main and sub-
ordinate clauses, noun phrases, adjectives and ad-
verbs, prepositional phrases, coordination; see (Butt
et al., 1999)). We have built two different specialized
grammars on top of this: the EUREKA grammar and
the WSJ grammar.

The EUREKA grammar parses the Eureka cor-
pus of copier repair tips, a collection of documents
offering suggestions for how to diagnose and fix
particular copier malfunctions. These informal and
unedited documents were contributed by copier re-
pair technicians, and the corpus is characterized by
a significant amount of ungrammatical input (e.g.,
typos, incorrect punctuation, telegraphic sentences)
and much technical terminology (1). The goal of
parsing this corpus is to provide input to a semantics
and world-knowledge reasoning application (Ev-
erett et al., 2001).

(1) a. (SOLUTION 27032 70) If exhibiting 10-
132 faults replace the pre-fuser transport
sensor (Q10-130).

b. (SOLUTION 27240 80) 4. Enter into the
machine log, the changes that have been
made.

The WSJ grammar covers the UPenn Wall Street
Journal (WSJ) treebank sentences (Marcus et al.,
1994). This corpus is characterized by long sen-
tences with many direct quotes and proper names,
(2a). In addition, for evaluation and training pur-
poses we also parsed a version of this corpus marked
up with labeled brackets and part-of-speech tags, as
in (2b). Riezler et al. (2002) report on our WSJ pars-
ing experiments.

(2) a. But since 1981, Kirk Horse Insurance Inc.
of Lexington, Ky. has grabbed a 20% stake
of the market.

b. But since 1981, [NP-SBJ Kirk Horse In-
surance Inc. of Lexington, Ky.] has/VBZ
grabbed/VBN [NP a 20% stake of the mar-
ket].

2 Priority-based Grammar Specialization
The XLE system is designed so that the grammar
writer can build specialized grammars by both ex-
tending and restricting another grammar (in our case
the base grammar is the STANDARD Pargram En-
glish grammar). An LFG grammar is presented to
the XLE system in a priority-ordered sequence of
files containing phrase-structure rules, lexical en-
tries, abbreviatory macros and templates, feature
declarations, and finite-state transducers for tok-
enization and morphological analysis. XLE is ap-
plied to a single root file holding a CONFIGURA-
TION that identifies all the other files containing rel-
evant linguistic specifications, that indicates how

those components are to be assembled into a com-
plete grammar, and that specifies certain parameters
that control how that grammar is to be interpreted.
A key idea is that there can be only one definition
of an item of a given type with a particular name
(e.g., there can be only one NP rule although that sin-
gle rule can have many alternative expansions), and
items in a higher priority file override lower priority
items of the same type with the same name. This set
up is similar to the priority-override scheme of the
earlier LFG Grammar Writer’s Workbench (Kaplan
and Maxwell, 1996).

This arrangement makes it relatively easy to con-
struct a specialized grammar from a pre-existing
standard. The specialized grammar is defined by
a CONFIGURATION in its own root file that speci-
fies the relevant STANDARD grammar files as well
as the new files for the specialized grammar. The
files for the specialized grammar can also contain
items of different types (phrase-structure rules, lex-
ical entries, templates, etc.), and they are ordered
with higher priority than the STANDARD files.

Consider the configuration for the EUREKA gram-
mar. It specifies all of the STANDARD grammar files
as well as its own rule, template, lexicon, and mor-
phology files. A part of this configuration is shown
in (3) (the notationtemplates.lfg are shared by all the
languages’ grammars, not just English).

(3) FILES ../standard/english-lexicons.lfg
../standard/english-rules.lfg
../standard/english-templates.lfg
../../common/notationtemplates.lfg
english-eureka-morphconfig
eureka-lexicons.lfg
eureka-rules.lfg
eureka-templates.lfg

This configuration specifies that the EUREKA rules,
templates, and lexical entries are given priority
over the STANDARD items by putting the spe-
cial EUREKA files at the end of the list. Thus, if
the ../standard/english-rules.lfg and eureka-rules.lfg
files both contain a rule expanding the NP category,
the one from the STANDARD file will be discarded in
favor of the EUREKA rule.

In the following subsections, we provide several
illustrations of how simple overriding has been used
for the EUREKA and WSJ grammar extensions.

2.1 Rules
The override convention makes it possible to: add
rules (e.g., for new or idiosyncratic constructions);
delete rules (e.g., to block constructions not found in
the new corpus); and modify rules to allow different
daughter sequences.

Rules may need to be added to allow for corpus-
specific constructions. This is illustrated in the EU-
REKA corpus by the identifier information that pre-
cedes each sentence, as in (1). In order to parse this
substring, a new category (FIELD) was defined with
an expansion that covers the identifier information
followed by the usual ROOT category of the STAN-
DARD grammar. The top-level category is one of
the parameters of a configuration, and the EUREKA

CONFIGURATION specifies that FIELD instead of the
STANDARD ROOT is the start-symbol of the gram-
mar. Thus the EUREKA grammar produces the tree
in (4) and functional-structure in (5) for (1a).

(4) FIELD

LP EURHEAD ID SUB-ID RP ROOT

(SOLUTION 27032 70)

(5) PRED replace SUBJ, OBJ

SUBJ []
OBJ []

FIELD solution
TIP-ID 27032
SUB-TIP-ID 70

It is unusual in practice to need to delete a rule,
i.e., to eliminate completely the possibility of ex-
panding a given category of the STANDARD gram-
mar. This is generally only motivated when the spe-
cialized grammar applies to a domain where certain
constructions are rarely encountered, if at all. Al-
though there has been no need to delete rules for the
EUREKA and WSJ corpora, the override convention
also provides a natural way of achieving this effect.
For example, topicalization is extremely rare in the
the Eureka corpus and the STANDARD topicalization
rule sometimes introduces parsing inefficiency. This
can be avoided by having the high priority EUREKA

file replace the STANDARD rule with the one in (6).

(6) CPtop .

This vacuous rule expands the CPtop category to the
empty language, the language containing no strings;

so, this category is effectively removed from the
grammar.

Perhaps the most common change is to make
modifications to the behavior of existing rules. The
most direct way of doing this is simply to define a
new, higher priority expansion of the same left-hand
category. Since XLE only allows a single rule for a
given category, the old rule is discarded and the new
one comes into play. The new rule can be arbitrar-
ily different from the STANDARD one, but this is not
typically the case. It is much more common that the
specialized version incorporates most of the behav-
ior of the original, with minor extensions or restric-
tions. One way of producing the modified behavior
is to create a new rule that includes a copy of some
or all of the STANDARD rule’s right side along with
new material, and to give the new definition higher
priority than the old. For example, plurals in the Eu-
reka corpus can be formed by the addition of ’s in-
stead of the usual s, as in (7).

(7) (CAUSE 27416 10) A 7mfd inverter motor ca-
pacitor was installed on an unknown number of
UDH’s.

In order to allow for this, the N rule was rewritten to
allow a PL marker to optionally occur after any N,
as in (8).

(8) N copy of STANDARD N rule
(PL)

As a result of this rule modification, UDH’s in (7)
will have the tree and functional-structure in (9).

(9) a. N

PART PL

UDH ’s

b.
PRED UDH
NUM pl

Copying material from one version to another is
perhaps reasonable for relatively stable and simple
rules, like the N rule, but this can cause maintainabil-
ity problems with complicated rules in the STAN-
DARD grammar that are updated frequently. An al-
ternative strategy is to move the body of the STAN-
DARD N rule to a different rule, e.g., Nbody, which
in turn is called by the N rule in both the STANDARD

and EUREKA grammars. The Nbody category can be
supressed in the tree structure by invoking this rule
as a macro (notationally indicated as @Nbody).

(10) N @Nbody (PL).

Often the necessary modification can be made
simply by redefining a macro that existing rules al-
ready invoke. Consider the ROOT rule, in (11).

(11) ROOT @DECL-BODY @DECL-PUNCT

@INT-BODY @INT-PUNCT

@HEADER .

In the STANDARD grammar, the DECL-PUNCT

macro is defined as in (12a). However, this must
be modified in the EUREKA grammar because the
punctuation is much sloppier and often does not
occur at all; the EUREKA version is shown in (12b).

(12) a. DECL-PUNCT = PERIOD

EXCL-POINT .

b. DECL-PUNCT = (PERIOD

EXCL-POINT

COLON

SEMI-COLON).

The modular specifications that macros and tem-
plates provide allow rule behavior to be modified
without having to copy the parts of the rule that do
not change.

XLE also has a mechanism for systemati-
cally modifying the behavior of all rules: the
METARULEMACRO. For example, in order to
parse labeled bracketed input, as in (2b), the WSJ

grammar was altered so that constituents could
optionally be surrounded by the appropriately
labeled brackets. The METARULEMACRO is applied
to each rule in the grammar and produces as output
a modified version of that rule. This is used in
the STANDARD grammar for coordination and to
allow quote marks to surround any constituent. The
METARULEMACRO is redefined for the WSJ to add
the labeled bracketing possibilities for each rule, as
shown in (13).

(13) METARULEMACRO(CAT BASECAT RHS) =

LSB LABEL[BASECAT] CAT RSB

copy of STANDARD coordination
copy of STANDARD surrounding quote .

The CAT, BASECAT, and RHS are arguments to
the METARULEMACRO that are instantiated to dif-
ferent values for each rule. RHS is instantiated to
the right-hand side of the rule, i.e., the rule expan-
sion. CAT and BASECAT are two ways of repre-
senting the left-hand side of the rule. For simple cat-
egories the CAT and BASECAT are the same (e.g.

NP for the NP rule). XLE also allows for complex
category symbols to specialize the expansion of par-
ticular categories in particular contexts. For exam-
ple, the VP rule is parameterized for the form of its
complement and its own form, so that VP[perf,fin]
is one of the complex VP categories. When the
METARULEMACRO applies to rules with complex
left-side categories, CAT refers to the category in-
cluding the parameters and the BASECAT refers to
the category without the parameters. For the VP ex-
ample, CAT is VP[perf,fin] and BASECAT is VP.

In the definition in (13), LSB and RSB parse the
brackets themselves, while the LABEL[BASECAT]
parses the label in the bracketing and matches it to
the label in the tree (NP in (2b)); the consituent itself
is the CAT. Thus, a label-bracketed NP is assigned
the structure in (14).

(14) NP

LSB LABEL[NP] NP RSB

[NP-SBJ Kirk Horse]

These examples illustrate how the prioritized re-
definition of rules and macros has enabled us to in-
corporate the STANDARD rules in grammars that are
tuned to the special properties of the EUREKA and
WSJ corpora.

2.2 Lexical Entries

Just as for rules, XLE’s override conventions make
it possible to: add new lexical items or new part-of-
speech subentries for existing lexical items; delete
lexical items; and modify lexical items. In addition
to the basic priority overrides, XLE provides for
“edit lexical entries” (Kaplan and Newman, 1997)
that give finer control over the construction of the
lexicon. Edit entries were introduced as a way of rec-
onciling information from lexical databases of vary-
ing degrees of quality, but they are also helpful in
tailoring a STANDARD lexicon to a specialized cor-
pus. When working on specialized corpora, such as
the Eureka corpus, modifications to the lexicon are
extremely important for correctly handling techni-
cal terminology and eliminating word senses that are
not appropriate for the domain.

Higher-priority edit lexical entries provide for op-
erators that modify the definitions found in lower-
priority entries. The operators can: add a subentry
(+); delete a subentry (); replace a subentry (!);
or retain existing subentries (=). For example, the

STANDARD grammar might have an entry for button
as in (15).

(15) button !V @(V-SUBJ-OBJ %stem);
!N @(NOUN %stem);
ETC.

However, the EUREKA grammar might not need the
V entry but might require a special partname N en-
try. Assuming that the EUREKA lexicons are given
priority over the STANDARD lexicons, the entry in
(16) would accomplish this.

(16) button V ;
+N @(PARTNAME %stem);
ETC.

Note that the lexical entries in (15) and (16) end with
ETC. This is also part of the edit lexical entry sys-
tem. It indicates that other lower-priority definitions
of that lexical item will be retained in addition to
the new entries. For example, if in another EUREKA

lexicon there was an adjective entry for button with
ETC, the V, N, and A entries would all be used. The
alternative to ETC is ONLY which indicates that only
the new entry is to be used. In our button example, if
an adjective entry was added with ONLY, the V and
N entries would be removed, assuming that the ad-
jective entry occurred in the highest priority lexicon.
This machinery provides a powerful tool for build-
ing specialized lexicons without having to alter the
STANDARD lexicons.

The EUREKA corpus contains a large number of
names of copier parts. Due to their particular syn-
tax and to post-syntactic processing requirements, a
special lexical entry is added for each part name. In
addition, the regular noun parse of these entries is
deleted because whenever they occur in the corpus
they are part names. A sample lexical is shown in
(17); the ‘ is the escape character for the space.

(17) separator‘ finger
!PART-NAME @(PART-NAME %stem);

N;
ETC.

The first line in (17) states that separator finger can
be a PART NAME and when it is, it calls a template
PART-NAME that provides relevant information for
the functional-structure. The second line removes
the N entry, if any, as signalled by the before the
category name.

Because of the non-context free nature of Lexical
Functional Grammar, it sometimes happens that ex-
tensions in one part of the grammar require a cor-
responding adjustment in other rules or lexical en-
tries. Consider again the EUREKA ’s plurals. The
part-name UDH is singular when it appears with-
out the ’s and thus the morphological tag +Sg is ap-
pended to it. In the STANDARD grammar, the tag +Sg
has a lexical entry as in (18a) which states that +Sg is
of category NNUM and assigns sg to its NUM. How-
ever, if this is used in the EUREKA grammar, the sg
NUM specification will clash with the pl NUM spec-
ification when UDH appears with ’s, as seen in (7).
Thus, a new entry for +Sg is needed which has sg
as a default value, as in (18b). The first line of (18b)
states that NUM must exist but does not specify a
value, while the second line optionally supplies a sg
value to NUM; when the ’s is used, this option does
not apply since the form already has a pl NUM value.

(18) a. +Sg NNUM (NUM)=sg

b. +Sg NNUM (NUM)
((NUM)=sg)

3 Tokenizing and Morphological Analysis
Tokenization and morphological analysis in XLE
are carried out by means of finite state transductions.
The STANDARD tokenizing transducer encodes the
punctuation conventions of normal English text,
which is adequate for many applications. However,
the Eureka and WSJ corpora include strings that must
be tokenized in non-standard ways. The Eureka part
identifiers have internal punctuation that would nor-
mally cause a string to be broken up (e.g. the hyphen
in PL1-B7), and the WSJ corpus is marked up with
labeled brackets and part-of-speech tags that must
also receive special treatment. An example of the
WSJ mark-up is seen in (19).

(19) [NP-SBJ Lloyd’s, once a pillar of the world
insurance market,] is/VBZ being/VBG
shaken/VBN to its very foundation.

Part-of-speech tags appear in a distinctive format,
beginning with a / and ending with a , with the in-
tervening material indicating the content of the tag
(VBZ for finite 3rd singular verb, VBG for a progres-
sive, VBN for a passive, etc.). The tokenizing trans-
ducer must recognize this pattern and split the tags
off as separate tokens. The tag-tokens must be avail-
able to filter the output of the morphological ana-
lyzer so that only verbal forms are compatible with

the tags in this example and the adjectival reading of
shaken is therefore blocked.

XLE tokenizing transducers are compiled from
specifications expressed in the sophisticated Xerox
finite state calculus (Beesley and Karttunen, 2002).
The Xerox calculus includes the composition, ig-
nore, and substitution operator discussed by Kaplan
and Kay (1994) and the priority-union operator of
Kaplan and Newman (1997). The specialized tok-
enizers are constructed by using these operators to
combine the STANDARD specification with expres-
sions that extend or restrict the standard behavior.
For example, the ignore operator is applied to allow
the part-of-speech information to be passed through
to the morphology without interrupting the standard
patterns of English punctuation.

XLE also allows separately compiled transduc-
ers to be combined at run-time by the operations
of priority-union, composition, and union. Priority-
union was used to supplement the standard morphol-
ogy with specialized “guessing” transducers that ap-
ply only to tokens that would otherwise be unrec-
ognized. Thus, a finite-state guesser was added to
identify Eureka fault numbers (09-425), adjustment
numbers (12-23), part numbers (606K2100), part list
numbers (PL1-B7), repair numbers (2.4), tag num-
bers (P-102), and diagnostic code numbers (dC131).
Composition was used to apply the part-of-speech
filtering transducer to the output of the morpholog-
ical analyzer, and union provided an easy way of
adding new, corpus-specific terminology.

4 Optimality Marks
XLE supports a version of Optimality Theory (OT)
(Prince and Smolensky, 1993) which is used to rank
an analysis relative to other possible analyses (Frank
et al., 2001). In general, this is used within a specific
grammar to prefer or disprefer a construction. How-
ever, it can also be used in grammar extensions to
delete or include rules or parts of rules.

The XLE implementation of OT works as fol-
lows.1 OT marks are placed in the grammar and are
associated with particular rules, parts of rules, or
lexical entries. These marks are then ranked in the
grammar CONFIGURATION. In addition to a simple
ranking of constraints which states that a construc-
tion with a given OT mark is (dis)prefered to one

1The actual XLE OT implementation is more complicated
than this, allowing for UNGRAMMATICAL and STOPPOINT

marks as well. Only OT marks that are associated with NO-
GOOD are of interest here. For a full description, see (Frank et
al., 2001).

without it, XLE allows the marks to be specified as
NOGOOD. A rule or rule disjunct which has a NO-
GOOD OT mark associated with it will be ignored
by XLE. This can be used for grammar extensions
in that it allows a standard grammar to anticipate the
variations required by special corpora without using
them in normal circumstances.

Consider the example of the EUREKA ’s plurals
discussed in section 2.1. Instead of rewriting the N
rule in the EUREKA grammar, it would be possible
to modify it in the STANDARD grammar and include
an OT mark, as in (20).

(20) N original STANDARD N rules
(PL: @(OT-MARK EUR-PLURAL)).

The CONFIGURATION files of the STANDARD and
EUREKA grammars would differ in that the STAN-
DARD grammar would rank the EUR-PLURAL OT
mark as NOGOOD, as in (21a), while the EUREKA

grammar would simply not rank the mark, as in
(21b).

(21) a. STANDARD optimality order:
EUR-PLURAL NOGOOD

b. EUREKA optimality order:
NOGOOD

Given the OT marks, it would be possible to have
one large grammar that is specialized by different
OT rankings to produce the STANDARD, EUREKA,
and WSJ variants. However, from a grammar writ-
ing perspective this is not a desirable solution be-
cause it becomes difficult to keep track of which
constructions belong to standard English and are
shared among all the specializations and which are
corpus-specific. In addition, it does not distinguish a
core set of slowly changing linguistic specifications
for the basic patterns of the language, and thus does
not provide a stable foundation that the writers of
more specialized grammars can rely on.

5 Maintenance with Grammar Extensions

Maintenance is a serious issue for any large-scale
grammar development activity, and the maintenance
problems are compounded when multiple versions
are being created perhaps by several different gram-
mar writers. Our STANDARD grammar is now quite
mature and covers all the linguistically significant
constructions and most other constructions that we

have encountered in previous corpus analysis. How-
ever, every now and then, a new corpus, even a spe-
cialized one, will evidence a standard construction
that has not previously been accounted for. If spe-
cialized grammars were written by copying all the
STANDARD files and then modifying them, the im-
plementation of new standard constructions would
tend to appear only in the specialized grammar. Our
techniques for minimizing the amount of copying
encourages us to implement new constructions in the
STANDARD grammar and this makes them available
to all other specializations.

If a new version of a rule for a specialized gram-
mar is created by copying the corresponding STAN-
DARD rule, changes later made to the special rule
will not automatically be reflected in the STANDARD

grammar, and vice versa. This is the desired behav-
ior when adding unusual, corpus-specific construc-
tions. However, if the non-corpus specific parts of
the new rule are modified, these modifications will
not migrate to the STANDARD grammar. To avoid
this problem, the smallest rule possible should be
modified in the specialized grammar, e.g., modify-
ing the N head rule instead of the entire NP. For
this reason, having highly modularized rules and us-
ing macros and templates helps in grammar mainte-
nance both within a grammar and across specialized
grammar extensions.

As seen above, the XLE grammar development
platform provides a number of mechanisms to allow
for grammar extensions without altering the core
(STANDARD) grammar. However, there are still ar-
eas that could use improvement. For example, as
mentioned in section 2, the CONFIGURATION file
states which other files the grammar includes and
how they are prioritized. The CONFIGURATION con-
tains other information such as declarations of the
governable grammatical functions, the distributive
features, etc. As this information rarely changes
with grammar extensions, it would be helpful for
an extension configuration to incorporate by refer-
ence such additional parameters of the STANDARD

configuration. Currently these declarations must be
copied into each CONFIGURATION.

6 Discussion and Conclusion

As a result of the strategies and notational devices
outlined above, our specialized grammars share
substantial portions of the pre-existing STANDARD

grammar. The statistics in table (22) give an indica-
tion of the size of the STANDARD grammar and of

the additional material required for the EUREKA and
WSJ specializations. As can be seen from this table,
the specialized grammars require a relatively small
number of rules compared to the rules in the STAN-
DARD grammar. The number of lines that the rules
and lexical entries take up also provides a measure of
the relative size of the specifications. The WSJ lexi-
cons include many titles and proper nouns that may
ultimately be moved to the STANDARD files. The ta-
ble also shows the number of files called by the CON-
FIGURATION, as another indication of the size of the
specifications. This number is somewhat arbitrary as
separate files can be combined into a single multi-
sectioned file, although this is likely to reduce main-
tainability and readability.

(22)

STANDARD EUREKA WSJ

rules 310 32 14
lines:

rules 6,539 425 894
lexicons 44,879 5,565 15,135

files 14 5 8

The grammars compile into a collection of finite-
state machines with the number of states and arcs
listed in table (23). The WSJ grammar compiles into
the largest data structures, mainly because of its abil-
ity to parse labeled bracketed strings and part-of-
speech tags, (2b). This size increase is the result of
adding one disjunct in the METARULEMACRO and
hence reflects only a minor grammar change.

(23)
STANDARD EUREKA WSJ

states 4,935 5,132 8,759
arcs 13,268 13,639 19,695

In sum, the grammar specialization system used
in XLE has been quite sucessful in developing cor-
pus specific grammars using the STANDARD English
grammar as a basis. A significant benefit comes from
being able to distinguish truly unusual constructions
that exist only in the specialized grammar from those
that are (or should be) in the STANDARD grammar.
This allows idiosyncratic information to remain in a
specialized grammar while all the specialized gram-
mars benefit from and contribute to the continuing
development of the STANDARD grammar.

References
K. Beesley and L. Karttunen. 2002. Finite-State

Morphology: Xerox Tools and Techniques. Cam-
bridge University Press. To Appear.

M. Butt, T.H. King, M.-E. Niño, and F. Segond.
1999. A Grammar Writer’s Cookbook. CSLI
Publications, Stanford, CA.

M. Butt, H. Dyvik, T.H. King, H. Masuichi, and
C. Rohrer. 2002. The parallel grammar project.
In Proceedings of COLING 2002. Workshop on
Grammar Engineering and Evaluation.

J. Everett, D. Bobrow, R. Stolle, R. Crouch,
V. de Paiva, C. Condoravdi, M. van den Berg,
and L. Polanyi. 2001. Making ontologies work
for resolving redundancies across documents.
Communications of the ACM, 45:55–60.

A. Frank, T. H. King, J. Kuhn, and J. T. Maxwell III.
2001. Optimality theory style constraint rank-
ing in large-scale LFG grammars. In Peter Sells,
editor, Formal and Empirical Issues in Optimal-
ity Theoretic Syntax. CSLI Publications, Stanford,
CA.

R. Kaplan and M. Kay. 1994. Regular models of
phonological rule systems. Computational Lin-
guistics, 20:331–378.

R. Kaplan and J. Maxwell. 1996. LFG Gram-
mar Writer’s Workbench. System documentation
manual; available on-line at PARC.

R. Kaplan and P. Newman. 1997. Lexical resource
conciliation in the Xerox Linguistic Environment.
In Proceedings of the ACL Workshop on Com-
putational Environments for Grammar Develop-
ment and Engineering.

M. Marcus, G. Kim, M. A. Marcinkiewicz, R. Mac-
Intyre, A. Bies, M. Ferguson, K. Katz, and
B. Schasberger. 1994. The Penn treebank: An-
notative predicate argument structure. In ARPA
Human Language Technology Workshop.

J. Maxwell and R. Kaplan. 1993. The interface be-
tween phrasal and functional constraints. Compu-
tational Lingusitics, 19:571–589.

A. Prince and P. Smolensky. 1993. Optimality the-
ory: Constraint interaction in generative gram-
mar. RuCCS Technical Report #2, Rutgers Uni-
versity.

S. Riezler, T.H. King, R. Kaplan, D. Crouch, J. T.
Maxwell, III, and M. Johnson. 2002. Parsing
the Wall Street Journal using a lexical-functional
grammar and discriminative estimation tech-
niques. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics,
University of Pennsylvania.

	Table of Content
	Workshops
	Authors

