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Abstract

Technical terms in text often appear as noun
compounds, a frequently occurring yet highly
ambiguous construction whose interpretation
relies on extra-syntactic information. Several
statistical methods for disambiguating com-
pounds have been reported in the literature, of-
ten with quite impressive results. However, a
striking feature of all these approaches is that
they rely on the existence of previously seen un-
ambiguous compounds, meaning they are prone
to the problem of sparse data. This difficulty
has been overcome somewhat through the use
of hand-crafted knowledge resources to collect
statistics on “concepts” rather than noun to-
kens, but domain-independence has been sacri-
ficed by doing so. We report here on work inves-
tigating the application of Latent Semantic In-
dexing to provide a robust domain-independent
source of the extra-syntactic knowledge neces-
sary for noun compound disambiguation.

1 Introduction

Noun compounds are a frequently encountered
construction in natural language processing
(NLP), consisting of a sequence of two or more
nouns which together function syntactically as a
noun. In English, compounds consisting of two
nouns are predominantly right-headed. How-
ever, compound construction is recursive and
both the modifier and the head can themselves
be compounds, resulting in structural ambigui-
ties. Consider the following pair of noun com-
pounds:

1. (a) (cantilever (swing wing))
(b) ((information retrieval) experiment)

Both compounds consist of the same parts-of-
speech, yet the structures differ: (1a) is right-
branching, while (1b) is left-branching.

Phrase structure grammar rules for noun
compounds are often similar in form to
N → N N (Lauer, 1995). This rule is applied
once to two-word noun compounds, and recur-
sively in the case of longer compounds; therefore
the syntax of compounds longer than two words
is underconstrained by grammar, resulting in a
syntactic ambiguity which grows exponentially
with the length of the compound.

Besides causing problems for syntactic
parsers, the ambiguities inherent in these struc-
tures pose difficulties for NLP systems which
attempt to analyse the underlying semantic
relationships present in compound technical
terms. Often, the first step in such analyses is
to decompose terms into nested modifier-head
pairs (Barker, 1998). However, such a decom-
position is non-trivial for the case of compounds
consisting of three or more nouns due to the
structural ambiguity of these constructions.

The identification of modifier-head pairs in
compounds also has applications within the field
of information retrieval (IR). Several stud-
ies have shown that extracting modifier-head
pairs from text and including these as com-
pound indexing terms can improve recall and
precision (Evans and Zhai, 1996; Pohlmann and
Kraaij, 1997; Strzalkowski and Vauthey, 1992).
Identification of these noun modifier relation-
ships is also important for terminology transla-
tion. However, obtaining correct modifier-head
pairs is once again hampered by “the notori-
ous ambiguity of nominal compounds” (Strza-
lkowski and Vauthey, 1992, p.107).

To summarise, the syntactic disambigua-
tion of noun compounds is important for sev-
eral NLP applications; however, disambiguation
is difficult because attachments within com-
pounds are not syntactically governed. Clearly,
then, this lack of syntactic constraints forces us



to consider the use of extra-syntactic factors in
the process of disambiguation. The work re-
ported here describes an approach for automat-
ically deriving a syntactical analysis of noun
compounds by adapting Latent Semantic Index-
ing, a well-established IR technique, to supply
this extra-syntactic information.

2 Previous Work

The majority of corpus statistical approaches
to compound disambiguation use a variation of
what Lauer (1995) refers to as the adjacency
algorithm. This algorithm was originally pro-
posed by Marcus (1980), and essentially op-
erates by comparing the acceptability of im-
mediately adjacent noun pairs. Specifically,
given a sequence of three nouns n1 n2 n3 , if
(n2 n3 ) is a more acceptable constituent than
(n1 n2 ), then build (n1 (n2 n3 )); else build
((n1 n2 ) n3 ).

There remains the question of how “accept-
ability” is to be determined computationally.
Several researchers (e.g., (Barker, 1998; Evans
and Zhai, 1996; Pohlmann and Kraaij, 1997;
Pustejovsky et al., 1993; Strzalkowski and Vau-
they, 1992)) collect statistics on the occur-
rence frequency of structurally unambiguous
two-noun compounds to inform the analysis
of the ambiguous compound. For example,
given the compound “computer data bases”, the
structure (computer (data bases)) would be pre-
ferred if (data bases) occurred more frequently
than (computer data) in the corpus. However,
by assuming that sufficient examples of sub-
components exist in the training corpus, all the
above approaches risk falling foul of the sparse
data problem. Most noun-noun compounds are
rare, and statistics based on such infrequent
events may lead to an unreliable estimation
of the acceptability of particular modifier-head
pairs.

The work of Resnik (1993) goes some way
towards alleviating this problem. Rather than
collecting statistics on individual words, he in-
stead counts co-occurrences of concepts (as rep-
resented by WordNet synsets). He uses these
statistics to derive a measure, motivated by
information theory, called selectional associa-
tion (see Resnik (1993) for full details). “Ac-
ceptability” in the adjacency algorithm is then
measured in terms of the selectional association

between a modifier and head. Selectional as-
sociations were calculated by training on ap-
proximately 15,000 noun-noun compounds from
the Wall Street Journal corpus in the Penn
Treebank. Of a sample of 156 three-noun
compounds drawn from the corpus, Resnik’s
method achieved 72.6% disambiguation accu-
racy.

Lauer (1995) similarly generalises from indi-
vidual nouns to semantic classes or concepts;
however, his classes are derived from semantic
categories in Roget’s Thesaurus. Similar to the
approaches discussed above, Lauer extracts a
training set of approximately 35,000 unambigu-
ous noun-noun modifier-head compounds to es-
timate the degree of association between Ro-
get categories. He calls this measure concep-
tual association, and uses this to calculate the
acceptability of noun pairs for the disambigua-
tion of three-noun compounds. However, his ap-
proach differs from most others in that he does
not use the adjacency algorithm, instead using
a dependency algorithm which operates as fol-
lows: Given a three-noun compound n1 n2 n3 ,
if (n1 n3 ) is more acceptable than (n1 n2 ), then
build (n1 (n2 n3 )); else build ((n1 n2 ) n3 ).

Lauer tested both the dependency and ad-
jacency algorithms on a set of 244 three-noun
compounds extracted from Grolier’s Encyclope-
dia and found that the dependency algorithm
consistently outperformed the adjacency algo-
rithm, achieving a maximum of 81% accuracy
on the task. Overall, he found that estimating
the parameters of his probabilistic model based
on the distribution of concepts rather than that
of individual nouns resulted in superior perfor-
mance, thus providing further evidence of the
effectiveness of conceptual association in noun
compound disambiguation.

All these approaches rely on a variation of
finding subconstituents elsewhere in the corpus
and using these to decide how the longer, am-
biguous compounds are structured. However,
there is always the possibility that these sys-
tems might encounter modifier-head pairs in
testing which never occurred in training, forcing
the system to “back off” to some default strat-
egy. This problem is alleviated somewhat in
the work of Resnik and Lauer where statistics
are collected on pairs of concepts rather than
pairs of noun tokens. However, the methods of



Resnik and Lauer both depend on hand-crafted
knowledge sources; the applicability of their ap-
proaches is therefore limited by the coverage of
these resources. Thus their methods would al-
most certainly perform less well when applied
to more technical domains where much of the
vocabulary used would not be available in ei-
ther WordNet or Roget’s Thesaurus. Knowl-
edge sources such as these would have to be
manually augmented each time the system was
ported to a new domain. Therefore, it would
be preferable to have a method of measuring
conceptual associations which is less domain-
dependent and which does not rely on the pres-
ence of unambiguous subconstituents in train-
ing; we investigated whether Latent Semantic
Indexing might satisfy these requirements.

3 Latent Semantic Indexing

Latent Semantic Indexing (LSI) is a variant of
the vector-space approach to information re-
trieval. It takes as input a collection of docu-
ments, from which it constructs an m×n word-
document matrix A; cell aij of the matrix de-
notes the frequency with which term i occurs
in document j. At the core of LSI is singu-
lar value decomposition (SVD), a mathematical
technique closely related to eigenvector decom-
position and factor analysis. SVD factors the
matrix A into the product of three matrices:
A = UΣV T . U and V contain the left and
right singular vectors of A, respectively, while
Σ is a diagonal matrix containing the singular
values of A in descending order. By retaining
only the k largest singular values1 and setting
the remaining smaller ones to zero, a new diag-
onal matrix Σk is obtained; then the product of
UΣkV

T is the m × n matrix Ak which is only
approximately equal to A. This truncated SVD
re-represents the word-document relationships
in A using only the axes of greatest variation,
in effect compressing and smoothing the data in
A. It is this compression step which is said to
capture important regularities in the patterns
of word co-occurrences while ignoring smaller
variations that may be due to idiosyncrasies in
the word usage of individual documents. The
result of condensing the matrix in this way is
that words which occur in similar documents

1The optimal value of k may only be determined em-
pirically, and will depend on the particular application.

will be represented by similar vectors, even if
these words never actually co-occur in the same
document. Thus it is claimed that LSI cap-
tures deeper associative relationships than mere
word-word co-occurrences. See Berry et al.
(1995) and Deerwester et al. (1990) for more
thorough discussions of SVD and its application
to information retrieval.

Because word vectors are originally based on
their distribution of occurrence across docu-
ments, each vector can be interpreted as a sum-
mary of a word’s contextual usage; words are
thus similar to the extent that they occur in
similar contexts. Of interest for our purposes is
the fact that a measure of the similarity or as-
sociation between pairs of words can be calcu-
lated geometrically, typically by computing the
cosine of the angle between word vectors. Any
two words, which may or may not occur ad-
jacently in text, can be compared in this way;
this frees us from the restriction of relying on
unambiguous subconstituents in training to in-
form the analysis of ambiguous compounds in
testing.

There is a growing body of literature indicat-
ing that distributional information of the kind
captured by LSI plays an important role in var-
ious aspects of human cognition. For the work
reported here, the most interesting aspect of
distributional information is its purported abil-
ity to model conceptual categorisation. Sev-
eral studies (Burgess and Lund, 1999; Laham,
1997; Landauer et al., 1998; Levy and Bulli-
naria, 2001) have shown that similarity between
concepts can be measured quite successfully us-
ing simple vectors of contextual usage; results
show that the performance of such systems cor-
relates well with that of humans on the same
tasks. These results are all the more impres-
sive when we consider that such systems use no
hand-coded semantic knowledge; the conceptual
representations are derived automatically from
training corpora.

Noun compound disambiguation appears to
be an NLP application for which such measures
of conceptual association would be useful. Both
the adjacency and dependency algorithms de-
scribed above in Section 2 rely on some mea-
sure of the “acceptability” of pairs of nouns
to disambiguate noun compounds. Techniques
such as LSI offer a simple, robust, and domain-



Noun Compound Branching
((Ami Pro) document) Left
(volunteer (rescue workers)) Right
(tourist (exchange rates)) Right
((cluster analysis) procedure) Left
((data base) subcommittee) Left
(Windows (Control Panel)) Right

Table 1: Some example noun compounds taken
from our test set. Each row shows an example
of a manually bracketed compound, along with
its branching direction.

independent way in which concepts and the as-
sociations between them can be represented. In
the next section, we describe an experiment ex-
ploring the efficacy of LSI’s conceptual repre-
sentations in disambiguating noun compounds.

4 LSI and Noun Compound
Disambiguation

4.1 Method
4.1.1 Materials
We used four corpora in our study: The Lotus
Ami Pro Word Processor for Windows User’s
Guide Release 3, a software manual (AmiPro);
document abstracts in library science (CISI);
document abstracts on aeronautics (CRAN);
and articles from Time magazine (Time). We
first ran the LSI software on the corpora to cre-
ate the word-by-document matrices. The soft-
ware also subsequently performed singular value
decomposition on the resulting matrices. Stop-
words were not excluded, as previous experience
had shown that doing so degraded performance
slightly.

We used Brill’s (1994) tagger to identify
three-noun sequences in each of the corpora.
Tagging was imperfect, and sequences which
were not true three-noun compounds were dis-
carded. The remaining noun compounds were
bracketed manually and constituted test sets for
each corpus; some examples are shown in Ta-
ble 1. Table 2 summarises the datasets used in
our study.

4.1.2 Procedure
Both the adjacency and dependency models
were investigated (see Section 2). Recall that
the adjacency algorithm operates by comparing

the acceptability of the subcomponents (n1 n2 )
and (n2 n3 ), whereas the dependency algo-
rithm compares the acceptability of (n1 n2 ) and
(n1 n3 ). “Acceptability” in our approach was
measured by calculating the cosine of the angle
between each pair of word vectors. The cosine
ranges from −1.0 to 1.0; a higher cosine indi-
cated a stronger association between each word
in a pair. In the case of a tie, a left branching
analysis was preferred, as the literature suggests
that this is the more common structure (Lauer,
1995; Resnik, 1993). Thus a default strategy of
always guessing a left branching analysis served
as the baseline in this study. Each of the cor-
pora contained terms not covered by WordNet
or Roget’s; thus it was not possible to use the
techniques of Resnik (1993) and Lauer (1995)
as baselines.

As we could not tell beforehand what the op-
timal value of k would be (see Section 3 above),
we used a range of factor values. The values
used ranged from 2 to the total number of doc-
uments in each collection. For each factor value,
we obtained the percentage accuracy of both the
adjacency and dependency models.

4.2 Results and Discussion
The results of the experiment are summarised in
Table 3 and Figure 1. In most cases the perfor-
mance rises quickly as the number of SVD fac-
tors used increases, and then tends to level off.
The best performance was 84% for the AmiPro
collection, obtained using the adjacency algo-
rithm and 280 SVD factors. As the task in-
volved choosing the best binary bracketing for
a noun compound, we would expect an accu-
racy of 50% by chance. These results com-
pare favourably with those of Resnik (1993)
and Lauer (1995) (73% and 81%, respectively),
but as their studies were conducted on differ-
ent corpora, it would be imprudent to make di-
rect comparisons at this stage. Results for the
other collections were less impressive—however,
above-baseline performances were obtained in
each case.

Substantial differences in the performances of
the adjacency and dependency algorithms were
only observed for the AmiPro collection, sug-
gesting that the superior performance of the de-
pendency algorithm in Lauer’s (1995) study was
largely corpus-dependent. This is reinforced by
the considerably superior performance of the



Collection Name AmiPro CISI CRAN Time
Number of Documents 704 1,460 1,400 425
Number of Tokens 138,091 187,696 217,035 252,808
Mean Tokens per Type 46.3 18.7 26.2 11.5
Number of test compounds 307 235 223 214

Table 2: Characteristics of the datasets.

Name AmiPro CISI CRAN Time
Baseline 58% 63% 74% 48%
Adjacency 84% (280) 73% (800) 75% (700) 62% (370)
Dependency 70% (200) 70% (1100) 75% (600) 62% (240)

Table 3: Percentage disambiguation accuracy on each collection. The Baseline row shows the
accuracy of always choosing a left-branching analysis. Highest accuracies for the Adjacency and
Dependency algorithms are shown, with the corresponding number of SVD factors in parentheses.

adjacency algorithm on the AmiPro data set.
Another interesting finding was that there

were more right-branching (52%) than left-
branching (48%) compounds in the Time collec-
tion. This contrasts with previous studies which
discuss the predominance of left-branching com-
pounds, and suggests that the choice for the de-
fault branching must be corpus-dependent (see
Barker (1998) for similar findings).

There also appears to be a positive relation-
ship between performance and the token-type
ratio. The number of tokens per type in the
AmiPro collection was 46.3; the worst perfor-
mance was found for the Time collection, which
had only 11.5 tokens per type. There are at
least two possible explanations for this relation-
ship between performance and token-type ratio:
First, there were more samples of each word
type in the AmiPro collection—this may have
helped LSI construct vectors which were more
representative of each word’s contextual usage,
thus leading to the superior performance on the
AmiPro compounds.

Second, LSI constructs a single vector for
each token—if a particular token is polysemous
in text then its vector will be a “noisy” amalga-
mation of its senses, a factor often contribut-
ing to poor performance. However, due to
the controlled language and vocabulary used in
the software manual domain, few if any of the
words in the AmiPro collection are used to con-
vey more than one sense; once again, this may
have resulted in “cleaner”, more accurate vec-

tors leading to the superior disambiguation per-
formance on the AmiPro compounds.

These points lead us to the tentative sugges-
tion that our approach appears most suitable
for technical writing such as software manuals.
As usual, however, this is a matter for future
investigation.

5 Conclusions and Future Research

In this study, we extended LSI beyond its usual
remit by adopting it as a measure of conceptual
association for noun compound disambiguation.
The results reported here are encouraging, the
highest accuracy of 84% on the AmiPro collec-
tion indicating the potential of our approach.
However, poorer performance was obtained for
the other collections indicating that there is
much room for improvement. We therefore in-
tend to pursue our investigation of the utility
of applying vector-based measures of seman-
tic similarity to the problem of syntactic dis-
ambiguation. An attractive feature of this ap-
proach for the processing of terminology is that
it requires no manually constructed knowledge
sources, meaning that it does not suffer the
same coverage limitations as the methods of
Lauer (1995) and Resnik (1993). In principle,
our approach can be applied to any domain.

Another attractive feature is that it does not
rely on counts of unambiguous subconstituents
in training. This means that it can be applied to
novel compounds for which no subcompounds
exist in training, something which would not be
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Figure 1: Results of an experiment investigating noun compound disambiguation using LSI. Each
figure shows percentage disambiguation accuracy of the adjacency and dependency models for a
range of SVD factors. The percentage of left-branching compounds in each test set, which served
as the baseline in our study, is also shown for comparison.

possible for the statistical techniques outlined
in Section 2. Our next step will thus be to in-
vestigate the efficacy of our approach on novel
compounds.

We are currently examining the use of other
techniques for deriving vector-based measures
of conceptual association; preliminary investiga-
tions using a “sliding window” method (Burgess
and Lund, 1999; Levy and Bullinaria, 2001) to
disambiguate compounds from the AmiPro cor-
pus show results even better than those reported
here. Present work involves setting various pa-
rameters (e.g., window size, similarity metric,
weighting method) to study their effect on per-

formance. We are continuing to test both the
adjacency and dependency algorithms on this
corpus, and have consistently found better per-
formance using the former.

Future work will involve continuing to test
the technique in other domains; we also intend
training on larger and more diverse corpora.
Furthermore, we plan to investigate other ex-
amples of syntactic ambiguity, such as preposi-
tional phrase attachment. Such structures pose
many problems for traditional NLP systems,
but may prove amenable to the techniques dis-
cussed in this paper.
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