
Combining Outputs of Multiple Japanese Named Entity Chunkers
by Stacking

Takehito Utsuro
Department of Information

and Computer Sciences,
Toyohashi University of Technology

Tenpaku-cho, Toyohashi 441-8580, Japan
utsuro@ics.tut.ac.jp

Manabu Sassano
Fujitsu Laboratories, Ltd.

4-4-1, Kamikodanaka, Nakahara-ku,
Kawasaki 211-8588, Japan

sassano@jp.fujitsu.com

Kiyotaka Uchimoto
Keihanna Human Info-Communications Research Center,

Communications Research Laboratory
Hikaridai Seika-cho, Kyoto 619-0289, Japan

uchimoto@crl.go.jp

Abstract

In this paper, we propose a method for
learning a classifier which combines out-
puts of more than one Japanese named
entity extractors. The proposed combi-
nation method belongs to the family of
stacked generalizers, which is in principle
a technique of combining outputs of sev-
eral classifiers at the first stage by learn-
ing a second stage classifier to combine
those outputs at the first stage. Individ-
ual models to be combined are based on
maximum entropy models, one of which
always considers surrounding contexts of
a fixed length, while the other consid-
ers those of variable lengths according to
the number of constituent morphemes of
named entities. As an algorithm for learn-
ing the second stage classifier, we employ
a decision list learning method. Experi-
mental evaluation shows that the proposed
method achieves improvement over the
best known results with Japanese named
entity extractors based on maximum en-
tropy models.

1 Introduction

In the recent corpus-based NLP research, sys-
tem combination techniques have been successfully
applied to several tasks such as parts-of-speech

tagging (van Halteren et al., 1998), base noun
phrase chunking (Tjong Kim Sang, 2000), and pars-
ing (Henderson and Brill, 1999; Henderson and
Brill, 2000). The aim of system combination is to
combine portions of the individual systems’ outputs
which are partial but can be regarded as highly ac-
curate. The process of system combination can be
decomposed into the following two sub-processes:

1. Collect systems which behave as differently as
possible: it would help a lot if at least the col-
lected systems tend to make errors of differ-
ent types, because simple voting technique can
identify correct outputs.

Previously studied techniques for collecting
such systems include: i) using several exist-
ing real systems (van Halteren et al., 1998;
Brill and Wu, 1998; Henderson and Brill, 1999;
Tjong Kim Sang, 2000), ii) bagging/boosting
techniques (Henderson and Brill, 1999; Hen-
derson and Brill, 2000), and iii) switching the
data expression and obtaining several mod-
els (Tjong Kim Sang, 2000).

2. Combine the outputs of the several systems:
previously studied techniques include: i) vot-
ing techniques (van Halteren et al., 1998;
Tjong Kim Sang, 2000; Henderson and Brill,
1999; Henderson and Brill, 2000), ii) switch-
ing among several systems according to con-
fidence values they provide (Henderson and
Brill, 1999), iii) stacking techniques (Wolpert,
1992) which train a second stage classifier for

 Association for Computational Linguistics.
 Language Processing (EMNLP), Philadelphia, July 2002, pp. 281-288.
 Proceedings of the Conference on Empirical Methods in Natural

combining outputs of classifiers at the first
stage (van Halteren et al., 1998; Brill and Wu,
1998; Tjong Kim Sang, 2000).

In this paper, we propose a method for combining
outputs of (Japanese) named entity chunkers, which
belongs to the family of stacking techniques. In
the sub-process 1, we focus on models which dif-
fer in the lengths of preceding/subsequent contexts
to be incorporated in the models. As the base model
for supervised learning of Japanese named entity
chunking, we employ a model based on the maxi-
mum entropy model (Uchimoto et al., 2000), which
performed the best in IREX (Information Retrieval
and Extraction Exercise) Workshop (IREX Commit-
tee, 1999) among those based on machine learning
techniques. Uchimoto et al. (2000) reported that the
optimal number of preceding/subsequent contexts to
be incorporated in the model is two morphemes to
both left and right from the current position. In this
paper, we train several maximum entropy models
which differ in the lengths of preceding/subsequent
contexts, and then combine their outputs.

As the sub-process 2, we propose to apply a stack-
ing technique which learns a classifier for com-
bining outputs of several named entity chunkers.
This second stage classifier learns rules for accept-
ing/rejecting outputs of several individual named en-
tity chunkers. The proposed method can be applied
to the cases where the number of constituent systems
is quite small (e.g., two). Actually, in the experimen-
tal evaluation, we show that the results of combining
the best performing model of Uchimoto et al. (2000)
with the one which performs poorly but extracts
named entities quite different from those of the
best performing model can help improve the perfor-
mance of the best model.

2 Named Entity Chunking based on
Maximum Entropy Models

2.1 Task of the IREX Workshop

The task of named entity recognition of the IREX
workshop is to recognize eight named entity types
in Table 1 (IREX Committee, 1999). The organizer
of the IREX workshop provided 1,174 newspaper
articles which include 18,677 named entities as the
training data. In the formal run (general domain)

Table 1: Statistics of NE Types of IREX
frequency (%)

NE Type Training Test
ORGANIZATION 3676 (19.7) 361 (23.9)

PERSON 3840 (20.6) 338 (22.4)
LOCATION 5463 (29.2) 413 (27.4)
ARTIFACT 747 (4.0) 48 (3.2)

DATE 3567 (19.1) 260 (17.2)
TIME 502 (2.7) 54 (3.5)

MONEY 390 (2.1) 15 (1.0)
PERCENT 492 (2.6) 21 (1.4)

Total 18677 1510

of the workshop, the participating systems were re-
quested to recognize 1,510 named entities included
in the held-out 71 newspaper articles.

2.2 Named Entity Chunking

We first provide our definition of the task of
Japanese named entity chunking (Sekine et al.,
1998; Borthwick et al., 1998; Uchimoto et al.,
2000). Suppose that a sequence of morphemes is
given as below:

(
Left

Context) (Named Entity) (
Right

Context)

· · · ML
−k · · · ML

−1 MNE
1 · · · MNE

i · · · MNE
m MR

1 · · ·MR
l · · ·

↑
(Current Position)

Given that the current position is at the morpheme
MNE

i , the task of named entity chunking is to assign
a chunking state (to be described in section 2.3.1) to
the morpheme MNE

i at the current position, consid-
ering the patterns of surrounding morphemes. Note
that in the supervised learning phase, we can use the
chunking information on which morphemes consti-
tute a named entity, and which morphemes are in the
left/right contexts of the named entity.

2.3 The Maximum Entropy Model

In the maximum entropy model (Della Pietra et al.,
1997), the conditional probability of the output y
given the context x can be estimated as the follow-
ing pλ(y | x) of the form of the exponential family,
where binary-valued indicator functions called fea-
ture functions fi(x, y) are introduced for expressing
a set of “features”, or “attributes” of the context x
and the output y. A parameter λi is introduced for
each feature fi, and is estimated from a training data.

pλ(y | x) =

exp
(∑

i

λifi(x, y)
)

∑
y

exp
(∑

i

λifi(x, y)
)

Uchimoto et al. (2000) defines the context x as the
patterns of surrounding morphemes as well as that at
the current position, and the output y as the named
entity chunking state to be assigned to the mor-
pheme at the current position.

2.3.1 Named Entity Chunking States

Uchimoto et al. (2000) classifies classes of
named entity chunking states into the following 40
tags:

• Each of eight named entity types plus an “OP-
TIONAL” type are divided into four chunking
states, namely, the beginning/middle/end of an
named entity, or an named entity consisting of
a single morpheme. This amounts to 9×4 = 36
classes.

• Three more classes are distinguished for mor-
phemes immediately preceding/following a
named entity, as well as the one between two
named entities.

• Other morphemes are assigned the class
“OTHER”.

2.3.2 Features

Following Uchimoto et al. (2000), feature func-
tions for morphemes at the current position as well
as the surrounding contexts are defined. More
specifically, the following three types of feature
functions are used: 1

1. 2052 lexical items that are observed five times
or more within two morphemes from named
entities in the training corpus.

2. parts-of-speech tags of morphemes2.
3. character types of morphemes (i.e., Japanese

(hiragana or katakana), Chinese (kanji), num-
bers, English alphabets, symbols, and their
combinations).

As for the number of preceding/subsequent mor-
phemes as contextual clues, we consider the follow-
ing models:

1Minor modifications from those of Uchimoto et al. (2000)
are: i) we used character types of morphemes because they are
known to be useful in the Japanese named entity chunking, and
ii) the sets of parts-of-speech tags are different.

2As a Japanese morphological analyzer, we used BREAK-
FAST (Sassano et al., 1997) with the set of about 300 part-of-
speech tags. BREAKFAST achieves 99.6% part-of-speech accu-
racy against newspaper articles.

5-gram model
This model considers the preceding two mor-

phemes M−2, M−1 as well as the subsequent two
morphemes M1, M2 as the contextual clue. Both in
(Uchimoto et al., 2000) and in this paper, this is the
model which performs the best among all the indi-
vidual models without system combination.

(
Left

Context) (
Current
Position) (

Right
Context)

· · · M−2 M−1 M0 M1 M2 · · ·

7-gram model
This model considers the preceding three mor-

phemes M−3, M−2, M−1 as well as the subsequent
three morphemes M1, M2, M3 as the contextual
clue.

(
Left

Context) (
Current
Position) (

Right
Context)

· · · M−3 M−2 M−1 M0 M1 M2 M3 · · ·

9-gram model
This model considers the preceding four mor-

phemes M−4, M−3, M−2, M−1 as well as the subse-
quent four morphemes M1, M2, M3, M4 as the con-
textual clue.

(
Left

Context) (
Current
Position) (

Right
Context)

· · · M−4 · · ·M−1 M0 M1 · · ·M4 · · ·

For both 7-gram and 9-gram models, we consider
the following three modifications to those models:

• with all features
• with lexical items and parts-of-speech

tags (without the character types) of
M{(−4),−3,3,(4)}

• with only the lexical items of M{(−4),−3,3,(4)}

In our experiments, the number of features is
13,200 for 5-gram model and 15,071 for 9-gram
model. The number of feature functions is 31,344
for 5-gram model and 35,311 for 9-gram model.

Training a variable length (5∼9-gram) model,
testing with 9-gram model

The major disadvantage of the 5/7/9-gram models
is that in the training phase it does not take into ac-
count whether or not the preceding/subsequent mor-
phemes constitute one named entity together with
the morpheme at the current position. Consider-
ing this disadvantage, we examine another model,
namely, variable length model, which incorporates
variable length contextual information. In the train-
ing phase, this model considers which of the preced-
ing/subsequent morphemes constitute one named

entity together with the morpheme at the current po-
sition (Sassano and Utsuro, 2000). It also considers
several morphemes in the left/right contexts of the
named entity. Here we restrict this model to explic-
itly considering the cases of named entities of the
length up to three morphemes and only implicitly
considering those longer than three morphemes. We
also restrict it to considering two morphemes in both
left and right contexts of the named entity.

(
Left

Context) (Named Entity) (
Right

Context)

· · · ML
−2M

L
−1 MNE

1 · · ·MNE
i · · ·MNE

m(≤3) MR
1 MR

2 · · ·
↑

(Current Position)

1. In the cases where the current named entity
consists of up to three morphemes, all the con-
stituent morphemes are regarded as within the
current named entity. The following is an ex-
ample of this case, where the current named
entity consists of three morphemes, and the
current position is at the middle of those con-
stituent morphemes as below:

(
Left

Context) (Named Entity) (
Right

Context)

· · · ML
−2M

L
−1 MNE

1 MNE
2 MNE

3 MR
1 MR

2 · · ·
↑ (1)

(Current Position)

2. In the cases where the current named entity
consists of more than three morphemes, only
the three constituent morphemes are regarded
as within the current named entity and the rest
are treated as if they were outside the named
entity. For example, suppose that the cur-
rent named entity consists of four morphemes:

(
Left

Context) (Named Entity) (
Right

Context)

· · · ML
−2M

L
−1 MNE

1 MNE
2 MNE

3 MNE
4 MR

1 MR
2 · · ·

↑
(Current Position)

In this case, the fourth constituent morpheme
MNE

4 is treated as if it were in the right context
of the current named entity as below:

(
Left

Context) (Named Entity) (
Right

Context)

· · · ML
−2M

L
−1 MNE

1 MNE
2 MNE

3 MNE
4 MR

1 · · ·
↑

(Current Position)

In the testing phase, we apply this model consid-
ering the preceding four morphemes as well as the

subsequent four morphemes at every position, as in
the case of 9-gram model3.

We consider the following three modifications to
this model, where we suppose that the morpheme at
the current position be M0:

• with all features

• with lexical items and parts-of-speech tags
(without the character types) of M{−4,−3,3,4}

• with only the lexical items of M{−4,−3,3,4}

3 Learning to Combine Outputs of Named
Entity Chunkers

3.1 Data Sets

The following gives the training and test data sets
for our framework of learning to combine outputs of
named entity chunkers.

1. TrI : training data set for learning individual
named entity chunkers.

2. TrC: training data set for learning a classifier
for combining outputs of individual named en-
tity chunkers.

3. Ts: test data set for evaluating the classifier for
combining outputs of individual named entity
chunkers.

3.2 Procedure

The following gives the procedure for learning the
classifier to combine outputs of named entity chun-
kers using TrI and TrC.

1. Train the individual named entity chunkers
NEchki (i = 1, . . . , n) using TrI .

2. Apply the individual named entity chunkers
NEchki (i = 1, . . . , n) to TrC, respectively,
and obtain the list of chunked named entities
NEListi(TrC) for each named entity chun-
ker NEchki.

3Note that, as opposed to the training phase, the length of
preceding/subsequent contexts is fixed in the testing phase of
this model. Although this discrepancy between training and
testing damages the performance of this single model (sec-
tion 4.1), it is more important to note that this model tends to
have distribution of correct/over-generated named entities dif-
ferent from that of the 5-gram model. In section 4, we exper-
imentally show that this difference is the key to improving the
named entity chunking performance by system combination.

Table 2: Examples of Event Expressions for Combining Outputs of Multiple Systems

Segment Morpheme(POS)
NE Outputs of

Individual Systems Event Expressions

System 0 System 1
...

SegEvi

rainen
(“next year”,

temporal noun)
10gatsu

(“October”,
temporal noun)

rainen
(DATE)
10gatsu
(DATE)

rainen
-10gatsu
(DATE)

{
systems=〈0〉, mlength=1,

NEtag=DATE,

POS =〈temporal noun〉, classNE =−
}

{
systems=〈0〉, mlength=1,

NEtag=DATE,

POS =〈temporal noun〉, classNE =−
}

{
systems=〈1〉, mlength=2,

NEtag=DATE,
POS =〈temporal noun, temporal noun〉,
classNE =+

}
...

SegEvi+1

seishoku
(“reproductive”, noun)

iryou
(“medical”, noun)

gijutsu
(“technology”, noun)

seishoku
-iryou

-gijutsu
(ARTIFACT)

{
systems=〈0〉, classsys =“no outputs”

}
{

systems=〈1〉, mlength=3,

NEtag=ARTIFACT,

POS =〈noun,noun,noun〉, classNE =−
}

nitsuite
(“about”, particle)

...

3. Align the lists NEListi(TrC) (i = 1, . . . , n)
of chunked named entities according to the po-
sitions of the chunked named entities in the text
TrC, and obtain the event expression TrCev
of TrC.

4. Train the classifier NEchkcmb for combining
outputs of individual named entity chunkers us-
ing the event expression TrCev.

The following gives the procedure for applying the
learned classifier to Ts.

1. Apply the individual named entity chunkers
NEchki (i = 1, . . . , n) to Ts, respectively,
and obtain the list of chunked named entities
NEListi(Ts) for each named entity chunker
NEchki.

2. Align the lists NEListi(Ts) (i = 1, . . . , n) of
chunked named entities according to the posi-
tions of the chunked named entities in the text
Ts, and obtain the event expression Tsev of
Ts.

3. Apply NEchkcomb to Tsev and evaluate its
performance.

3.3 Data Expressions

3.3.1 Events

The event expression TrCev of TrC is obtained
by aligning the lists NEListi(TrC) (i = 1, . . . , n)
of chunked named entities, and is represented as a
sequence of segments, where each segment is a set
of aligned named entities. Chunked named enti-
ties are aligned under the constraint that those which
share at least one constituent morpheme have to be
aligned into the same segment. Examples of seg-
ments, into which named entities chunked by two
systems are aligned, are shown in Table 2. In the
first segment SegEvi, given the sequence of the two
morphemes, the system No.0 decided to extract two
named entities, while the system No.1 chunked the
two morphemes into one named entity. In those
event expressions, systems indicates the list of the
indices of the systems which output the named en-
tity, mlength gives the number of the constituent

morphemes, NEtag gives one of the nine named
entity types, POS gives the list of parts-of-speech
of the constituent morphemes, and classNE indi-
cates whether the named entity is a correct one com-
pared against the gold standard (“+”), or the one
over-generated by the systems (“−”).

In the second segment SegEvi+1, only the sys-
tem No.1 decided to extract a named entity from
the sequence of the three morphemes. In this case,
the event expression for the system No.0 is the one
which indicates that no named entity is extracted by
the system No.0.

In the training phase, each segment SegEvj of
event expression constitutes a minimal unit of an
event, from which features for learning the classi-
fier are extracted. In the testing phase, the classes
of each system’s outputs are predicted against each
segment SegEvj.

3.3.2 Features and Classes

In principle, features for learning the classifier for
combining outputs of named entity chunkers are rep-
resented as a set of pairs of the system indices list
〈p, . . . , q〉 and a feature expression F of the named
entity:

f =
{
〈systems=〈p, . . . , q〉, F 〉

· · ·
〈systems=〈p′, . . . , q′〉, F ′〉

}
(2)

In the training phase, any possible feature of this
form is extracted from each segment SegEvj of
event expression. The system indices list 〈p, . . . , q〉
indicates the list of the systems which output the
named entity. A feature expression F of the named
entity can be any possible subset of the full feature
expression {mlength= · · · , NEtag= · · · , POS =
· · ·}, or the set indicating that the system outputs no
named entity within the segment.

F =

any subset of
{

mlength= · · · ,
NEtag= · · · , POS = · · ·

}
{

classsys =“no outputs”
}

In the training and testing phases, within each
segment SegEvj of event expression, a class is as-
signed to each system, where each class classi

sys for
the i-th system is represented as a list of the classes
of the named entities output by the system:

classi
sys =

{
+/−, . . . , +/−
“no output” (i = 1, . . . , n)

3.4 Learning Algorithm

We apply a simple decision list learning method
to the task of learning a classifier for combining
outputs of named entity chunkers4. A decision
list (Yarowsky, 1994) is a sorted list of decision
rules, each of which decides the value of class given
some features f of an event. Each decision rule in
a decision list is sorted in descending order with
respect to some preference value, and rules with
higher preference values are applied first when ap-
plying the decision list to some new test data. In
this paper, we simply sort the decision list according
to the conditional probability P (classi | f) of the
classi of the i-th system’s output given a feature f .

4 Experimental Evaluation

We experimentally evaluate the performance of the
proposed system combination method using the
IREX workshop’s training and test data.

4.1 Comparison of Outputs of Individual
Systems

First, Table 3 shows the performance of the indi-
vidual models described in the section 2.3.2, where
trained with the IREX workshop’s training data, and
tested against the IREX workshop’s test data as Ts.
The 5-gram model performs the best among those
individual models.

Next, assuming that each of the models other
than the 5-gram model is combined with the 5-gram
model, Table 4 compares the named entities of their
outputs. Recall rate of the correct named entities in
the union of their outputs, as well as the overlap rate5

of the over-generated entities against those included
in the output of the 5-gram model are shown.

From the Tables 3 and 4, it is clear that the 7-gram
and 9-gram models are quite similar to the 5-gram
model both in the performance and in the distribu-
tion of correct/over-generated named entities. On
the other hand, variable length models have distri-
bution of correct/over-generated named entities a lit-

4It is quite straightforward to apply any other supervised
learning algorithms to this task.

5For a model X , the overlap rate of the over-generated enti-
ties against those included in the output of the 5-gram model is
defined as: (# of the intersection of the over-generated entities
output by the 5-gram model and those output by the model X)/
(# of the over-generated entities output by the 5-gram model).

Table 3: Performance of Individual Models against
Ts (F-measure (β = 1) (%))

Features for M{(−4),−3,3,(4)}
All Lex+POS Lex

7-gram 80.78 80.81 80.71
9-gram 80.13 80.53 80.53
variable length 45.12 77.02 75.16
5-gram 81.16

Table 4: Difference between 5-gram model and
Other Individual Models (Recall of the Union /
Overlap Rate of Over-generated Entities) (%)

Features for M{(−4),−3,3,(4)}
All Lex+POS Lex

7-gram 79.8/85.2 79.8/85.2 79.7/91.2
9-gram 79.7/84.7 79.7/86.1 79.5/90.7
variable
length 82.6/27.3 81.4/63.4 80.4/72.7

tle different from that of the 5-gram model. Vari-
able length models have lower performance mainly
because of the difference between the training and
testing phases with respect to the modeling of con-
text lengths. Especially, the variable length model
with “all” features of M{−4,−3,3,4} has much lower
performance as well as significantly different dis-
tribution of correct/over-generated named entities.
This is because character types features are so gen-
eral that many (erroneous) named entities are over-
generated, while sometimes they contribute to find-
ing named entities that are never detected by any of
the other models.

4.2 Results of Combining System Outputs
This section reports the results of combining the out-
put of the 5-gram model with that of 7-gram models,
9-gram models, and the variable length models. As
the training data sets TrI and TrC, we evaluate the
following two assignments (a) and (b), where DCRL
denotes the IREX workshop’s training data:

(a) TrI: DCRL − D200
CRL (200 articles from DCRL)

TrC: D200
CRL

(b) TrI = TrC = DCRL

We use the IREX workshop’s test data for Ts.
In the assignment (a), TrI and TrC are disjoint,
while in the assignment (b), individual named entity
chunkers are applied to their own training data, i.e.,
closed data. The assignment (b) is for the sake of
avoiding data sparseness in learning the classifier for
combining outputs of two named entity chunkers.

Table 5 shows the peformance in F-measure (β =
1) for both assignments (a) and (b). For both (a) and

Table 5: Performance of Combining 5-gram model
and Other Individual Models (against Ts, F-measure
(β = 1) (%))

(a) TrI = DCRL − D200
CRL, TrC = D200

CRL

Features for M{(−4),−3,3,(4)}
All Lex+POS Lex

7-gram 81.54 81.53 80.60
9-gram 81.31 81.26 80.60
variable length 83.43 81.55 81.85

(b) TrI = TrC = DCRL

Features for M{(−4),−3,3,(4)}
All Lex+POS Lex

7-gram 81.97 81.83 81.58
9-gram 81.53 81.66 81.52
variable length 84.07 83.07 82.50

(b), “5-gram + variable length (All)” significantly
outperforms the 5-gram model, which is the best
model among all the individual models without sys-
tem combination. It is remarkable that models which
perform poorly but extract named entities quite dif-
ferent from those of the best performing model can
actually help improve the best model by the pro-
posed method. The performance for the assignment
(b) is better than that for the assignment (a). This re-
sult claims that the training data size should be larger
when learning the classifier for combining outputs of
two named entity chunkers.

In the Table 6, for the best performing result (i.e.,
5-gram + variable length (All)) as well as the con-
stituent individual models (5-gram model and vari-
able length model (All)), we classify the system
output according to the number of constituent mor-
phemes of each named entity. In the Table 7, we
classify the system output according to the named
entity types. The following summarizes several re-
markable points of these results: i) the benefit of the
system combination is more in the improvement of
precision rather than in that of recall. This means
that the proposed system combination technique is
useful for detecting over-generation of named en-
tity chunkers, ii) the combined outputs of the 5-gram
model and the variable length model improve the re-
sults of chunking longer named entities quite well
compared with shorter named entities. This is the
effect of the variable length features of the variable
length model.

Table 6: Evaluation Results of Combining System Outputs, per # of constituent morphemes
(TrI = TrC = DCRL, F-measure (β = 1) / Recall / Precision (%))

n Morphemes to 1 Named Entity
n ≥ 1 n = 1 n = 2 n = 3 n ≥ 4

5-gram 81.16 83.60 86.94 68.42 50.59
78.87/83.60 84.97/82.28 85.90/88.00 63.64/73.98 35.83/86.00

variable length (All) 45.12 53.77 56.63 33.74 16.78
51.50/40.15 38.69/88.14 71.37/47.93 57.34/23.91 40.00/10.62

5-gram + variable length (All) 84.07 85.06 88.96 75.19 65.96
81.45/86.86 85.12/84.99 87.42/90.56 69.93/81.30 51.67/91.18

Table 7: Evaluation Results of Combining System Outputs, per NE type
(TrI = TrC = DCRL, F-measure (β = 1) (Recall, Precision) (%))

ORGANI- PER- LOCA- ARTI- DATE TIME MONEY PER-
ZATION SON TION FACT CENT

67.74 81.82 77.04 30.43 91.49 93.20 92.86 87.18
5-gram (58.45) (79.88) (71.91) (29.17) (88.85) (88.89) (86.67) (80.95)

(80.53) (83.85) (82.96) (31.82) (94.29) (97.96) (100.00) (94.44)
35.48 48.45 38.47 5.80 78.60 56.90 60.61 87.18

variable length (All) (37.40) (48.52) (32.93) (22.92) (81.92) (61.11) (66.67) (80.95)
(33.75) (48.38) (46.26) (3.32) (75.53) (53.23) (55.56) (94.44)

5-gram + 72.18 84.15 79.58 38.71 92.86 93.20 92.86 87.18
variable length (All) (62.88) (81.66) (73.61) (37.50) (90.00) (88.89) (86.67) (80.95)

(84.70) (86.79) (86.61) (40.00) (95.90) (97.96) (100.00) (94.44)

5 Conclusion

This paper proposed a method for learning a classi-
fier to combine outputs of more than one Japanese
named entity chunkers. Experimental evaluation
showed that the proposed method achieved improve-
ment in F-measure over the best known results with
an ME model (Uchimoto et al., 2000), when a com-
plementary model extracted named entities quite dif-
ferently from the best performing model.

References

A. Borthwick, J. Sterling, E. Agichtein, and R. Grishman.
1998. Exploiting diverse knowledge sources via max-
imum entropy in named entity recognition. In Proc.
6th Workshop on VLC, pages 152–160.

E. Brill and J. Wu. 1998. Classifier combination for im-
proved lexical disambiguation. In Proc. 17th COLING
and 36th ACL, pages 191–195.

S. Della Pietra, V. Della Pietra, and J. Lafferty. 1997.
Inducing features of random fields. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
19(4):380–393.

J. C. Henderson and E. Brill. 1999. Exploiting diversity
in natural language processing: Combining parsers. In
Proc. 1999 EMNLP and VLC, pages 187–194.

J. C. Henderson and E. Brill. 2000. Bagging and boost-
ing a treebank parser. In Proc. 1st NAACL, pages 34–
41.

IREX Committee, editor. 1999. Proceedings of the IREX
Workshop. (in Japanese).

M. Sassano and T. Utsuro. 2000. Named entity chunking
techniques in supervised learning for Japanese named
entity recognition. In Proceedings of the 18th COL-
ING, pages 705–711.

M. Sassano, Y. Saito, and K. Matsui. 1997. Japanese
morphological analyzer for NLP applications. In Proc.
3rd Annual Meeting of the Association for Natural
Language Processing, pages 441–444. (in Japanese).

S. Sekine, R. Grishman, and H. Shinnou. 1998. A deci-
sion tree method for finding and classifying names in
Japanese texts. In Proc. 6th Workshop on VLC, pages
148–152.

E. Tjong Kim Sang. 2000. Noun phrase recognition by
system combination. In Proc. 1st NAACL, pages 50–
55.

K. Uchimoto, Q. Ma, M. Murata, H. Ozaku, and H. Isa-
hara. 2000. Named entity extraction based on a maxi-
mum entropy model and transformation rules. In Proc.
38th ACL, pages 326–335.

H. van Halteren, J. Zavrel, and W. Daelemans. 1998. Im-
proving data driven wordclass tagging by system com-
bination. In Proc. 17th COLING and 36th ACL, pages
491–497.

D. H. Wolpert. 1992. Stacked generalization. Neural
Networks, 5:241–259.

D. Yarowsky. 1994. Decision lists for lexical ambiguity
resolution: Application to accent restoration in Span-
ish and French. In Proc. 32nd ACL, pages 88–95.

