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Abstract 

We describe the architecture of the 
AskMSR question answering system and 
systematically evaluate contributions of 
different system components to accuracy.    
The system differs from most question 
answering systems in its dependency on 
data redundancy rather than sophisticated 
linguistic analyses of either questions or 
candidate answers.    Because a wrong an-
swer is often worse than no answer, we 
also explore strategies for predicting 
when the question answering system is 
likely to give an incorrect answer. 

1 Introduction 

Question answering has recently received attention 
from the information retrieval, information extrac-
tion, machine learning, and natural language proc-
essing communities (AAAI, 2002; ACL-ECL, 
2002; Voorhees and Harman, 2000, 2001).   The 
goal of a question answering system is to retrieve 
answers to questions rather than full documents or 
best-matching passages, as most information re-
trieval systems currently do.   The TREC Question 
Answering Track, which has motivated much of 
the recent work in the field, focuses on fact-based, 
short-answer questions such as “Who killed Abra-
ham Lincoln?” or “How tall is Mount Everest?”   
In this paper we describe our approach to short 
answer tasks like these, although the techniques we 
propose are more broadly applicable. 

Most question answering systems use a va-
riety of linguistic resources to help in understand-

ing the user’s query and matching sections in 
documents.  The most common linguistic resources 
include: part-of-speech tagging, parsing, named 
entity extraction, semantic relations, dictionaries, 
WordNet, etc. (e.g., Abney et al., 2000; Chen et al. 
2000; Harabagiu et al., 2000; Hovy et al., 2000; 
Pasca et al., 2001; Prager et al., 2000).  We chose 
instead to focus on the Web as a gigantic data re-
pository with tremendous redundancy that can be 
exploited for question answering.  We view our 
approach as complimentary to more linguistic ap-
proaches, but have chosen to see how far we can 
get initially by focusing on data per se as a key 
resource available to drive our system design.  Re-
cently, other researchers have also looked to the 
web as a resource for question answering (Buch-
holtz, 2001; Clarke et al., 2001; Kwok et al., 
2001). These systems typically perform complex 
parsing and entity extraction for both queries and 
best matching Web pages, and maintain local 
caches of pages or term weights.  Our approach is 
distinguished from these in its simplicity and effi-
ciency in the use of the Web as a large data re-
source. 

Automatic QA from a single, small infor-
mation source is extremely challenging, since there 
is likely to be only one answer in the source to any 
user’s question.   Given a source, such as the 
TREC corpus, that contains only a relatively small 
number of formulations of answers to a query, we 
may be faced with the difficult task of mapping 
questions to answers by way of uncovering com-
plex lexical, syntactic, or semantic relationships 
between question string and answer string.  The 
need for anaphor resolution and synonymy, the 
presence of alternate syntactic formulations and 
indirect answers all make answer finding a poten-
tially challenging task.  However, the greater the 
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answer redundancy in the source data collection, 
the more likely it is that we can find an answer that 
occurs in a simple relation to the question.  There-
fore, the less likely it is that we will need to solve 
the aforementioned difficulties facing natural lan-
guage processing systems. 

In this paper, we describe the architecture of 
the AskMSR Question Answering System and 
evaluate contributions of different system compo-
nents to accuracy.    Because a wrong answer is 
often worse than no answer, we also explore 
strategies for predicting when the question answer-
ing system is likely to give an incorrect answer. 

2 System Architecture 

As shown in Figure 1, the architecture of our sys-
tem can be described by four main steps: query-
reformulation, n-gram mining, filtering, and n-
gram tiling. In the remainder of this section, we 
will briefly describe these components. A more 
detailed description can be found in [Brill et al., 
2001]. 

2.1 Query Reformulation 

Given a question, the system generates a number 
of weighted rewrite strings which are likely sub-
strings of declarative answers to the question. For 
example, “When was the paper clip invented?” is 
rewritten as “The paper clip was invented”.  We 
then look through the collection of documents in 
search of such patterns.  Since many of these string 
rewrites will result in no matching documents, we 
also produce less precise rewrites that have a much 

greater chance of finding matches.  For each query, 
we generate a rewrite which is a backoff to a sim-
ple ANDing of all of the non-stop words in the 
query.   

The rewrites generated by our system are 
simple string-based manipulations. We do not use 
a parser or part-of-speech tagger for query refor-
mulation, but do use a lexicon for a small percent-
age of rewrites, in order to determine the possible 
parts-of-speech of a word as well as its morpho-
logical variants.   Although we created the rewrite 
rules and associated weights manually for the cur-
rent system, it may be possible to learn query-to-
answer reformulations and their weights (e.g., 
Agichtein et al., 2001; Radev et al., 2001). 

2.2 N-Gram Mining 
Once the set of query reformulations has been gen-
erated, each rewrite is formulated as a search en-
gine query and sent to a search engine from which 
page summaries are collected and analyzed.  From 
the page summaries returned by the search engine, 
n-grams are collected as possible answers to the 
question.   For reasons of efficiency, we use only 
the page summaries returned by the engine and not 
the full-text of the corresponding web page.   

The returned summaries contain the query 
terms, usually with a few words of surrounding 
context.  The summary text is processed in accor-
dance with the patterns specified by the rewrites. 
Unigrams, bigrams and trigrams are extracted and 
subsequently scored according to the weight of the 
query rewrite that retrieved it.  These scores are 
summed across all summaries containing the n-



gram (which is the opposite of the usual inverse 
document frequency component of docu-
ment/passage ranking schemes).  We do not count 
frequency of occurrence within a summary (the 
usual tf component in ranking schemes).  Thus, the 
final score for an n-gram is based on the weights 
associated with the rewrite rules that generated it 
and the number of unique summaries in which it 
occurred. 

2.3 N-Gram Filtering 
Next, the n-grams are filtered and reweighted ac-
cording to how well each candidate matches the 
expected answer-type, as specified by a handful of 
handwritten filters.  The system uses filtering in 
the following manner. First, the query is analyzed 
and assigned one of seven question types, such as 
who-question, what-question, or how-many-
question.  Based on the query type that has been 
assigned, the system determines what collection of 
filters to apply to the set of potential answers found 
during the collection of n-grams.  The candidate n-
grams are analyzed for features relevant to the fil-
ters, and then rescored according to the presence of 
such information.   

A collection of 15 simple filters were devel-
oped based on human knowledge about question 
types and the domain from which their answers can 
be drawn.  These filters used surface string fea-
tures, such as capitalization or the presence of dig-
its, and consisted of handcrafted regular expression 
patterns. 

2.4 N-Gram Tiling 
Finally, we applied an answer tiling algorithm, 
which both merges similar answers and assembles 
longer answers from overlapping smaller answer 
fragments.  For example, "A B C" and "B C D" is 
tiled into "A B C D." The algorithm proceeds 
greedily from the top-scoring candidate - all sub-
sequent candidates (up to a certain cutoff) are 
checked to see if they can be tiled with the current 
candidate answer. If so, the higher scoring candi-
date is replaced with the longer tiled n-gram, and 
the lower scoring candidate is removed. The algo-
rithm stops only when no n-grams can be further 
tiled. 
 

3 Experiments 

For experimental evaluations we used the first 500 
TREC-9 queries (201-700) (Voorhees and Harman, 
2000).  We used the patterns provided by NIST for 
automatic scoring.  A few patterns were slightly 
modified to accommodate the fact that some of the 
answer strings returned using the Web were not 
available for judging in TREC-9.   We did this in a 
very conservative manner allowing for more spe-
cific correct answers (e.g., Edward J. Smith vs. 
Edward Smith) but not more general ones (e.g., 
Smith vs. Edward Smith), and also allowing for 
simple substitutions (e.g., 9 months vs. nine 
months).  There also are substantial time differ-
ences between the Web and TREC databases (e.g., 
the correct answer to Who is the president of Bo-
livia? changes over time), but we did not modify 
the answer key to accommodate these time differ-
ences, because it would make comparison with 
earlier TREC results impossible.  These changes 
influence the absolute scores somewhat but do not 
change relative performance, which is our focus 
here.   

All runs are completely automatic, starting 
with queries and generating a ranked list of 5 can-
didate answers.  For the experiments reported in 
this paper we used Google as a backend because it 
provides query-relevant summaries that make our 
n-gram mining efficient.  Candidate answers are a 
maximum of 50 bytes long, and typically much 
shorter than that.  We report the Mean Reciprocal 
Rank (MRR) of the first correct answer, the Num-
ber of Questions Correctly Answered (NAns), and 
the proportion of Questions Correctly Answered 
(%Ans).   

3.1 Basic System Performance 
Using our current system with default settings we 
obtain a MRR of 0.507 and answers 61% of the 
queries correctly (Baseline, Table 1).  The average 
answer length was 12 bytes, so the system is re-
turning short answers, not passages.   Although it 
is impossible to compare our results precisely with 
TREC-9 groups, this is very good performance and 
would place us near the top of 50-byte runs for 
TREC-9.   



3.2 Contributions of Components 
Table 1 summarizes the contributions of the differ-
ent system components to this overall perform-
ance.  We report summary statistics as well as 
percent change in performance when components 
are removed (%Drop MRR). 
 
Query Rewrites: 
As described earlier, queries are transformed to 
successively less precise formats, with a final 
backoff to simply ANDing all the non-stop query 
terms.  More precise queries have higher weights 
associated with them, so n-grams found in these 
responses are given priority.   If we set all the re-
write weights to be equal, MRR drops from 0.507 
to 0.489, a drop of 3.6%.   Another way of looking 
at the importance of the query rewrites is to exam-
ine performance where the only rewrite the system 
uses is the backoff AND query.   Here the drop is 
more substantial, down to 0.450 which represents a 
drop of 11.2%.    

Query rewrites are one way in which we 
capitalize on the tremendous redundancy of data 
on the web – that is, the occurrence of multiple 
linguistic formulations of the same answers in-
creases the chances of being able to find an answer 
that occurs within the context of a simple pattern 
match with the query.   Our simple rewrites help 
compared to doing just AND matching. Soubbotin 
and Soubbotin (2001) have used more specific 
regular expression matching to good advantage and 
we could certainly incorporate some of those ideas 
as well. 

MRR NAns %Ans
%Drop
MRR

Baseline 0.507 307 61.4% 0.0%
Query Rewrite:
  Same Weight All Rewrites 0.489 298 59.6% 3.6%
  AND-only query 0.450 281 56.2% 11.2%

Filter N-Gram:
  Base, NoFiltering 0.416 268 53.6% 17.9%
  AND, NoFiltering 0.338 226 45.2% 33.3%

Tile N-Gram:
  Base, NoTiling 0.435 277 55.4% 14.2%
  AND, NoTiling 0.397 251 50.2% 21.7%

Combinations:
  Base, NoTiling NoFiltering 0.319 233 46.6% 37.1%
  AND, NoTiling NoFiltering 0.266 191 38.2% 47.5%

Table 1.  Componential analysis of the AskMSR QA system.
 

N-Gram Filtering: 
Unigrams, bigrams and trigrams are extracted from 
the (up to) 100 best-matching summaries for each 
rewrite, and scored according the weight of the 
query rewrite that retrieved them.  The score as-
signed to an n-gram is a weighted sum across the 
summaries containing the n-grams, where the 
weights are those associated with the rewrite that 
retrieved a particular summary.   The best-scoring 
n-grams are then filtered according to seven query 
types.   For example the filter for the query How 
many dogs pull a sled in the Iditarod? prefers a 
number, so candidate n-grams  like dog race, run, 
Alaskan, dog racing, many mush move down the 
list and pool of 16 dogs (which is a correct answer) 
moves up.  Removing the filters decreases MRR 
by 17.9% relative to baseline (down to 0.416).  Our 
simple n-gram filtering is the most important indi-
vidual component of the system. 
 
N-Gram Tiling: 
Finally, n-grams are tiled to create longer answer 
strings.   This is done in a simple greedy statistical 
manner from the top of the list down.   Not doing 
this tiling decreases performance by 14.2% relative 
to baseline (down to 0.435).    The advantages 
gained from tiling are two-fold.  First, with tiling 
substrings do not take up several answer slots, so 
the three answer candidates: San, Francisco, and 
San Francisco, are conflated into the single answer 
candidate: San Francisco.  In addition, longer an-
swers can never be found with only trigrams, e.g., 
light amplification by stimulted emission of radia-
tion can only be returned by tiling these shorter n-
grams into a longer string.   
 
Combinations of Components: 
Not surprisingly, removing all of our major com-
ponents except the n-gram accumulation (weighted 
sum of occurrences of unigrams, bigrams and tri-
grams) results in substantially worse performance 
than our full system, giving an MRR of 0.266, a 
decrease of 47.5%.    The simplest entirely statisti-
cal system with no linguistic knowledge or proc-
essing employed, would use only AND queries, do 
no filtering, but do statistical tiling.   This system 
uses redundancy only in summing n-gram counts 
across summaries.  This system has MRR 0.338, 
which is a 33% drop from the best version of our 
system, with all components enabled.   Note, how-
ever, that even with absolutely no linguistic proc-



essing, the performance attained is still very rea-
sonable performance on an absolute scale, and in 
fact only one TREC-9 50-byte run achieved higher 
accuracy than this. 

To summarize, we find that all of our process-
ing components contribute to the overall accuracy 
of the question-answering system.  The precise 
weights assigned to different query rewrites seems 
relatively unimportant, but the rewrites themselves 
do contribute considerably to overall accuracy.    
N-gram tiling turns out to be extremely effective, 
serving in a sense as a “poor man’s named-entity 
recognizer”.  Because of the effectiveness of our 
tiling algorithm over large amounts of data, we do 
not need to use any named entity recognition com-
ponents.  The component that identifies what filters 
to apply over the harvested n-grams, along with the 
actual regular expression filters themselves, con-
tributes the most to overall performance. 

4 Component Problems 

Above we described how components contributed 
to improving the performance of the system.  In 
this section we look at what components errors are 
attributed to.  In Table 2, we show the distribution 
of error causes, looking at those questions for 
which the system returned no correct answer in the 
top five hypotheses. 
 
Problem % of Errors 
Units 23 
Time 20 
Assembly 16 
Correct 14 
Beyond Paradigm 12 
Number Retrieval 5 
Unknown Problem 5 
Synonymy 2 
Filters  2 
Table 2.  Error Attribution 

 
The biggest error comes from not knowing 

what units are likely to be in an answer given a 
question (e.g. How fast can a Corvette go  xxx 
mph).  Interestingly, 34% of our errors (Time and 
Correct) are not really errors, but are due to time 
problems or cases where the answer returned is 
truly correct but not present in the TREC-9 answer 
key.  16% of the failures come from the inability of 

our n-gram tiling algorithm to build up the full 
string necessary to provide a correct answer.   

Number retrieval problems come from the fact 
that we cannot query the search engine for a num-
ber without specifying the number.  For example, a 
good rewrite for the query How many islands does 
Fiji have would be « Fiji has <NUM> islands », 
but we are unable to give this type of query to the 
search engine.  Only 12% of the failures we clas-
sify as being truly outside of the system’s current 
paradigm, rather than something that is either al-
ready correct or fixable with minor system en-
hancements. 

5 Knowing When We Don’t Know 

Typically, when deploying a question answering 
system, there is some cost associated with return-
ing incorrect answers to a user.  Therefore, it is 
important that a QA system has some idea as to 
how likely an answer is to be correct, so it can 
choose not to answer rather than answer incor-
rectly.  In the TREC QA track, there is no distinc-
tion made in scoring between returning a wrong 
answer to a question for which an answer exists 
and returning no answer.  However, to deploy a 
real system, we need the capability of making a 
trade-off between precision and recall, allowing 
the system not to answer a subset of questions, in 
hopes of attaining high accuracy for the questions 
which it does answer. 

Most question-answering systems use 
hand-tuned weights that are often combined in an 
ad-hoc fashion into a final score for an answer hy-
pothesis (Harabagiu et al., 2000; Hovy et al., 2000; 
Prager et al., 2000; Soubbotin & Soubbotin, 2001; 
Brill et. al., 2001).   Is it still possible to induce a 
useful precision-recall (ROC) curve when the sys-
tem is not outputting meaningful probabilities for 
answers?  We have explored this issue within the 
AskMSR question-answering system.   

Ideally, we would like to be able to deter-
mine the likelihood of answering correctly solely 
from an analysis of the question.  If we can deter-
mine we are unlikely to answer a question cor-
rectly, then we need not expend the time, cpu 
cycles and network traffic necessary to try to an-
swer that question.   

We built a decision tree to try to predict 
whether the system will answer correctly, based on 
a set of features extracted from the question string: 



word unigrams and bigrams, sentence length 
(QLEN), the number of capitalized words in the 
sentence, the number of stop words in the sentence 
(NUMSTOP), the ratio of the number of nonstop 
words to stop words, and the length of longest 
word (LONGWORD).  We use a decision tree be-
cause we also wanted to use this as a diagnostic 
tool to indicate what question types we need to put 
further developmental efforts into.  The decision 
tree built from these features is shown in Figure 2. 
The first split of the tree asks if the word “How” 
appears in the question.  Indeed, the system per-
forms worst on “How” question types.  We do best 
on short “Who” questions with a large number of 
stop words. 
 

 
Figure 2.  Learning When We Don't Know -- Us-
ing Only Features from Query 

 
We can induce an ROC curve from this 

decision tree by sorting the leaf nodes from the 
highest probability of being correct to the lowest.  
Then we can gain precision at the expense of recall 

by not answering questions in the leaf nodes that 
have the highest probability of error.  The result of 
doing this can be seen in Figures 3 and 4, the line 
labeled “Question Features”.  The decision tree 
was trained on Trec 9 data.  Figure 3 shows the 
results when applied to the same training data, and 
Figure 4 shows the results when testing on Trec 10 
data.  As we can see, the decision tree overfits the 
training data and does not generalize sufficiently to 
give useful results on the Trec 10 (test) data. 

Next, we explored how well answer cor-
rectness correlates with answer score in our sys-
tem.  As discussed above, the final score assigned 
to an answer candidate is a somewhat ad-hoc score 
based upon the number of retrieved passages the n-
gram occurs in, the weight of the rewrite used to 
retrieve each passage, what filters apply to the n-
gram, and the effects of merging n-grams in an-
swer tiling.  In Table 3, we show the correlation 
coefficient calculated between whether a correct 
answer appears in the top 5 answers output by the 
system and (a) the score of the system’s first 
ranked answer and (b) the score of the first ranked 
answer minus the score of the second ranked an-
swer.  A correlation coefficient of 1 indicates 
strong positive association, whereas a correlation 
of –1 indicates strong negative association. We see 
that there is indeed a correlation between the 
scores output by the system and the answer accu-
racy, with the correlation being tighter when just 
considering the score of the first answer. 
 

 Correlation 
Coefficient 

Score #1 .363 
Score #1 – Score #2 .270 

Table 3 . Do answer scores correlate with correct-
ness? 

 
Because a number of answers returned by 

our system are correct but scored wrong according 
to the TREC answer key because of time mis-
matches, we also looked at the correlation, limiting 
ourselves to Trec 9 questions that were not time-
sensitive.  Using this subset of questions, the corre-
lation coefficient between whether a correct an-
swer appears in the system’s top five answers, and 
the score of the #1 answer, increases from .363 to 
.401.  In Figure 3 and 4, we show the ROC curve 
induced by deciding when not to answer a question 
based on the score of the first ranked answer (the 



line labeled “score of #1 answer”).  Note that the 
score of the top ranked answer is a significantly 
better predictor of accuracy than what we attain by 
considering features of the question string, and 
gives consistent results across two data sets. 

Finally, we looked into whether other at-
tributes were indicative of the likelihood of answer 
correctness.  For every question, a set of snippets is 
gathered.  Some of these snippets come from AND 
queries and others come from more refined exact 
string match rewrites.  In Table 4, we show MRR 
as a function of the number of non-AND snippets 
retrieved.  For instance, when all of the snippets 
come from AND queries, the resulting MRR was 
found to be only .238.  For questions with 100 to 
400 snippets retrieved from exact string match re-
writes, the MRR was .628. 

 

NumQ MRR
0 91 0.238
1 to 10 80 0.405
11 to 100 153 0.612
100 to 400 175 0.628

NumNon-AND 
Passages

 
Table 4 . Accuracy vs. Number of Passages Re-
trieved From Non-AND Rewrites 

 
We built a decision tree to predict whether 

a correct answer appears in the top 5 answers, 
based on all of the question-derived features de-
scribed earlier, the score of the number one rank-
ing answer, as well as a number of additional 
features describing the state of the system in proc-
essing a particular query.  Some of these features 
include: the total number of matching passages 
retrieved, the number of non-AND matching pas-
sages retrieved, whether a filter applied, and the 
weight of the best rewrite rule for which matching 
passages were found.   We show the resulting deci-
sion tree in Figure 5, and resulting ROC curve con-
structed from this decision tree, in Figure 3 and 4 
(the line labeled “All Features”).  In this case, the 
decision tree does give a useful ROC curve on the 
test data (Figure 4), but does not outperform the 
simple technique of using the ad hoc score of the 
best answer returned by the system.  Still, the deci-
sion tree has proved to be a useful diagnostic in 
helping us understand the weaknesses of our sys-
tem. 
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Figure 3. Three different precision/recall trade-
offs, trained on Trec 9 and tested on Trec 9. 
 

Trec 10 ROC Curve
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Figure 4. Three different precision/recall trade-
offs, trained on Trec 9 and tested on Trec 10. 

6 Conclusions 

We have presented a novel approach to question-
answering and carefully analyzed the contributions 
of each major system component, as well as ana-
lyzing what factors account for the majority of er-
rors made by the AskMSR question answering 
system.   In addition, we have demonstrated an 
approach to learning when the system is likely to 
answer a question incorrectly, allowing us to reach 
any desired rate of accuracy by not answering 
some portion of questions.  We are currently ex-
ploring whether these techniques can be extended 
beyond short answer QA to more complex cases of 
information access.   
 



 

 
Figure 5.  Learning When We Don't Know -- Us-
ing All Features 
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