
An Incremental Decision List Learner

Joshua Goodman
Microsoft Research
One Microsoft Way

Redmond, WA 98052
joshuago@microsoft.com

Abstract

We demonstrate a problem with the stan-
dard technique for learning probabilistic
decision lists. We describe a simple, in-
cremental algorithm that avoids this prob-
lem, and show how to implement it effi-
ciently. We also show a variation that adds
thresholding to the standard sorting algo-
rithm for decision lists, leading to similar
improvements. Experimental results show
that the new algorithm produces substan-
tially lower error rates and entropy, while
simultaneously learning lists that are over
an order of magnitude smaller than those
produced by the standard algorithm.

1 Introduction

Decision lists (Rivest, 1987) have been used for a
variety of natural language tasks, including accent
restoration (Yarowsky, 1994), word sense disam-
biguation (Yarowsky, 2000), finding the past tense of
English verbs (Mooney and Califf, 1995), and sev-
eral other problems. We show a problem with the
standard algorithm for learning probabilistic deci-
sion lists, and we introduce an incremental algorithm
that consistently works better. While the obvious im-
plementation for this algorithm would be very slow,
we also show how to efficiently implement it. The
new algorithm produces smaller lists, while simul-
taneously substantially reducing entropy (by about
40%), and error rates (by about 25% relative.)

Decision lists are a very simple, easy to understand
formalism. Consider a word sense disambiguation
task, such as distinguishing the financial sense of the

word “bank” from the river sense. We might want the
decision list to be probabilistic (Kearns and Schapire,
1994) so that, for instance, the probabilities can be
propagated to an understanding algorithm. The de-
cision list for this task might be:

IF “water” occurs nearby, output “river: .95”, “fi-
nancial: .05”
ELSE IF “money” occurs nearby, output “river: .1”,
“financial: .9”
ELSE IF word before is “left”, output “river: .8”,
“financial: .2”
ELSE IF “Charles” occcurs nearby, output “river:
.6”, “financial: .4”
ELSE output “river: .5”, “financial: .5”

The conditions of the list are checked in order, and
as soon as a matching rule is found, the algorithm
outputs the appropriate probability and terminates.
If no other rule is used, the last rule always triggers,
ensuring that some probability is always returned.

The standard algorithm for learning decision lists
(Yarowsky, 1994) is very simple. The goal is to min-
imize the entropy of the decision list, where entropy
represents how uncertain we are about a particular de-
cision. For each rule, we find the expected entropy
using that rule, then sort all rules by their entropy,
and output the rules in order, lowest entropy first.

Decision lists are fairly widely used for many rea-
sons. Most importantly, the rule outputs they produce
are easily understood by humans. This can make de-
cision lists useful as a data analysis tool: the decision
list can be examined to determine which factors are
most important. It can also make them useful when
the rules must be used by humans, such as when pro-
ducing guidelines to help doctors determine whether
a particular drug should be administered. Decision
lists also tend to be relatively small and fast and easy

 Association for Computational Linguistics.
 Language Processing (EMNLP), Philadelphia, July 2002, pp. 17-24.
 Proceedings of the Conference on Empirical Methods in Natural

to apply in practice.
Unfortunately, as we will describe, the standard al-

gorithm for learning decision lists has an important
flaw: it often chooses a rule order that is suboptimal
in important ways. In particular, sometimes the al-
gorithm will use a rule that appears good – has lower
average entropy – in place of one that is good – low-
ers the expected entropy given its location in the list.
We will describe a simple incremental algorithm that
consistently works better than the basic sorting al-
gorithm. Essentially, the algorithm builds the list in
reverse order, and, before adding a rule to the list,
computes how much the rule will reduce entropy at
that position. This computation is potentially very
expensive, but we show how to compute it efficiently
so that the algorithm can still run quickly.

2 The Algorithms

In this section, we describe the traditional algorithm
for decision list learning in more detail, and then mo-
tivate our new algorithm, and finally, describe our
new algorithm and variations on it in detail. For sim-
plicity only, we will state all algorithms for the binary
output case; it should be clear how to extend all of
the algorithms to the general case.

2.1 Traditional Algorithm

Decision list learners attempt to find models that
work well on test data. The test data consists of a se-
ries of inputs x1, ..., xn, and we are trying to predict
the corresponding results y1, ..., yn. For instance, in
a word sense disambiguation task, a given xi could
represent the set of words near the word, and yi

could represent the correct sense of the word. Given
a model D which predicts probabilities PD(y|x),
the standard way of defining how well D works is
the entropy of the model on the test data, defined
as

∑n
i=1 −log2PD(yi|xi). Lower entropy is better.

There are many justifications for minimizing entropy.
Among others, the “true” probability distribution has
the lowest possible entropy. Also, minimizing train-
ing entropy corresponds to maximizing the probabil-
ity of the training data.

Now, consider trying to learn a decision list. As-
sume we are given a list of possible questions,
q1, ..., qn. In our word sense disambiguation ex-
ample, the questions might include “Does the word

‘water’ occur nearby,” or more complex ones, such
as “does the word ‘Charles’ occur nearby and is the
word before ‘river.”’ Let us assume that we have
some training data, and that the system has two out-
puts (values for y), 0 and 1. Let C(qi, 0) be the
number of times that, when qi was true in the train-
ing data, the output was 0, and similarly for C(qi, 1).
Let C(qi) be the total number of times that qi was
true. Now, given a test instance, x, y for which qi(x)
is true, what probability would we assign to y = 1?
The simplest answer is to just use the probability in
the training data, C(qi, 1)/C(qi). Unfortunately, this
tends to overfit the training data. For instance, if qi

was true only once in the training data, then, depend-
ing on the value for y that time, we would assign a
probability of 1 or 0. The former is clearly an over-
estimate, and the latter is clearly an underestimate.
Therefore, we smooth our estimates (Chen and Good-
man, 1999). In particular, we used the interpolated
absolute discounting method. Since both the tradi-
tional algorithm and the new algorithm use the same
smoothing method, the exact smoothing technique
will not typically affect the relative performance of
the algorithms. Let C(0) be the total number of ys
that were zero in the training, and let C(1) be the to-
tal number of ys that were one. Then, the “unigram”
probability y is P (y) = C(y)

C(0)+C(1) . Let N(qi) be the
number of non-zero ys for a given question. In par-
ticular, in the two class case, N(qi) will be 0 if there
were no occurences of the question qi, 1 if training
samples for qi always had the same value, and 2 if
both 1 and 0 values occurred. Now, we pick some
value d (using heldout data) and discount all counts
by d. Then, our probability distribution is

P (y|qi) =

(C(qi,y)−d)
C(qi)

+ dN(qi)
C(qi)

P (y) if C(qi, y) > 0
dN(qi)
C(qi)

P (y) otherwise

Now, the predicted entropy for a question qi is just

entropy(qi) = −P (0|qi)log2P (0|qi)−P (1|qi)log2P (1|qi)

The typical training algorithm for decision lists is
very simple. Given the training data, compute the
predicted entropy for each question. Then, sort the
questions by their predicted entropy, and output a
decision list with the questions in order. One of the

questions should be the special question that is al-
ways TRUE, which returns the unigram probability.
Any question with worse entropy than TRUE will
show up later in the list than TRUE, and we will
never get to it, so it can be pruned away.

2.2 New Algorithm

Consider two weathermen in Seattle in the winter.
Assume the following (overly optimistic) model of
Seattle weather. If today there is no wind, then to-
morrow it rains. On one in 50 days, it is windy, and,
the day after that, the clouds might have been swept
away, leading to only a 50% chance of rain. So,
overall, we get rain on 99 out of 100 days. The lazy
weatherman simply predicts that 99 out of 100 days,
it will rain, while the smart weatherman gives the true
probabilities (i.e. 100% chance of rain tomorrow if
no wind today, 50% chance of rain tomorrow if wind
today.)

Consider the entropy of the two weathermen.
The lazy weatherman always says “There is a 99%
chance of rain tomorrow; my average entropy is
−.99× log2.99 − .01 × log2.01 = .081 bits.” The
smart weatherman, if there is no wind, says “100%
chance of rain tomorrow; my entropy is 0 bits.” If
there is wind, however, the smart weatherman says,
“50% chance of rain tomorrow; my entropy is 1 bit.”

Now, if today is windy, who should we trust? The
smart weatherman, whose expected entropy is 1 bit,
or the lazy weatherman, whose expected entropy is
.08 bits, which is obviously much better.

The decision list equivalent of this is as follows.
Using the classic learner, we learn as follows. We
have three questions: if TRUE then predict rain with
probability .99 (expected entropy = .081). If NO
WIND then predict rain with probability 1 (expected
entropy = 0). If WIND then predict rain with proba-
bility 1/2 (expected entropy = 1). When we sort these
by expected entropy, we get:
IF NO WIND, output “rain: 100%” (entropy 0)
ELSE IF TRUE, output “rain: 99%” (entropy .081)
ELSE IF WIND, output “rain: 50%” (entropy 1)
Of course, we never reach the third rule, and on windy
days, we predict rain with probabiliy .99!

The two weathermen show what goes wrong with
a naive algorithm; we can easily do much better. For
the new algorithm, we start with a baseline ques-
tion, the question which is always TRUE and pre-

list = { TRUE }
do

for each question qi

entropyReduce(i) =
entropy(list) − entropy(prepend(qi, list))

l = i such that entropyReduce(i) is largest
if entropyReduce(l) < ε then

return list
else

list = prepend(ql, list)

Figure 1: New Algorithm, Simple Version

dicts the unigram probabilities. Then, we find the
question which if asked before all other questions
would decrease entropy the most. This is repeated
until some minimum improvement, ε, is reached.1

Figure 1 shows the new algorithm; the notation
entropy(list) denotes the training entropy of a poten-
tial decision list, and entropy(prepend(qi, list)) indi-
cates the training entropy of list with the question “If
qi then output p(y|qi)” prepended.

Consider the Parable of the Two Weathermen. The
new learning algorithm starts with the baseline: If
TRUE then predict rain with probability 99% (en-
tropy .081). Then it prepends the rule that reduces
the entropy the most. The entropy reduction from
the question “NO WIND” is .081× .99 = .08, while
the entropy for the question “WIND” is 1 bit for
the new question, versus .5 × 1 + .5 × −log2.01 =
.5 + .5 × 6.64 = 3.82, for the old, for a reduction
of 2.82 bits, so we prepend the “WIND” question.
Finally, we learn (at the top of the list), that if “NO
WIND”, then rain 100%, yielding the following de-
cision list:
IF NO WIND, output “rain: 100%” (entropy 0)
ELSE IF WIND, output “rain: 50%” (entropy 1)
ELSE IF TRUE, output “rain: 99%” (entropy .081)
Of course, we never reach the third rule.

Clearly, this decision list is better. Why did our
entropy sorter fail us? Because sometimes a smart
learner knows when it doesn’t know, while a dumb
rule, like our lazy weatherman who ignores the wind,
doesn’t know enough to know that in the current sit-

1This means we are building the tree bottom up; it would be
interesting to explore building the tree top-down, similar to a
decision tree, which would probably also work well.

list = {TRUE}
for each training instance xj , yj

instanceEnt(j) = −log2 p(yj)
for each question qi

// Now we compute entropyReduce(i) =
// entropy(TRUE) − entropy(qi, TRUE)
entropyReduce(i) = 0
for each xj , yj such that qi(xj)

entropyReduce(i) += log2 p(yj) − log2 p(yj |qi)
do

l = arg maxi entropyReduce(i)
if entropyReduce(l) < ε then

return list
else

list = prepend(ql, list)
for each xj , yj such that ql(xj)

for each k such that qk(xj)
entropyReduce(k) += instanceEnt(j)

instanceEnt(j) = −log2 p(yj |ql)
for each k such that qk(xj)

entropyReduce(k) −= instanceEnt(j)

Figure 2: New Algorithm, Efficient Version

uation, the problem is harder than usual.

2.2.1 Efficiency

Unfortunately, the algorithm of Figure 1, if imple-
mented in a straight-forward way, will be extremely
inefficient. The problem is the inner loop, which
requires computing entropy(prepend(qi, list)). The
naive way of doing this is to run all of the training
data through each possible decision list. In practice,
the actual questions tend to be pairs or triples of sim-
ple questions. For instance, an actual question might
be “Is word before ‘left’ and word after ‘of’?” Thus,
the total number of questions can be very large, and
running all the data through the possible new decision
lists for each question would be extremely slow.

Fortunately, we can precompute entropyReduce(i)
and incrementally update it. In order to do so, we also
need to compute, for each training instance xj , yj the
entropy with the current value of list. Furthermore,
we store for each question qi the list of instances
xj , yj such that qi(xj) is true. With these changes,
the algorithm runs very quickly. Figure 2 gives the
efficient version of the new algorithm.

for each question qi compute entropy(i)
list = questions sorted by entropy(i)
remove questions worse than TRUE
for each training instance xj , yj

instanceEnt(j) = −log2 p(yj)
for each question qi in list in reverse order

entropyReduce = 0
for each xj , yj such that qi(xj)

entropyReduce +=
instanceEnt(j) − log2 p(yj |qi)

if entropyReduce < ε
remove qi from list

else
for each xj , yj such that qi(xj)

instanceEnt(j) = log2 p(yj |qi)

Figure 3: Compromise: Delete Bad Questions

Note that this efficient version of the algorithm
may consume a large amount of space, because of the
need to store, for each question qi, the list of training
instances for which the question is true. There are a
number of speed-space tradeoffs one can make. For
instance, one could change the update loop from

for each xj , yj such that qi(xj)

to

for each xj , yj

if qi(xj) then ...

There are other possible tradeoffs. For instance, typ-
ically, each question qi is actually written as a con-
junction of simple questions, which we will denote
Qij . Assume that we store the list of instances that
are true for each simple question Qij , and that qi is of
the form Qi1&Qi2&...&QiI . Then we can write an
update loop in which we first find the simple question
with the smallest number of true instances, and loop
over only these instances when finding the instances
for which qi is true:

k = arg minj number instances such that Qij

for each xj , yj such that Qik(xj)
if qi(xj) then ...

2.3 Compromise Algorithm

Notice the original algorithm can actually allow rules
which make things worse. For instance, in our lazy
weatherman example, we built this decision list:

IF NO WIND, output “rain: 100%” (entropy 0)
ELSE IF TRUE, output “rain: 99%” (entropy .081)
ELSE IF WIND, output “rain: 50%” (entropy 1)
Now, the second rule could simply be deleted, and the
decision list would actually be much better (although
in practice we never want to delete the “TRUE” ques-
tion to ensure that we always output some probabil-
ity.) Since the main reason to use decision lists is be-
cause of their understandability and small size, this
optimization will be worth doing even if the full im-
plementation of the new algorithm is too complex.
The compromise algorithm is displayed in Figure 3.
When the value of ε is 0, only those rules that improve
entropy on the training data are included. When the
value of ε is −∞, all rules are included (the stan-
dard algorithm). Even when a benefit is predicted,
this may be due to overfitting; we can get further
improvements by setting the threshold to a higher
value, such as 3, which means that only rules that
save at least three bits – and thus are unlikely to lead
to overfitting – are added.

3 Previous Work

There has been a modest amount of previous work
on improving probabilistic decision lists, as well as
a fair amount of work in related fields, especially in
transformation-based learning (Brill, 1995).

First, we note that non-probabilistic decision lists
and transformation-based learning (TBL) are actu-
ally very similar formalisms. In particular, as ob-
served by Roth (1998), in the two-class case, they
are identical. Non-probabilistic decision lists learn
rules of the form “If qi then output y” while TBLs
output rules of the form “If qi and current-class is
y′, change class to y”. Now, in the two class case, a
rule of the form “If qi and current-class is y′, change
class to y” is identical to one of the form “If qi change
class to y”, since either way, all instances for which
qi is TRUE end up with value y. The other difference
between decision lists and TBLs is the list ordering.
With a two-class TBL, one goes through the rules
from last-to-first, and finds the last one that applies.
With a decision list, one goes through the list in or-
der, and finds the first one that applies. Thus in the
two-class case, simply by changing rules of the form
“If qi and current-class is y′, change class to y” to
“If qi output y”, and reversing the rule order, we can

change any TBL to an equivalent non-probabilistic
decision list, and vice-versa. Notice that our incre-
mental algorithm is analogous to the algorithm used
by TBLs: in TBLs, at each step, a rule is added that
minimizes the training data error rate. In our prob-
abilistic decision list learner, at each step, a rule is
added that minimizes the training data entropy.

Roth notes that this equivalence does not hold in
an important case: when the answers to questions
are not static. For instance, in part-of-speech tagging
(Brill, 1995), when the tag of one word is changed, it
changes the answers to questions for nearby words.
We call such problems “dynamic.”

The near equivalence of TBLs and decision lists is
important for two reasons. First, it shows the connec-
tion between our work and previous work. In partic-
ular, our new algorithm can be thought of as a prob-
abilistic version of the Ramshaw and Marcus (1994)
algorithm, for speeding up TBLs. Just as that al-
gorithm stores the expected error rate improvement
of each question, our algorithm stores the expected
entropy improvement. (Actually, the Ramshaw and
Marcus algorithm is somewhat more complex, be-
cause it is able to deal with dynamic problems such
as part-of-speech tagging.) Similarly, the space-
efficient algorithm using compound questions at
the end of Section 2.2.1 can be thought of as a
static probabilistic version of the efficient TBL of
Ngai and Florian (2001).

The second reason that the connection to TBLs is
important is that it shows us that probabilistic de-
cision lists are a natural way to probabilize TBLs.
Florian et al. (2000) showed one way to make prob-
abilistic versions of TBLs, but the technique is some-
what complicated. It involved conversion to a deci-
sion tree, and then further growing of the tree. Their
technique does have the advantage that it correctly
handles the multi-class case. That is, by using a
decision tree, it is relatively easy to incorporate the
current state, while the decision list learner ignores
that state. However, this is not clearly an advantage
– adding extra dependencies introduces data sparse-
ness, and it is an empirical question whether depen-
dencies on the current state are actually helpful. Our
probabilistic decision lists can thus be thought of as
a competitive way to probabilize TBLs, with the ad-
vantage of preserving the list-structure and simplicity
of TBL, and the possible disadvantage of losing the

dependency on the current state.
Yarowsky (1994) suggests two improvements to

the standard algorithm. First, he suggests an op-
tional, more complex smoothing algorithm than the
one we applied. His technique involves estimating
both a probability based on the global probability
distribution for a question, and a local probability,
given that no questions higher in the list were TRUE,
and then interpolating between the two probabilities.
He also suggests a pruning technique that eliminates
90% of the questions while losing 3% accuracy; as
we will show in Section 4, our technique or varia-
tions eliminate an even larger percentage of ques-
tions while increasing accuracy. Yarowsky (2000)
also considered changing the structure of decision
lists to include a few splits at the top, thus combining
the advantages of decision trees and decision lists.
The combination of this hybrid decision list and the
improved smoothing was the best performer for par-
ticipating systems in the 1998 senseval evaluation.
Our technique could easily be combined with these
techniques, presumably leading to even better results.
However, since we build our decision lists from last
to first, rather than first to last, the local probability is
not available as the list is being built. But there is no
reason we could not interpolate the local probability
into a final list. Similarly, in Yarowsky’s technique,
the local probability is also not available at the time
the questions are sorted.

Our algorithm can be thought of as a natural prob-
abilistic version of a non-probabilistic decision list
learner which prepends rules (Webb, 1994). One
difficulty that that approach has is ranking rules. In
the probabilistic framework, using entropy reduction
and smoothing seems like a natural solution.

4 Experimental Results and Discussion

In this section, we give experimental results, showing
that our new algorithm substantially outperforms the
standard algorithm. We also show that while accu-
racy is competitive with TBLs, two linear classifiers
are more accurate than the decision list algorithms.

Many of the problems that probabilistic decision
list algorithms have been used for are very similar: in
a given text context, determine which of two choices
is most appropriate. Accent restoration (Yarowsky,
1994), word sense disambiguation (Yarowsky, 2000),

and other problems all fall into this framework, and
typically use similar feature types. We thus chose
one problem of this type, grammar checking, and
believe that our results should carry over at least
to these other, closely related problems. In partic-
ular, we chose to use exactly the same training, test,
problems, and feature sets used by Banko and Brill
(2001a; 2001b). These problems consisted of try-
ing to guess which of two confusable words, e.g.
“their” or “there”, a user intended. Banko and Brill
chose this data to be representative of typical machine
learning problems, and, by trying it across data sizes
and different pairs of words, it exhibits a good deal of
different behaviors. Banko and Brill used a standard
set of features, including words within a window of
2, part-of-speech tags within a window of 2, pairs of
word or tag features, and whether or not a given word
occurred within a window of 9. Altogether, they had
55 feature types. They used all features of each type
that occurred at least twice in the training data.

We ran our comparisons using 7 different algo-
rithms. The first three were variations on the stan-
dard probabilistic decision list learner. In particular,
first we ran the standard sorted decision list learner,
equivalent to the algorithm of Figure 3, with a thresh-
old of negative infinity. That is, we included all rules
that had a predicted entropy at least as good as the
unigram distribution, whether or not they would ac-
tually improve entropy on the training data. We call
this “Sorted: −∞.” Next, we ran the same learner
with a threshold of 0 (“Sorted: 0”): that is, we in-
cluded all rules that had a predicted entropy at least
as good as the unigram distribution, and that would
at least improve entropy on the training data. Then
we ran the algorithm with a threshold of 3 (“Sorted:
3”), in an attempt to avoid overfitting. Next, we ran
our incremental algorithm, again with a threshold of
reducing training entropy by at least 3 bits.

In addition to comparing the various decision list
algorithms, we also tried several other algorithms.
First, since probabilistic decision lists are probabilis-
tic analogs of TBLs, we compared to TBL (Brill,
1995). Furthermore, after doing our research on de-
cision lists, we had several successes using simple
linear models, such as a perceptron model and a max-
imum entropy (maxent) model (Chen and Rosenfeld,
1999). For the perceptron algorithm, we used a varia-
tion that includes a margin requirement, τ (Zaragoza

wj = 0
for 100 iterations or until no change

for each training instance xj , yj

if q(xj) · wj × yj < τ
wj += q(xj) × yj

Figure 4: Perceptron Algorithm with Margin

1M 10M 50M
Sorted: −∞ 14.27% 8.88% 6.23%
Sorted: 0 13.16% 8.43% 5.84%
Sorted: 3 10.23% 6.30% 3.94%

Incremental: 3 10.80% 6.33% 4.09%
Transformation 10.36% 5.14% 4.00%

Maxent 8.60% 4.42% 2.62%
Perceptron 8.22% 3.96% 2.65%

Figure 5: Geometric Mean of Error Rate across
Training Sizes

and Herbrich, 2000). Figure 4 shows this incredibly
simple algorithm. We use q(xj) to represent the vec-
tor of answers to questions about input xj ; wj is a
weight vector; we assume that the output, yj is -1 or
+1; and τ is a margin. We assume that one of the
questions is TRUE, eliminating the need for a sepa-
rate threshold variable. When τ = 0, the algorithm
reduces to the standard perceptron algorithm. The
inclusion of a non-zero margin and running to con-
vergence guarantees convergence for separable data
to a solution that works nearly as well as a linear
support vector machine (Krauth and Mezard, 1987).
Given the extreme simplicity of the algorithm and the
fact that it works so well (not just compared to the
algorithms in this paper, but compared to several oth-
ers we have tried), the perceptron with margin is our
favorite algorithm when we don’t need probabilities,
and model size is not an issue.

Most of our algorithms have one or more parame-
ters that need to be tuned. We chose 5 additional con-
fusable word pairs for parameter tuning and chose
parameter values that worked well on entropy and
error rate across data sizes, as measured on these 5
additional word pairs. For the smoothing discount
value we used 0.7. For thresholds for both the sorted
and the incremental learner, we used 3 bits. For the
perceptron algorithm, we set τ to 20. For TBL’s min-
imum number of errors to fix, the traditional value of

1M 10M 50M
Sorted: −∞ 1065 10388 38893
Sorted: 0 831 8293 31459
Sorted: 3 45 462 1999

Incremental: 3 21 126 426
Transformation 15 77 244

Maxent 1363 12872 46798
Perceptron 1363 12872 46798

Figure 6: Geometric Mean of Model Sizes across
Training Sizes 1M 10M 50M

Sorted: −∞ 0.91 0.70 0.55
Sorted: 0 0.81 0.64 0.47
Sorted: 3 0.47 0.43 0.29

Incremental: 3 0.49 0.36 0.25
Maxent 0.44 0.27 0.18

Figure 7: Arithmetic Mean of Entropy across Train-
ing Sizes

2 worked well. For the maxent model, for smooth-
ing, we used a Gaussian prior with 0 mean and 0.3
variance. Since sometimes one learning algorithm
is better at one size, and worse at another, we tried
three training sizes: 1, 10 and 50 million words.

In Figure 5, we show the error rates of each algo-
rithm at different training sizes, averaged across the
10 words in the test set. We computed the geomet-
ric mean of error rate, across the ten word pairs. We
chose the geometric mean, because otherwise, words
with the largest error rates would disproportionately
dominate the results. Figure 6, shows the geometric
mean of the model sizes, where the model size is the
number of rules. For maxent and perceptron mod-
els, we counted size as the total number of features,
since these models store a value for every feature.
For Sorted: −∞ and Sorted: 0, the size is similar to
a maxent or perceptron model – almost every rule is
used. Sorted: 3 drastically reduces the model size –
by a factor of roughly 20 – while improving perfor-
mance. Incremental: 3 is smaller still, by about an
additional factor of 2 to 5, although its accuracy is
slightly worse than Sorted: 3. Figure 7 shows the en-
tropy of each algorithm. Since entropy is logarthmic,
we use the arithmetic mean.

Notice that the traditional probabilistic decision
list learning algorithm – equivalent to Sorted: −∞

– always has a higher error rate, higher entropy, and
larger size than Sorted: 0. Similarly, Sorted: 3 has
lower entropy, higher accuracy, and smaller models
than Sorted: 0. Finally, Incremental: 3 has slightly
higher error rates, but slightly lower entropies, and
1/2 to 1/5 as many rules. If one wants a probabilistic
decision list learner, this is clearly the algorithm to
use. However, if probabilities are not needed, then
TBL can produce lower error rates, with still fewer
rules. On the other hand, if one wants either the low-
est entropies or highest accuracies, then it appears
that linear models, such as maxent or the perceptron
algorithm with margin work even better, at the ex-
pense of producing much larger models.

Clearly, the new algorithm works very well when
small size and probabilities are needed. It would
be interesting to try combining this algorithm with
decision trees in some way. Both Yarowsky (2000)
and Florian et al. (2000) were able to get improve-
ments on the simple decision list structure by adding
additional splits – Yarowsky by adding them at the
root, and Florian et al. by adding them at the leaves.
Notice however that the chief advantage of decision
lists over linear models is their compact size and un-
derstandability, and our techniques simultaneously
improve those aspects; adding additional splits will
almost certainly lead to larger models, not smaller.
It would also be interesting to try more sophisticated
smoothing techniques, such as those of Yarowsky.

We have shown that a simple, incremental algo-
rithm for learning probabilistic decision lists can pro-
duce models that are significantly more accurate,
have significantly lower entropy, and are significantly
smaller than those produced by the standard sorted
learning algorithm. The new algorithm comes at the
cost of some increased time, space, and complexity,
but variations on it, such as the sorted algorithm with
thresholding, or the techniques of Section 2.2.1, can
be used to trade off space, time, and list size. Over-
all, given the substantial improvements from this al-
gorithm, it should be widely used whenever the ad-
vantages – compactness and understandability – of
probabilistic decision lists are needed.

References

M. Banko and E. Brill. 2001a. Mitigating the paucity of
data problem. In HLT.

M. Banko and E. Brill. 2001b. Scaling to very very large
corpora for natural language disambiguation. In ACL.

E. Brill. 1995. Transformation-based error-driven learn-
ing and natural language processing: A case study in
part-of-speech tagging. Comp. Ling., 21(4):543–565.

Stanley F. Chen and Joshua Goodman. 1999. An empir-
ical study of smoothing techniques for language mod-
eling. Computer Speech and Language, 13:359–394.

S.F. Chen and R. Rosenfeld. 1999. A gaussian prior for
smoothing maximum entropy models. Technical Re-
port CMU-CS-99-108, Computer Science Department,
Carnegie Mellon University.

R. Florian, J. C. Henderson, and G. Ngai. 2000. Coaxing
confidences out of an old friend: Probabilistic classifi-
cations from transformation rule lists. In EMNLP.

M. Kearns and R. Schapire. 1994. Efficient distribution-
free learning of probabilistic concepts. Computer and
System Sciences, 48(3):464–497.

W. Krauth and M. Mezard. 1987. Learning algorithms
with optimal stability in neural networks. Journal of
Physics A, 20:745–752.

R.J. Mooney and M.E. Califf. 1995. Induction of first-
order decision lists: Results on learning the past tense
of English verbs. In International Workshop on Induc-
tive Logic Programming, pages 145–146.

G. Ngai and R. Florian. 2001. Transformation-based
learning in the fast lane. In NA-ACL, pages 40–47.

L. Ramshaw and M. Marcus. 1994. Exploring the statis-
tical derivation of transformational rule sequences for
part-of-speech tagging. In Proceedings of the Balanc-
ing Act Workshop on Combining Symbolic and Statis-
tical Approaches to Language, pages 86–95. ACL.

R. Rivest. 1987. Learning decision lists. Machine Learn-
ing, 2(3):229–246.

Dan Roth. 1998. Learning to resolve natural language
ambiguities: A unified approach. In AAAI-98.

G. Webb. 1994. Learning decision lists by prepending in-
ferred rules, vol. b. In Second Singapore International
Conference on Intelligent Systems, pages 280–285.

David Yarowsky. 1994. Decision lists for lexical ambi-
guity resolution: Application to accent restoration in
spanish and french. In ACL, pages 88–95.

David Yarowsky. 2000. Hierarchical decision lists for
word sense disambiguation. Computers and the Hu-
manities, 34(2):179–186.

Hugo Zaragoza and Ralf Herbrich. 2000. The perceptron
meets reuters. In Workshop on Machine Learning for
Text and Images at NIPS 2001.

