
Improvements in Automatic Thesaurus Extraction

James R. Curran and Marc Moens
Institute for Communicating and Collaborative Systems

University of Edinburgh
2 Buccleuch Place, Edinburgh EH8 9LW

United Kingdom�
jamesc,marc � @cogsci.ed.ac.uk

Abstract

The use of semantic resources is com-
mon in modern NLP systems, but methods
to extract lexical semantics have only re-
cently begun to perform well enough for
practical use. We evaluate existing and
new similarity metrics for thesaurus ex-
traction, and experiment with the trade-
off between extraction performance and
efficiency. We propose an approximation
algorithm, based on canonical attributes
and coarse- and fine-grained matching,
that reduces the time complexity and ex-
ecution time of thesaurus extraction with
only a marginal performance penalty.

1 Introduction

Thesauri have traditionally been used in information
retrieval tasks to expand words in queries with syn-
onymous terms (e.g. Ruge, (1997)). Since the de-
velopment of WordNet (Fellbaum, 1998) and large
electronic thesauri, information from semantic re-
sources is regularly leveraged to solve NLP prob-
lems. These tasks include collocation discovery
(Pearce, 2001), smoothing and model estimation
(Brown et al., 1992; Clark and Weir, 2001) and text
classification (Baker and McCallum, 1998).

Unfortunately, thesauri are expensive and time-
consuming to create manually, and tend to suffer
from problems of bias, inconsistency, and limited
coverage. In addition, thesaurus compilers cannot
keep up with constantly evolving language use and
cannot afford to build new thesauri for the many sub-
domains that NLP techniques are being applied to.

There is a clear need for methods to extract thesauri
automatically or tools that assist in the manual cre-
ation and updating of these semantic resources.

Much of the existing work on thesaurus extraction
and word clustering is based on the observation that
related terms will appear in similar contexts. These
systems differ primarily in their definition of “con-
text” and the way they calculate similarity from the
contexts each term appears in.

Most systems extract co-occurrence and syntactic
information from the words surrounding the target
term, which is then converted into a vector-space
representation of the contexts that each target term
appears in (Pereira et al., 1993; Ruge, 1997; Lin,
1998b). Other systems take the whole document
as the context and consider term co-occurrence at
the document level (Crouch, 1988; Sanderson and
Croft, 1999). Once these contexts have been de-
fined, these systems then use clustering or nearest
neighbour methods to find similar terms.

Alternatively, some systems are based on the ob-
servation that related terms appear together in par-
ticular contexts. These systems extract related terms
directly by recognising linguistic patterns (e.g. X, Y
and other Zs) which link synonyms and hyponyms
(Hearst, 1992; Caraballo, 1999).

Our previous work (Curran and Moens, 2002) has
evaluated thesaurus extraction performance and effi-
ciency using several different context models. In this
paper, we evaluate some existing similarity metrics
and propose and motivate a new metric which out-
performs the existing metrics. We also present an
approximation algorithm that bounds the time com-
plexity of pairwise thesaurus extraction. This re-
sults in a significant reduction in runtime with only
a marginal performance penalty in our experiments.

 July 2002, pp. 59-66. Association for Computational Linguistics.
 ACL Special Interest Group on the Lexicon (SIGLEX), Philadelphia,
 Unsupervised Lexical Acquisition: Proceedings of the Workshop of the

2 Automatic Thesaurus Extraction

Vector-space thesaurus extraction systems can be
separated into two components. The first compo-
nent extracts the contexts from raw text and com-
piles them into a statistical description of the con-
texts each potential thesaurus term appears in. Some
systems define the context as a window of words
surrounding each thesaurus term (McDonald, 2000).
Many systems extract grammatical relations using
either a broad coverage parser (Lin, 1998a) or shal-
low statistical tools (Grefenstette, 1994; Curran and
Moens, 2002). Our experiments use a shallow rela-
tion extractor based on (Grefenstette, 1994).

We define a context relation instance as a tuple
(w, r,w′) where w is the thesaurus term, which oc-
curs in some grammatical relation r with another
word w′ in the sentence. We refer to the tuple (r,w′)
as an attribute of w. For example, the tuple (dog,

direct-obj, walk) indicates that the term dog was
the direct object of the verb walk.

Our relation extractor begins with a Naı̈ve Bayes
POS tagger and chunker. After the raw text has
been tagged and chunked, noun phrases separated
by prepositions and conjunctions are concatenated,
and the relation extracting algorithm is run over each
sentence. This consists of four passes over the sen-
tence, associating each noun with the modifiers and
verbs from the syntactic contexts they appear in:

1. nouns with pre-modifiers (left to right)

2. nouns with post-modifiers (right to left)

3. verbs with subjects/objects (right to left)

4. verbs with subjects/objects (left to right)

This results in tuples representing the contexts:

1. term is the subject of a verb

2. term is the (direct/indirect) object of a verb

3. term is modified by a noun or adjective

4. term is modified by a prepositional phrase

The relation tuple is then converted to root form
using the Sussex morphological analyser (Minnen
et al., 2000) and the POS tags are removed. The
relations for each term are collected together and
counted, producing a context vector of attributes and

(adjective, good) 2005
(adjective, faintest) 89
(direct-obj, have) 1836
(indirect-obj, toy) 74
(adjective, preconceived) 42
(adjective, foggiest) 15

Figure 1: Example attributes of the noun idea

their frequencies in the corpus. Figure 1 shows some
example attributes for idea.

The second system component performs nearest-
neighbour or cluster analysis to determine which
terms are similar based on their context vectors.
Both methods require a function that calculates the
similarity between context vectors. For experimen-
tal analysis we have decomposed this function into
measure and weight functions. The measure func-
tion calculates the similarity between two weighted
context vectors and the weight function calculates a
weight from the raw frequency information for each
context relation. The primary experiments in this
paper evaluate the performance of various existing
and new measure and weight functions, which are
described in the next section.

The simplest algorithm for thesaurus extraction is
nearest-neighbour comparison, which involves pair-
wise vector comparison of the target with every ex-
tracted term. Given n terms and up to m attributes
for each term, the asymptotic time complexity of
nearest-neighbour thesaurus extraction is O(n2m).
This is very expensive with even a moderate vocab-
ulary and small attribute vectors. The number of
terms can be reduced by introducing a minimum cut-
off that ignores potential synonyms with a frequency
less than the cutoff, which for our experiments was
5. Section 5 reports on the trade-off between the
minimum cutoff and execution time.

3 Experiments

Early experiments in thesaurus extraction (Grefen-
stette, 1994) suffered from the limited size of avail-
able corpora, but more recent experiments have
used much larger corpora with greater success (Lin,
1998a). For these experiments we ran our relation
extractor over the British National Corpus (BNC)
consisting of 114 million words in 6.2 million sen-
tences. The POS tagging and chunking took 159
minutes, and the relation extraction took an addi-

SETCOSINE |(wm,∗,∗)∩(wn,∗,∗)|√
|(wm,∗,∗)|×|(wn,∗,∗)|

COSINE
∑

(r,w′) wgt(wm,∗r,∗w′)×wgt(wn,∗r ,∗w′)√∑
wgt(wm,∗,∗)2×

∑
wgt(wn,∗,∗)2

SETDICE 2|(wm,∗,∗)∩(wn,∗,∗)|
|(wm,∗,∗)|+|(wn,∗,∗)|

DICE
∑

(r,w′) wgt(wm,∗r,∗w′)×wgt(wn,∗r ,∗w′)∑
(r,w′) wgt(wm,∗r,∗w′)+wgt(wn,∗r ,∗w′)

DICE† 2
∑

(r,w′) min(wgt(wm,∗r ,∗w′),wgt(wn,∗r,∗w′))∑
(r,w′) wgt(wm,∗r,∗w′)+wgt(wn,∗r ,∗w′)

SETJACCARD |(wm,∗,∗)∩(wn,∗,∗)|
|(wm,∗,∗)∪(wn,∗,∗)|

JACCARD
∑

(r,w′) min(wgt(wm,∗r,∗w′),wgt(wn,∗r,∗w′))∑
(r,w′) max(wgt(wm,∗r,∗w′),wgt(wn,∗r ,∗w′))

JACCARD†
∑

(r,w′) wgt(wm,∗r,∗w′)×wgt(wn,∗r ,∗w′)∑
(r,w′) wgt(wm,∗r,∗w′)+wgt(wn,∗r ,∗w′)

LIN
∑

(r,w′) wgt(wm,∗r,∗w′)+wgt(wn,∗r ,∗w′)∑
wgt(wm,∗,∗)+

∑
wgt(wn,∗,∗)

Table 1: Measure functions evaluated

tional 7.5 minutes. The resultant representation con-
tained a total of 28 million relation occurrences over
10 million different relations.

We describe the functions evaluated in these ex-
periments using an extension of the asterisk notation
used by Lin (1998a), where an asterisk indicates a
set ranging over all existing values of that variable.
For example, the set of attributes of the term w is:

(w, ∗, ∗) ≡ {(r,w′) | ∃(w, r,w′)}

For convenience, we further extend the notation for
weighted attribute vectors. A subscripted asterisk
indicates that the variables are bound together:

∑

(r,w′)

wgt(wm, ∗r, ∗w′) × wgt(wn, ∗r, ∗w′)

which is a notational abbreviation of:
∑

(r,w′)∈(wm,∗,∗)∩(wn,∗,∗)
wgt(wm, r,w′) × wgt(wn, r,w′)

For weight functions we use similar notation:

f (w, ∗, ∗) ≡
∑

(r,w′)∈(w,∗,∗)
f (w, r,w′)

n(w, ∗, ∗) ≡ |(w, ∗, ∗)|
Nw ≡ |{w | ∃(w, ∗, ∗) , ∅}|

Table 1 defines the measure functions evaluated in
these experiments. The simplest measure func-
tions (prefix SET) use the attribute set model from

IDENTITY 1.0
CHI2 cf. Manning and Schütze (1999)

LR cf. Manning and Schütze (1999)

LIN98A log(f (w,r,w′) f (∗,r,∗)
f (∗,r,w′) f (w,r,∗))

LIN98B − log(n(∗,r,w′)
Nw

)

DICE
2p(w,r,w′)

p(w,∗,∗)+p(∗,r,w′)

GREF94 log2(f (w,r,w′)+1)
log2(n(∗,r,w′)+1)

MI log(p(w,r,w′)
p(w,∗,∗)p(∗,r,w′))

TTEST
p(w,r,w′)−p(∗,r,w′)p(w,∗,∗)√

p(∗,r,w′)p(w,∗,∗)

Table 2: Weight functions evaluated

IR and are taken from Manning and Schütze (1999),
pp. 299. When these are used with weighted at-
tributes, if the weight is greater than zero, then it is
considered in the set. Other measures, such as LIN

and JACCARD have previously been used for the-
saurus extraction (Lin, 1998a; Grefenstette, 1994).
Finally, we have generalised some set measures us-
ing similar reasoning to Grefenstette (1994). Alter-
native generalisations are marked with a dagger.

These experiments also cover a range of weight
functions as defined in Table 2. The weight func-
tions LIN98A, LIN98B, and GREF94 are taken
from existing systems (Lin, 1998a; Lin, 1998b;
Grefenstette, 1994). Our proposed weight func-
tions are motivated by our intuition that highly pre-
dictive attributes are strong collocations with their
terms. Thus, we have implemented many of the
statistics described in the Collocations chapter of
Manning and Schütze (1999), including the T-Test,
χ

2-Test, Likelihood Ratio, and Mutual Informa-
tion. Some functions (suffix LOG) have an extra
log2(f (w, r,w′) + 1) factor to promote the influence
of higher frequency attributes.

4 Evaluation

For the purposes of evaluation, we selected 70
single-word noun terms for thesaurus extraction. To
avoid sample bias, the words were randomly se-
lected from WordNet such that they covered a range
of values for the following word properties:

Word PTB Rank PTB # BNC # Reuters # Macquarie # WordNet # Min / Max WordNet subtree roots
company 38 4076 52779 456580 8 9 3 / 6 entity, group, state
interest 138 919 37454 146043 12 12 3 / 8 abs., act, group, poss., state
problem 418 622 56361 63333 4 3 3 / 7 abs., psych., state
change 681 406 35641 55081 8 10 2 / 12 abs., act, entity, event, phenom.
idea 1227 134 32754 13527 10 5 3 / 7 entity, psych.
radio 2278 59 9046 20913 2 3 6 / 8 entity
star 5130 29 8301 6586 11 7 4 / 8 abs., entity

knowledge 5197 19 14580 2813 3 1 1 / 1 psych.
pants 13264 5 429 282 3 2 6 / 9 entity

tightness 30817 1 119 2020 5 3 4 / 5 abs., state

Table 3: Examples of the 70 thesaurus evaluation terms

frequency Penn Treebank and BNC frequencies;

number of senses WordNet and Macquarie senses;

specificity depth in the WordNet hierarchy;

concreteness distribution across WordNet subtrees.

Table 3 lists some example terms with frequency
and frequency rank data from the PTB, BNC and
REUTERS, as well as the number of senses in Word-
Net and Macquarie, and their maximum and mini-
mum depth in the WordNet hierarchy. For each term
we extracted a thesaurus entry with 200 potential
synonyms and their similarity scores.

The simplest method of evaluation is direct com-
parison of the extracted thesaurus with a manually-
created gold standard (Grefenstette, 1994). How-
ever, on small corpora, rare direct matches provide
limited information for evaluation, and thesaurus
coverage is a problem. Our evaluation uses a com-
bination of three electronic thesauri: the Macquarie
(Bernard, 1990), Roget’s (Roget, 1911) and Moby
(Ward, 1996) thesauri. Roget’s and Macquarie are
topic ordered and the Moby thesaurus is head or-
dered. As the extracted thesauri do not distinguish
between senses, we transform Roget’s and Mac-
quarie into head ordered format by conflating the
sense sets containing each term. For the 70 terms
we create a gold standard from the union of the syn-
onyms from the three thesauri.

With this gold standard in place, it is possible
to use precision and recall measures to evaluate the
quality of the extracted thesaurus. To help overcome
the problems of direct comparisons we use several
measures of system performance: direct matches
(DIRECT), inverse rank (INVR), and precision of the
top n synonyms (P(n)), for n = 1, 5 and 10.

Measure DIRECT P(1) P(5) P(10) INVR
SETCOSINE 1276 14% 15% 15% 0.76

SETDICE 1496 63% 44% 34% 1.69
SETJACCARD 1458 59% 43% 34% 1.63

COSINE 1276 14% 15% 15% 0.76
DICE 1536 19% 20% 20% 0.97

DICE† 1916 76% 52% 45% 2.10
JACCARD 1916 76% 52% 45% 2.10

JACCARD† 1745 40% 30% 28% 1.36
LIN 1826 60% 46% 40% 1.85

Table 4: Evaluation of measure functions

INVR is the sum of the inverse rank of each
matching synonym, e.g. matching synonyms at
ranks 3, 5 and 28 give an inverse rank score of
1
3 +

1
5 +

1
28 , and with at most 200 synonyms, the max-

imum INVR score is 5.878. Precision of the top n is
the percentage of matching synonyms in the top n
extracted synonyms. There are a total of 23207 syn-
onyms for the 70 terms in the gold standard. Each
measure is averaged over the extracted synonym lists
for all 70 thesaurus terms.

5 Results

For computational practicality, we assume that the
performance behaviour of measure and weight func-
tions are independent of each other. Therefore, we
have evaluated the weight functions using the JAC-
CARD measure, and evaluated the measure functions
using the TTEST weight because they produced the
best results in our previous experiments.

Table 4 presents the results of evaluating the mea-
sure functions. The best performance across all mea-
sures was shared by JACCARD and DICE†, which
produced identical results for the 70 words. DICE†
is easier to compute and is thus the preferred mea-
sure function.

Table 5 presents the results of evaluating the

Weight DIRECT P(1) P(5) P(10) INVR
CHI2 1623 33% 27% 26% 1.24
DICE 1480 61% 45% 34% 1.70

DICELOG 1498 67% 45% 35% 1.73
GREF94 1258 54% 38% 29% 1.46

IDENTITY 1228 46% 34% 29% 1.33
LR 1510 53% 39% 32% 1.58

LIN98A 1735 73% 50% 42% 1.96
LIN98B 1271 47% 34% 30% 1.37

MI 1736 66% 49% 42% 1.92
MILOG 1841 71% 52% 43% 2.05
TTEST 1916 76% 52% 45% 2.10

TTESTLOG 1865 70% 49% 41% 1.99

Table 5: Evaluation of bounded weight functions

Weight DIRECT P(1) P(5) P(10) INVR
MI± 1511 59% 44% 39% 1.74

MILOG± 1566 61% 46% 41% 1.84
TTEST± 1670 67% 50% 43% 1.96

TTESTLOG± 1532 63% 50% 42% 1.89

Table 6: Evaluation of unbounded weight functions

weight functions. Here TTEST significantly outper-
formed the other weight functions, which supports
our intuition that good context descriptors are also
strong collocates of the term. Surprisingly, the other
collocation discovery functions did not perform as
well, even though TTEST is not the most favoured
for collocation discovery because of its behaviour at
low frequency counts.

One difficulty with weight functions involving
logarithms or differences is that they can be nega-
tive. The results in Table 6 show that weight func-
tions that are not bounded below by zero do not per-
form as well on thesaurus extraction. However, un-
bounded weights do produce interesting and unex-
pected results: they tend to return misspellings of
the term and synonyms, abbreviations and lower fre-
quency synonyms. For instance, TTEST± returned
Co, Co. and PLC for company, but they do not ap-
pear in the synonyms extracted with TTEST. The
unbounded weights also extracted more hyponyms,
such as corporation names for company, includ-
ing Kodak and Exxon. Finally unbounded weights
tended to promote the rankings of synonyms from
minority senses because the frequent senses are de-
moted by negative weights. For example, TTEST±

returned writings, painting, fieldwork, essay

and masterpiece as the best synonyms for work,
whereas TTEST returned study, research, job,
activity and life.

0 25 50 75 100 125 150 175 200
Minimum Frequency Cutoff

1600

1700

1800

1900

2000

D
ir

ec
t M

at
ch

es

TTest matches
Lin98b matches

500

1000

1500

2000

2500

3000

R
un

 T
im

e
(s

ec
on

ds
)

TTest time
Lin98b time

Figure 2: Performance against minimum cutoff

Introducing a minimum cutoff that ignores low
frequency potential synonyms can eliminate many
unnecessary comparisons. Figure 2 presents both
the performance of the system using direct match
evaluation (left axis) and execution times (right axis)
for increasing cutoffs. This test was performed using
JACCARD and the TTEST and LIN98A weight func-
tions. The first feature of note is that as we increase
the minimum cutoff to 30, the direct match results
improve for TTEST, which is probably a result of
the TTEST weakness on low frequency counts. Ini-
tially, the execution time is rapidly reduced by small
increments of the minimum cutoff. This is because
Zipf’s law applies to relations, and so by small incre-
ments of the cutoff we eliminate many terms from
the tail of the distribution. There are only 29,737
terms when the cutoff is 30; 88,926 terms when the
cutoff is 5; and 246,067 without a cutoff, and be-
cause the extraction algorithm is O(n2m), this re-
sults in significant efficiency gains. Since extracting
only 70 thesaurus terms takes about 43 minutes with
a minimum cutoff of 5, the efficiency/performance
trade-off is particularly important from the perspec-
tive of implementing a practical extraction system.

6 Efficiency

Even with a minimum cutoff of 30 as a reason-
able compromise between speed and accuracy, ex-
tracting a thesaurus for 70 terms takes approxi-
mately 20 minutes. If we want to extract a com-
plete thesaurus for 29,737 terms left after the cut-
off has been applied, it would take approximately
one full week of processing. Given that the size
of the training corpus could be much larger (cf.

Curran and Moens (2002)), which would increase
both number of attributes for each term and the total
number of terms above the minimum cutoff, this is
not nearly fast enough. The problem is that the time
complexity of thesaurus extraction is not practically
scalable to significantly larger corpora.

Although the minimum cutoff helps by reduc-
ing n to a reasonably small value, it does not con-
strain m in any way. In fact, using a cutoff in-
creases the average value of m across the terms be-
cause it removes low frequency terms with few at-
tributes. For instance, the frequent company ap-
pears in 11360 grammatical relations, with a total
frequency of 69240 occurrences, whereas the infre-
quent pants appears in only 401 relations with a to-
tal frequency of 655 occurrences.

The problem is that for every comparison, the al-
gorithm must examine the length of both attribute
vectors. Grefenstette (1994) uses bit signatures to
test for shared attributes, but because of the high fre-
quency of the most common attributes, this does not
skip many comparisons. Our system keeps track of
the sum of the remaining vector which is a signifi-
cant optimisation, but comes at the cost of increased
representation size. However, what is needed is
some algorithmic reduction that bounds the number
of full O(m) vector comparisons performed.

7 Approximation Algorithm

One way of bounding the complexity is to perform
an approximate comparison first. If the approxima-
tion returns a positive result, then the algorithm per-
forms the full comparison. We can do this by in-
troducing another, much shorter vector of canoni-
cal attributes, with a bounded length k. If our ap-
proximate comparison returns at most p positive re-
sults for each term, then the time complexity be-
comes O(n2k + npm), which, since k is constant, is
O(n2

+ npm). So as long as we find an approxima-
tion function and vector such that p � n, the system
will run much faster and be much more scalable in
m, the number of attributes. However, p � n im-
plies that we are discarding a very large number of
potential matches and so there will be a performance
penalty. This trade-off is governed by the number of
the canonical attributes and how representative they
are of the full attribute vector, and thus the term it-

(adjective, smarty) 3 0.0524
(direct-obj, pee) 3 0.0443
(noun-mod, loon) 5 0.0437
(direct-obj, wet) 14 0.0370
(direct-obj, scare) 10 0.0263
(adjective, jogging) 5 0.0246
(indirect-obj, piss) 4 0.0215
(noun-mod, ski) 14 0.0201

Figure 3: The top weighted attributes of pants

(direct-obj, wet) 14 0.0370
(direct-obj, scare) 10 0.0263
(direct-obj, wear) 17 0.0071
(direct-obj, keep) 7 0.0016
(direct-obj, get) 5 0.0004

Figure 4: Canonical attributes for pants

self. It is also dependent on the functions used to
compare the canonical attribute vectors.

The canonical vector must contain attributes that
best describe the thesaurus term in a bounded num-
ber of entries. The obvious first choice is the
most strongly weighted attributes from the full vec-
tor. Figure 3 shows some of the most strongly
weighted attributes for pants with their frequencies
and weights. However, these attributes, although
strongly correlated with pants, are in fact too spe-
cific and idiomatic to be a good summary, because
there are very few other words with similar canoni-
cal attributes. For example, (adjective, smarty)

only appears with two other terms (bun and number)
in the entire corpus. The heuristic is so aggressive
that too few positive approximate matches result.

To alleviate this problem we filter the attributes so
that only strongly weighted subject, direct-obj
and indirect-obj relations are included in the
canonical vectors. This is because in general they
constrain the terms more and partake in fewer id-
iomatic collocations with the terms. So the gen-
eral principle is the most descriptive verb relations
constrain the search for possible synonyms, and the
other modifiers provide finer grain distinctions used
to rank possible synonyms. Figure 4 shows the
5 canonical attributes for pants. This canonical
vector is a better general description of the term
pants, since similar terms are likely to appear as
the direct object of wear, even though it still con-
tains the idiomatic attributes (direct-obj, wet)

and (direct-obj, scare).
One final difficulty this example shows is that at-

Word DIRECT BIG / MAX P(1) P(5) P(10) INVR BIG / MAX

company 27 110 / 355 100 % 80 % 60 % 2.60 2.71 / 6.45
interest 64 232 / 730 100 % 80 % 70 % 3.19 3.45 / 7.17
problem 25 82 / 250 100 % 60 % 50 % 2.46 2.52 / 6.10
change 31 104 / 544 100 % 60 % 40 % 2.35 2.44 / 6.88
idea 59 170 / 434 100 % 100 % 80 % 3.67 3.87 / 6.65
radio 19 45 / 177 100 % 60 % 60 % 2.31 2.35 / 5.76
star 31 141 / 569 100 % 60 % 60 % 2.36 2.49 / 6.92

knowledge 26 56 / 151 100 % 80 % 70 % 2.50 2.55 / 5.60
pants 12 13 / 222 100 % 80 % 50 % 2.40 2.40 / 5.98

tightness 3 3 / 152 0 % 0 % 0 % 0.03 0.03 / 5.60
Average (over 70) 26 86 / 332 76 % 52 % 44 % 2.08 2.17 / 6.13

Table 7: Example performance using techniques described in this paper

tributes like (direct-obj, get) are not informa-
tive. We know this because (direct-obj, get) ap-
pears with 8769 different terms, which means the
algorithm may perform a large number of unnec-
essary full comparisons since (direct-obj, get)

could be a canonical attribute for many terms. To
avoid this problem, we apply a maximum cutoff on
the number of terms the attribute appears with.

With limited experimentation, we have found that
TTESTLOG is the best weight function for selecting
canonical attributes. This may be because the extra
log2(f (w, r,w′) + 1) factor encodes the desired bias
towards relatively frequent canonical attributes. If a
canonical attribute is shared by the two terms, then
our algorithm performs the full comparison.

Figure 5 shows system performance and speed,
as canonical vector size is increased, with the maxi-
mum cutoff at 4000, 8000, and 10,000. As an exam-
ple, with a maximum cutoff of 10,000 and a canoni-
cal vector size of 70, the total DIRECT score of 1841
represents a 3.9% performance penalty over full ex-
traction, for an 89% reduction in execution time. Ta-
ble 7 presents the example term results using the
techniques we have described: JACCARD measure
and TTEST weight functions; minimum cutoff of 30;
and approximation algorithm with canonical vector
size of 100 with TTESTLOG weighting. The BIG

columns show the previous measure results if we re-
turned 10,000 synonyms, and MAX gives the results
for a comparison of the gold standard against itself.

8 Conclusion

In these experiments we have proposed new mea-
sure and weight functions that, as our evaluation has
shown, significantly outperform existing similarity

0 20 40 60 80 100 120 140 160
Canonical Set Size

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

D
ir

ec
t M

at
ch

es
MaxCutoff 4000 matches
MaxCutoff 8000 matches
MaxCutoff 10000 matches

0

50

100

150

200

250

300

350

400

450

500

R
un

 T
im

e
(s

ec
on

ds
)

MaxCutoff 4000 times
MaxCutoff 8000 times
MaxCutoff 10000 times

Figure 5: Performance against canonical set size

functions. The list of measure and weight functions
we compared against is not complete, and we hope
to add other functions to provide a general frame-
work for thesaurus extraction experimentation. We
would also like to expand our evaluation to include
direct methods used by others (Lin, 1998a) and us-
ing the extracted thesaurus in NLP tasks.

We have also investigated the speed/performance
trade-off using frequency cutoffs. This has lead to
the proposal of a new approximate comparison algo-
rithm based on canonical attributes and a process of
coarse- and fine-grained comparisons. This approx-
imation algorithm is dramatically faster than simple
pairwise comparison, with only a small performance
penalty, which means that complete thesaurus ex-
traction on large corpora is now feasible. Further,
the canonical vector parameters allow for control of
the speed/performance trade-off. These experiments
show that large-scale thesaurus extraction is practi-
cal, and although results are not yet comparable with
manually-constructed thesauri, may now be accurate
enough to be useful for some NLP tasks.

Acknowledgements

We would like to thank Stephen Clark, Caroline
Sporleder, Tara Murphy and the anonymous review-
ers for their comments on drafts of this paper. This
research is supported by Commonwealth and Syd-
ney University Travelling scholarships.

References
L. Douglas Baker and Andrew McCallum. 1998. Distri-

butional clustering of words for text classification. In
Proceedings of the 21st annual international ACM SI-
GIR conference on Research and Development in In-
formation Retrieval, pages 96–103, Melbourne, Aus-
tralia, 24–28 August.

John R. L. Bernard, editor. 1990. The Macquarie Ency-
clopedic Thesaurus. The Macquarie Library, Sydney,
Australia.

Peter F. Brown, Vincent J. Della Pietra, Peter V. deSouza,
Jennifer C. Lai, and Robert L. Mercer. 1992. Class-
based n-gram models of natural language. Computa-
tional Linguistics, 18(4):467–479, December.

Sharon A. Caraballo. 1999. Automatic construction of
a hypernym-labeled noun hierarchy from text. In Pro-
ceedings of the 37th annual meeting of the Association
for Computational Linguistics, pages 120–126, Col-
lege Park, MD USA, 20–26 June.

Stephen Clark and David Weir. 2001. Class-based prob-
ability estimation using a semantic hierarchy. In Pro-
ceedings of the Second Meeting of the North American
Chapter of the Association for Computational Linguis-
tics, pages 95–102, Pittsburgh, PA USA, 2–7 June.

Carolyn J. Crouch. 1988. Construction of a dynamic the-
saurus and its use for associated information retrieval.
In Proceedings of the eleventh international confer-
ence on Research and Development in Information Re-
trieval, pages 309–320, Grenoble, France, 13–15 June.

James R. Curran and Marc Moens. 2002. Scaling con-
text space. In Proceedings of the 40th annual meet-
ing of the Association for Computational Linguistics,
Philadelphia, PA USA, 7–12 July. (to appear).

Cristiane Fellbaum, editor. 1998. WordNet: an elec-
tronic lexical database. The MIT Press, Cambridge,
MA USA.

Gregory Grefenstette. 1994. Explorations in Automatic
Thesaurus Discovery. Kluwer Academic Publishers,
Boston, USA.

Marti A. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proceedings of the
14th international conference on Computational Lin-
guistics, pages 539–545, Nantes, France, 23–28 July.

Dekang Lin. 1998a. Automatic retrieval and cluster-
ing of similar words. In Proceedings of the 17th In-
ternational Conference on Computational Linguistics
and of the 36th Annual Meeting of the Association for
Computational Linguistics, pages 768–774, Montréal,
Québec, Canada, 10–14 August.

Dekang Lin. 1998b. An information-theoretic definition
of similarity. In Proceedings of the Fifteen Interna-
tional Conference on Machine Learning, pages 296–
304, Madison, WI USA, 24–27 July.

Christopher D. Manning and Hinrich Schütze. 1999.
Foundations of Statistical Natural Language Process-
ing. MIT Press, Cambridge, MA USA.

Scott McDonald. 2000. Environmental determinants of
lexical processing effort. Ph.D. thesis, University of
Edinburgh.

Guido Minnen, John Carroll, and Darren Pearce. 2000.
Robust applied morphological generation. In In Pro-
ceedings of the First International Natural Language
Generation Conference, pages 201–208, 12–16 June.

Darren Pearce. 2001. Synonymy in collocation extrac-
tion. In Workshop on WordNet and Other Lexical
Resources: Applications, Extensions and Customiza-
tions, (NAACL 2001), pages 41–46, Pittsburgh, PA
USA, 2–7 June.

Fernando Pereira, Naftali Tishby, and Lillian Lee. 1993.
Distributional clustering of English words. In Pro-
ceedings of the 31st annual meeting of the Associ-
ation for Computational Linguistics, pages 183–190,
Columbus, Ohio USA, 22–26 June.

Peter Roget. 1911. Thesaurus of English words and
phrases. Longmans, Green and Co., London, UK.

Gerda Ruge. 1997. Automatic detection of thesaurus re-
lations for information retrieval applications. In Foun-
dations of Computer Science: Potential - Theory -
Cognition, Lecture Notes in Computer Science, vol-
ume LNCS 1337, pages 499–506. Springer Verlag,
Berlin, Germany.

Mark Sanderson and Bruce Croft. 1999. Deriving con-
cept hierarchies from text. In Proceedings of the
22nd annual international ACM SIGIR conference on
Research and Development in Information Retrieval,
pages 206–213, Berkeley, CA USA, 15–19 August.

Grady Ward. 1996. Moby Thesaurus. Moby Project.

