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Abstract

This paper describes a system for the un-
supervised learning of morphological suf-
fixes and stems from word lists. The sys-
tem is composed of a generative probabil-
ity model and a novel search algorithm.
By examining morphologically rich sub-
sets of an input lexicon, the search identi-
fies highly productive paradigms. Quanti-
tative results are shown by measuring the
accuracy of the morphological relations
identified. Experiments in English and
Polish, as well as comparisons with other
recent unsupervised morphology learning
algorithms demonstrate the effectiveness
of this technique.

1 Introduction

There are numerous languages for which no anno-
tated corpora exist but for which there exists an
abundance of unannotated orthographic text. It is
extremely time-consuming and expensive to cre-
ate a corpus annotated for morphological structure
by hand. Furthermore, a preliminary, conservative
analysis of a language’s morphology would be use-
ful in discovering linguistic structure beyond the
word level. For instance, morphology may provide
information about the syntactic categories to which
words belong, knowledge which could be used by
parsing algorithms. From a cognitive perspective, it
is crucial to determine whether the amount of infor-
mation found in pure speech is sufficient for discov-
ering the level of morphological structure that chil-
dren are able to find without any direct supervision.

Thus, we believe the task of automatically discover-
ing a conservative estimate of the orthographically-
based morphological structure in a language inde-
pendent manner is a useful one.

Additionally, an initial description of a lan-
guage’s morphology could provide a starting
point for supervised morphological mod-
els, such as the memory-based algorithm of
Van den Bosch and Daelemans (1999), which can-
not be used on languages for which annotated data
is unavailable.

During the last decade several minimally super-
vised and unsupervised algorithms that address the
problem have been developed. Gaussier (1999) de-
scribes an explicitly probabilistic system that is
based primarily on spellings. It is an unsupervised
algorithm, but requires the tweaking of parameters
to tune it to the target language. Brent (1993) and
Brent et al. (1995), described Minimum Description
Length, (MDL), systems. One approach used only
the spellings of the words; another attempted to find
the set of suffixes in the language used the syntactic
categories from a tagged corpus as well. While both
are unsupervised, the latter is not knowledge free
and requires data that is tagged for part of speech,
making it less suitable for analyzing under examined
languages.

A similar MDL approach is described by
Goldsmith (2001). It is ideal in being both knowl-
edge free and unsupervised. The difficulty lies in
Goldsmith’s liberal definition of morphology which
he uses to evaluate with; a more conservative ap-
proach would seem to be a better hypothesis to boot-
strap from.

We previously, Snover and Brent (2001), pre-
sented a very conservative unsupervised system,

                     July 2002, pp. 11-20.  Association for Computational Linguistics.
        ACL Special Interest Group in Computational Phonology (SIGPHON), Philadelphia,
       Morphological and Phonological Learning: Proceedings of the 6th Workshop of the



which uses a generative probability model and a hill
climbing search. No quantitative studies had been
conducted on it, and it appears that the hill-climbing
search used limits that system’s usefulness. We have
developed a system based on a novel search and
an extension of the previous probability model of
Snover and Brent.

The use of probabilistic models is equivalent to
minimum description length models. Searching for
the most probable hypothesis is just as compelling
as searching for the smallest hypothesis and a model
formulated in one framework can, through some
mathematical manipulation, be reformulated into the
other framework. By taking the negative log of a
probability distribution, one can find the number of
bits required to encode a value according to that dis-
tribution. Our system does not use the minimum de-
scription length principle but could easily be refor-
mulated to do so.

Our goal in designing this system, is to be able to
detect the final stem and suffix break of each word
given a list of the most common words in a language.
We do not distinguish between derivational and in-
flectional suffixation or between the notion of a stem
and a base. Our probability model differs slightly
from that of Snover and Brent (2001), but the main
difference is in the search technique. We find and
analyze subsets of the lexicon to find good solutions
for a small set of words. We then combine these sub-
hypotheses to form a morphological analysis of the
entire input lexicon. We do not attempt to learn pre-
fixes, infixes, or other more complex morphological
systems, such as template-based morphology: we
are attempting to discover the component of many
morphological systems that is strictly concatenative.
Finally, our model does not currently have a mecha-
nism to deal with multiple interpretations of a word,
or to deal with morphological ambiguity.

2 Probability Model

This section introduces a prior probability distribu-
tion over the space of all hypotheses, where a hy-
pothesis is a set of words, each with morphological
split separating the stem and suffix. The distribution
is based on a seven-model model for the generation
of hypothesis, which is heavily based upon the prob-
ability model presented in Snover and Brent (2001),

with steps 1-3 of the generative procedure being the
same. The two models diverge at step 4 with the
pairing of stems and suffixes. Whereas the previ-
ous model paired individual stems with suffixes, our
new model uses the abstract structure of paradigms.
A paradigm is a set of suffixes and the stems that
attach to those suffixes and no others. Each stem is
in exactly one paradigm, and each paradigm has at
least one stem. This is an important improvement
to the model as it takes into account the patterns in
which stems and suffixes attach.

The seven steps are presented below, along with
their probability distributions and a running exam-
ple of how a hypothesis could be generated by this
process. By taking the product over the distributions
from all of the steps of the generative process, one
can calculate the prior probability for any given hy-
pothesis. What is described in this section is a math-
ematical model and not an algorithm intended to be
run.

1. Choose the number of stems, � , according to
the distribution:����� ����� 	
�� ����� � (1)

The
	�� 
 � term normalizes the inverse-squared

distribution on the positive integers. The num-
ber of suffixes, � is chosen according to the
same probability distribution. The symbols M
for steMs and X for suffiXes are used through-
out this paper.
Example: � = 5. � = 3.

2. For each stem � , choose its length in letters ���� ,
according to the inverse squared distribution.
Assuming that the lengths are chosen indepen-
dently and multiplying together their probabil-
ities we have:����� � ��� �����  	
�� ��� � �"!$# ��� �� � � (2)

The distribution for the lengths of the suffixes,��% , is similar to (2), differing only in that suf-
fixes of length 0 are allowed, by offsetting the
length by one.
Example: � � = 4, 4, 4, 3, 3. � % = 2, 0, 1.



3. Let � be the alphabet, and let ��� #������ ��� 	
��� be a
probability distribution on � . For each � from
1 to � , generate stem � by choosing � �� let-
ters at random, according to the probabilities��� # ����� � � 	�� � . Call the resulting stem set STEM.
The suffix set SUFF is generated in the same
manner. The probability of any character,  , be-
ing chosen is obtained from a maximum likeli-
hood estimate: ���� ��� ��
where � � is the count of  among all the hypoth-
esized stems and suffixes and

� ��� � � � .
The joint probability of the hypothesized stem
and suffix sets is defined by the distribution:�����

STEM � SUFF � ��� � � � ��� � % �� ��� ���  ��� 	 � � �� �"!$# (3)

The factorial terms reflect the fact that the
stems and suffixes could be generated in any
order.
Example: STEM = � walk, look, door, far, cat � .
SUFF = � ed, % , s � .

4. We now choose the number of paradigms, & ,
which can range from 1 to � since each stem
is in exactly one paradigm, and each paradigm
has at least one stem. We pick & according to
the following uniform distribution:����� & � ����� ��' # (4)

Example: & = 3.

5. We choose the number of suffixes in the
paradigms, ( , according to a uniform distribu-
tion. The distribution for picking ( � , suffixes
for paradigm � is:����� ( � � �)& ��� ��
The joint probability over all paradigms, ( is
therefore:����� ( � �*& ���,+ �"!$# � ' # �  �� � + (5)

Example: ( = � 2, 1, 2 � .

6. For each paradigm � , choose the set of ( � suf-
fixes, PARA %� that the paradigm will represent.
The number of subsets of a given size is finite
so we can again use the uniform distribution.
This implies that the probability of each indi-
vidual subset of size ( � , is the inverse of the
total number of such subsets. Assuming that
the choices for each paradigm are independent:

�����
PARA % � �*&-( ��� + � !$#  �( � � ' #

�  �( � � ' + (6)

Example: PARA % # = �.% , s, ed � . PARA % � = �.%/� .
PARA% 0 = �.% , s � .

7. For each stem choose the paradigm that the
stem will belong in, according to a distribution
that favors paradigms with more stems. The
probability of choosing a paradigm � , for a stem
is calculated using a maximum likelihood esti-
mate: � PARA �� ��
where PARA �� is the set of stems in paradigm� . Assuming that all these choices are made in-
dependently yields the following:�����

PARA � � � �*& �
� + �"!$#  � PARA �� �� � � PARA 12 �

(7)

Example: PARA � # = � walk, look � . PARA � � =� far � . PARA � 0 = � door, cat � .
Combining the results of stages 6 and 7, one can

see that the running example would yield the hy-
pothesis consisting of the set of words with suffix
breaks, � walk+ % , walk+s, walk+ed, look+ % , look+s,
look+ed, far+ % , door+ % , door+s, cat+ % , cat+s � . Re-
moving the breaks in the words results in the set of
input words. To find the probability for this hypoth-
esis just take of the product of the probabilities from
equations (1) to (7).

The inverse squared distribution is used in steps 1
and 2 to simulate a relatively uniform probability



distribution over the positive integers, that slightly
favors smaller numbers. Experiments substitut-
ing the universal prior for integers, developed by
Rissanen (1989), for the inverse squared distribu-
tion, have shown that the model is not sensitive to the
exact distribution used for these steps. Only slight
differences in the some of the final hypotheses were
found, and it was unclear which of the methods pro-
duced superior results. The reason for the lack of
effect is that the two distributions are not too dis-
similar and steps 1 and 2 are not main contributors
to the probability mass of our model. Thus, for the
sake of computational simplicity we use the inverse
squared distribution for these steps.

Using this generative model, we can assign a
probability to any hypothesis. Typically one wishes
to know the probability of the hypothesis given the
data, however in our case such a distribution is not
required. Equation (8) shows how the probability of
the hypothesis given the data could be derived from
Bayes law.�����

Hyp � Data �� �����
Hyp � ����� Data � Hyp ���� �

Data � (8)

Our search only considers hypotheses consistent
with the data. The probability of the data given
the hypothesis,

�����
Data �Hyp � , is always

�
, since if

you remove the breaks from any hypothesis, the in-
put data is produced. This would not be the case if
our search considered inconsistent hypotheses. The
prior probability of the data is unknown, but is con-
stant over all hypotheses, thus the probability of
the hypothesis given the data reduces to

�����
Hyp � � � .The prior probability of the hypothesis is given by

the above generative process and, among all consis-
tent hypotheses, the one with the greatest prior prob-
ability also has the greatest posterior probability.

3 Search

This section details a novel search algorithm which
is used to find the most likely segmentation of the all
the words in the input lexicon, � . The input lexicon
is a list of words extracted from a corpus. The output
of the search is a segmentation of each of the input
words into a stem and suffix. The algorithm does not
directly attempt to find the most probable hypothesis

consistent with the input, but finds a highly probable
consistent hypothesis.

The directed search is accomplished in two steps.
First sub-hypotheses, each of which is a hypothe-
sis about a subset of the lexicon, are examined and
ranked. The � best sub-hypotheses are then incre-
mentally combined until a single sub-hypothesis re-
mains. The remainder of the input lexicon is added
to this sub-hypothesis at which point it becomes the
final hypothesis.

3.1 Ranking Sub-Hypotheses

We define the set of possible suffixes to be the set
of terminal substrings, including the empty string% , of the words in � . Each subset of the possible
suffixes has a corresponding sub-hypothesis. The
sub-hypothesis, � , corresponding to a set of suffixes
SUFF � , has the set of stems STEMS � . For each
stem � and suffix � , in � , the word ����� must
be a word in the input lexicon. STEM � is the max-
imal sized set of stems that meets this requirement.
The sub-hypothesis, � , is thus the hypothesis over
the set of words formed by all pairings of the stems
in STEM � and the suffixes in SUFF � with the cor-
responding morphological breaks. One can think of
each sub-hypothesis as initially corresponding to a
maximally filled paradigm. We only consider sub-
hypotheses which have at least two stems and two
suffixes.

For each sub-hypothesis, � , there is a correspond-
ing counter hypothesis, �� , which has the same set of
words as � , but in which all the words are hypothe-
sized to consist of the word as the stem and % as the
suffix.

We can now assign a score to each sub-hypothesis
as follows: score

� � � � ����� � � � ��� � �� � . This reflects
how much more probable � is for those words, than
the counter or null hypothesis.

The number of possible sub-hypotheses grows
considerably as the number of words increases,
causing the examination of all possible sub-
hypotheses at very large lexicon sizes to become un-
reasonable. However since we are only concerned
with finding the � best sub-hypotheses, we do not
actually need to examine every sub-hypothesis. A
variety of different search algorithms can be used to
find high scoring sub-hypotheses without significant
risk of missing any of the � best sub-hypothesis.



One can view all sub-hypotheses as nodes in a di-
rected graph. Each node, � � , is connected to another
node, ��� if and only if ��� represents a superset of the
suffixes that � � represents, which is exactly one suf-
fix greater in size than the set that � � represents. By
beginning at the node representing no suffixes, one
can apply standard graph search techniques, such as
a beam search or a best first search to find the �
best scoring nodes without visiting all nodes. While
one cannot guarantee that such approaches perform
exactly the same as examining all sub-hypotheses,
initial experiments using a beam search with a beam
size equal to � , with a � of 100, show that the �
best sub-hypotheses are found with a significant de-
crease in the number of nodes visited. The experi-
ments presented in this paper do not use these prun-
ing methods.

3.2 Combining Sub-Hypotheses

The highest � scoring sub-hypotheses are incre-
mentally combined in order to create a hypothesis
over the complete set of input words. The selection
of � should not vary from language to language and
is simply a way of limiting the computational com-
plexity of the algorithm. Changing the value of �
does not dramatically alter the results of the algo-
rithm, though higher values of � give slightly better
results. We let � be 100 in the experiments reported
here.

Let
�

be the set of the � highest scoring sub-
hypotheses. We remove from

�
the sub-hypothesis,

��� , which has the highest score. The words in ��� are
now added to each of the remaining sub-hypotheses
in
�

, and their counter hypotheses. Every sub-
hypothesis, � , and its counter, �� , in

�
are modified

such that they now contain all the words from � � with
the morphological breaks those words had in ��� . If a
word was already in � and �� and it is also in � � then
it now has the morphological break from � � , overrid-
ing whatever break was previously attributed to the
word.

All of the sub-hypotheses now need to be
rescored, as the words in them will likely have
changed. If, after rescoring, none of the sub-
hypotheses have scores greater than one, then we use
� � as our final hypothesis. Otherwise we repeat the
process of selecting ��� and adding it in. We con-
tinue doing this until all sub-hypotheses have scores

of one or less or there are no sub-hypotheses left.
The final sub-hypothesis, � � , is now converted into

a full hypothesis over all the words. All words in � ,
that are not in ��� are added to ��� with % as their suffix.
This results in a hypothesis over all the words in � .

4 Experiment and Evaluation

4.1 Experiment

We tested three unsupervised morphology learning
systems on various sized word lists from English
and Polish corpora. For English we used set A of
the Hansard corpus, which is a parallel English and
French corpus of proceedings of the Canadian Par-
liament. We were unable to find a standard corpus
for Polish and developed one from online sources.
The sources for the Polish corpus were older texts
and thus our results correspond to a slightly anti-
quated form of the language. We compared our di-
rected search system, which consists of the prob-
ability model described in Section 2 and the di-
rected search described in Section 3 with Gold-
smith’s MDL algorithm, otherwise known as Lin-
guistica1 and our previous system (2001), which
shall henceforth be referred to as the Hill Climbing
Search system. The results were then evaluated by
measuring the accuracy of the stem relations identi-
fied.

We extracted input lexicons from each corpus, ex-
cluding words containing non-alphabetic characters.
The 100 most common words in each corpus were
also excluded, since these words tend to be function
words and are not very informative for morphology.
Including the 100 most common words does not sig-
nificantly alter the results presented. The systems
were run on the 500, 1,000, 2,000, 4,000, and 8,000
most common remaining words. The experiments
in English were also conducted on the 16,000 most
common words from the Hansard corpus.

4.2 Evaluation Metrics

Ideally, we would like to be able to specify the cor-
rect morphological break for each of the words in the
input, however morphology is laced with ambiguity,

1A demo version available on the web,
http://humanities.uchicago.edu/faculty/goldsmith/, was used
for these experiments. Word-list corpus mode and the method
A suffix detection were used. All other parameters were left at
their default values.



and we believe this to be an inappropriate method
for this task. For example it is unclear where the
break in the word, “location” should be placed. It
seems that the stem “locate” is combined with the
suffix “tion”, but in terms of simple concatenation
it is unclear if the break should be placed before or
after the “t”. When “locate” is combined with the
suffix “s”, simple concatenation seems to work fine,
though a different stem is found from “location” and
the suffix “es” could be argued for. One solution is to
develop an evaluation technique which incorporates
the adjustment or spelling change rules, such as the
one that deletes the “e” in “locate” when combining
with “tion”.

None of the systems being evaluated attempt to
learn adjustment rules, and thus it would be diffi-
cult to analyze them using such a measure. In an
attempt to solve this problem we have developed a
new measure of performance, which does not spec-
ify the exact morphological split of a word. We mea-
sure the accuracy of the stems predicted by examin-
ing whether two words which are morphologically
related are predicted as having the same stem. The
accuracy of the stems predicted is analyzed by ex-
amining whether pairs of words are morphologically
related by having the same immediate stem. The ac-
tual break point for the stems is not evaluated, only
whether the words are predicted as having the same
stem. We are working on a similar measure for suf-
fix identification, which measures whether pairs that
have the same suffix are found as having the same
suffix, regardless of the actual form of the suffix pre-
dicted.

4.2.1 Stem Relation

Two words are related if they share the same im-
mediate stem. For example the words “building”,
“build”, and “builds” are related since they all have
“build” as a stem, just as “building” and “build-
ings” are related as they both have “building” as a
stem. The two words, “buildings” and “build” are
not directly related since the former has “building”
as a stem, while “build” is its own stem. Irregular
forms of words are also considered to be related even
though such relations would be very difficult to de-
tect with a simple concatenation model.

We say that a morphological analyzer predicts
two words as being related if it attributes the same

stem to both words, regardless of what that stem ac-
tually is. If an analyzer made a mistake and said
both “build’ and “building” had the stem “bu”, we
would still give credit to it for finding that the two
are related, though this analysis would be penalized
by the suffix identification measure. The stem rela-
tion precision measures how many of the relations
predicted by the system were correct, while the re-
call measures how many of the relations present in
the data were found. Stem relation fscore is an unbi-
ased combination of precision and recall that favors
equal scores.

Lexicon Size English Polish
500 99 348

1,000 321 891
2,000 1,012 2,062
4,000 2,749 4,352
8,000 6,762 9,407

16,000 15,093 -

Table 1: Correct Number of Stem Relations

The correct number of stem relations for each lex-
icon size in English and Polish are shown in Table 1.
Because Polish has a richer morphology than En-
glish, the number of relations in Polish is signifi-
cantly higher than the number of relations in English
at every lexicon size.

4.3 Results

The results from the experiments are shown in Fig-
ures 1- 3. All graphs are shown use a log scale for
the corpus size. Due to software difficulties we were
unable to get Linguistica to run on 500, 1000, and
2000 words in English. The software ran without
difficulties on the larger English datasets and on the
Polish data.

Figure 1 shows the number of different suffixes
predicted by each of the algorithms in both English
and Polish. The Hill Climbing Search system found
a very small number of suffixes in the English data
and was unable to find any suffixes, other than % ,
in the Polish data. Our directed search algorithm
found a relatively constant number of suffixes across
lexicon sizes and Linguistica found an increasingly
large number of suffixes, predicting over 700 differ-
ent suffixes in the 16,000 word English lexicon.
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Figure 1: Number of Suffixes Predicted

Figure 2 shows the precision, recall and fscore
using the stem relation metric. Figure 3 shows the
performance of the algorithms on the Polish input
lexicon. The Hill Climbing Search system was un-
able to learn any morphology on the Polish data sets,
and thus has zero precision and recall. The Directed
Search maintains a very high precision across lexi-
con sizes in both languages, whereas the precision of
Linguistica decreases considerably at larger lexicon
sizes. However Linguistica shows an increasing re-
call as the lexicon size increases, with our Directed
Search having a decreasing recall as lexicon size in-
creases, though the recall of Linguistica in Polish is
consistently lower than the Directed Search system’s
recall. The fscores for the Directed Search and Lin-
guistica in English are very close, and the Directed
Search appears to clearly outperform Linguistica in
Polish.

Suffixes Stems
-a -e -ego -ej -ie -o -y dziwn% -a -ami -y -ȩ chmur siekier% -cie -li -m -ć gada odda sprzeda

Table 2: Sample Paradigms in Polish

Table 2 shows several of the larger paradigms
found by our directed search algorithm when run
on 8000 words of Polish. The first paradigm shown
is for the single adjective stem meaning “strange”
with numerous inflections for gender, number and
case, as well as one derivational suffix, “-ie” which

changes it into an adverb, “strangely”. The sec-
ond paradigm is for the nouns, “cloud” and “ax”,
with various case inflections and the third paradigm
paradigm contains the verbs, “talk”, “return”, and
“sell”. All suffixes in the third paradigm are inflec-
tional indicating tense and agreement.

As an additional note, Linguistica was dramati-
cally faster than either our Directed Search or the
Hill Climbing Search system. Both systems are de-
velopment oriented software and not as optimized
for efficient runtime as Linguistica appears to be.

Of the three systems, the Hill Climbing Search
system has poorest performance. The poor perfor-
mance of the Hill Climbing Search system in Polish
is due to a quirk in its search algorithm, which pre-
vents it from hypothesizing stems that are not them-
selves words. This is not a bug in the software, but a
property of the algorithm used. In English this is not
a significant difficulty as most stems are also words,
but this is almost never the case in Polish, where al-
most all stems require some suffix.

The differences between the performance of Lin-
guistica and our Directed Search system can most
easily be seen in the number of suffixes predicted
by each algorithm. The number of suffixes pre-
dicted by Linguistica grows linearly with the num-
ber of words, in general causing his algorithm to get
much higher recall at the expense of precision. The
Directed Search algorithm maintains a fairly con-
stant number of suffixes, causing it to generally have
higher precision at the expense of recall. This is con-
sistent with our goals to create a conservative sys-
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Figure 2: English Results
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Figure 3: Polish Results

tem for morphological analysis, where the number
of false positives is minimized.

Most of Linguistica’s errors in English resulted
from the algorithm mistaking word compounding,
such as “breakwater”, for suffixation, namely treat-
ing “water” as a productive suffix. While we do
think that the word compounding detected by Lin-
guistica is useful, such compounding of words is not
generally considered suffixation, and thus should be
penalized against.

The Polish language presents special difficulties
for both Linguistica and our Directed Search sys-
tem, due to the highly complex nature of its mor-
phology. There are far fewer spelling change rules
and a much higher frequency of suffixes in Polish
than in English. In addition phonology plays a much

stronger role in Polish morphology, causing alter-
ations in stems, which are difficult to detect using
a concatenative framework.

5 Discussion

The superior fscore of our Directed Search system
over the Linguistica system has several possible fac-
tors which we are currently investigating. It must
be noted that Linguistica is designed to leverage
off of word frequency in a corpus, and its perfor-
mance may be enhanced if given a corpus of words,
rather than just a lexicon. Similar distributions are
used both in the Linguistica model and our Directed
Search Model. Rissanen’s universal prior for inte-
gers is frequently used in Linguistica whereas the
inverse squared distribution is used in our model.



Experiments substituting the inverse squared distri-
bution with the universal prior have shown no sig-
nificant empirical difference in performance. We are
currently working on a more detailed comparison of
the two systems.

The results obtained from Directed Search al-
gorithm can be significantly improved by in-
corporating the hill climbing search detailed in
Snover and Brent (2001). The hill climbing search
attempts to move stems from one paradigm to sim-
ilar paradigms to increase the probability of the hy-
pothesis. Experiments where the hypothesis out-
putted by the Directed Search system is used as
the starting hypothesis for the hill climbing search,
using the probability model detailed in this paper,
show an increase in performance, most notably in
recall and fscore, over using the Directed Search in
isolation.

Many of the stem relations predicted by the Di-
rected Search algorithm, result from postulating
stem and suffix breaks in words that are actually
morphologically simple. This occurs when the end-
ings of these words resemble other, correct, suffixes.
In an attempt to deal with this problem we have in-
vestigated incorporating semantic information into
the probability model since morphologically related
words also tend to be semantically related. A suc-
cessful implementation of such information should
eliminate errors such as “capable” breaking down as
“cap”+”able” since “capable” is not semantically re-
lated to “cape” or “cap”.

Using latent semantic analysis,
Schone and Jurafsky (2000) have previously
demonstrated the success of using semantic in-
formation in morphological analysis. Preliminary
results on our datasets using a similar technique,
co-occurrence data, which represents each word
as a vector of frequencies of co-occurrence with
other words, indicates that much semantic, as well
as morphological, information can be extracted.
When the cosine measure of distance is used in
comparing pairs of words in the corpus, the highest
scoring pairs are for the most part morphologically
or semantically related. We are currently working
on correctly incorporating this information into the
probability model.

The Directed Search algorithm does not currently
handle multiple suffixation or any prefixation; how-

ever, some ideas for future work involve extend-
ing the model to capture these processes. While
such an extension would be a significant one, it
would not change the fundamental nature of the al-
gorithm. Furthermore, the output of the present
system is potentially useful in discovering spelling
change rules, which could then be bootstrapped to
aid in discovering further morphological structure.
Yarowsky and Wicentowski (2000) have developed
a system that learns such rules given a preliminary
morphological hypothesis and part of speech tags.

While the experiments reported here are based
on an input lexicon of orthographic representations,
there is no reason why the Directed Search algorithm
could not be applied to phonetically transcribed
data. In fact, especially in the case of the English
language, where the orthography is particularly in-
consistent with the phonology, our algorithm might
be expected to perform better at discovering the in-
ternal structure of phonologically transcribed words.
Furthermore, phonetically transcribed data would
eliminate the problems introduced by the lack of
one-to-one correspondence of letters to phonemes.
Namely, the algorithm would not mistakenly treat
sibilants, such as the /ch/ sound in “chat” as two sep-
arate units, although these phonemes are often rep-
resented orthographically by a two letter sequence.
A model of morphology incorporating phonologi-
cal information such as phonological features could
capture morphological phenomena that bridge the
morphology-phonology boundary, such as allomor-
phy, or the existence of multiple variants of mor-
phemes. Simply running the algorithm on pho-
netic data might not improve performance though, as
same structures which were more straight forward in
the orthographic data might be more complex in the
phonetic representation. Finally, for those interested
in the question of whether the language learning en-
vironment provides children with enough informa-
tion to discover morphology with no prior knowl-
edge, an analysis of phonological not orthographic
data would be necessary.

The goal of the Directed Search model was to pro-
duce a preliminary description, with very low false
positives, of the final suffixation, both inflectional
and derivational, in a language independent manner.
The Directed Search algorithm performed better for
the most part with respect to Fscore than Linguistica,



but more importantly, the precision of Linguistica
does not approach the precision of our algorithm,
particularly on the larger corpus sizes. On the other
hand, we feel the Directed Search algorithm has at-
tained the goal of producing an initial estimate of
suffixation that could aid other models in discover-
ing higher level structure.
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