
ON SPECIALISED COMPILATION OF RULES IN

UNIFICATION GRAMMARS

Liviu Ciortuz

Computer Siene Department

University of York

Heslington, York, YO10 5DD, UK

iortuz�s.york.a.uk

One entral onept in our approah to ompiled parsing with feature-based uni�ation grammars in

the Light system [2℄ is the speialised ompiled form of rules, whih is obtained via transformation of

the abstrat ode generated by the OSF AM [1℄ for rules represented as feature strutures.

Like Amalia [10℄, the Light system has speialised abstrat instrutions to implement the (om-

piled) parsing. But the parser we implemented for Light is signi�antly more general than that in

Amalia: 1. it is a head-orner bottom-up hart-based parser (Amalia's parser is a simple bottom-up

hart-based one); 2. it uses feature struture (FS) sharing to save spae and time needed for parsing;

3. it also integrates the so-alled quik-hek tehnique [7℄ to redue the uni�ation time for rule

arguments, while bene�ting from statistis results omputed on test suites. We briey present here

the �rst optimisation mentioned above. The seond optimisation is presented in detail in [3℄, while

the third one makes the objet of the [4℄ paper.

Speialised ompilation design for uni�ation grammar rules in Light must be done in suh a way

that their appliation be suitable and eÆient for the ative bottom-up hart-based head-orner pars-

ing [6℄.

1

Compared to the general setup of ompiled uni�ation of feature strutures, speialised

ompilation of rules adds an important \ingredient": the inremental treatment of rules' arguments,

i.e. interleaving arguments' proessing with (parsing-oriented) ontrol operations.

The tehnique we hose in order to obtain the speialised ompiled form of rules | assuming that

they are represented as feature strutures | is program transformation. Starting from the abstrat

ode delivered by the OSF/Light AM ompilation of the feature struture representing a rule in

\program"mode, we will upgrade it with speialised ontrol sequenes for the rule's appliation. Thus,

our speialised rule ompilation task onsists mainly in de�ning speialised ontrol instrutions , and

simple transformation ations on the abstrat ode. When exeuted, these ations basially insert into

abstrat ode ertain sequenes of ontrol instrutions. These ontrol instrutions will trigger (from

within the parser) the uni�ation of rule arguments (with feature strutures assoiated to passive

items) and the onstrution of the rule's mother/LHS feature struture.

In Light AM there are two possible appliation modes for (ompiled) grammar rules:

| the key mode: unify the rule's key argument with the feature struture orresponding to a passive

item.

2

If suess is reported, then the needed oreferenes (more preisely: the values of the abstrat

1

To di�erentiate the notion of head in HPSG from that used for head-orner parsing, we adopt the onvention

proposed by LinGO developers to use the term key instead of head for parsing, therefore in the sequel we will use the

terminology key-orner parsing. The notion of head will be reserved for HPSG/linguistis usage.

2

All lexial items are passive items; non-lexial passive items are obtained during the parsing proess, as shown in

mahine's X registers whose indies are oreferenes) and the hanges made on the heap during

uni�ation are saved in a newly reated environment. The index of this new environment, stored in

the register E will be transmitted to the parser, and it will reord E's value in a newly reated ative

item;

| the omplete mode (only for non-unary) rules: restore the environments orresponding to the

already parsed/instantiated arguments of the rule and unify one of the \ative" (i.e., not yet instanti-

ated/parsed) rule arguments with the feature struture orresponding to a passive item. If uni�ation

sueeds, then a new environment is reated as above; moreover, if after suessful uni�ation the

argument list is exhausted, then a feature struture orresponding to the left hand side (LHS) of the

rule is onstruted on the heap, and a passive item is registered on the hart, otherwise we register an

ative item. If uni�ation fails, then the hanges done on the heap during argument uni�ation will

be undone.

The swith between the two possible modes for rule appliation is done by examining the register

E when alling for the rule's appliation. It will be -1 for the key mode. When applying a binary rule

in the omplete mode, E will store the index of the environment orresponding to the key argument.

Remark: In order-sorted (i.e., inheritane based) feature grammars, the distintion between the two

main operations `san' and `omplete' (by whih the input string is onsumed) is no longer possible,

sine the root sort of the arguments in the RHS of a rule an have | and in HPSG usually have! |

as subsorts both lexial (i.e., terminal) symbols and phrase (i.e., non-terminal) symbols. It is often

the ase that arguments in the rules' RHS in lexialized grammars like HPSG are sort-underspei�ed

(usually sign- or even Top-sorted), beause 1. the aim of building suh grammars is to ome up with

a very limited number of rules (or better: rule shemata) and 2. their seletion during parsing is

determined mainly by heking the satis�ability of the assoiated feature onstraints. This makes

impossible/impratial the predition (of the symbol to be tried/parsed next) as usually de�ned in

the parsing theory. Therefore, apart from aepting here the head-orner item dedution (as given

by the uni�ation grammar parsing shemata in [9℄), we override here the term omplete, and make

it generalise both the `san' and `omplete' notions as de�ned for instane in [9℄.

Note that in ertain onditions, saving the trail in a new environment may be postponed. The

speialised ompilation of rules in the urrent implementation of Light AM is limited to binary and

unary rules sine LinGO [5℄ | the large-sale HPSG grammar for English implemented at CSLI,

University of Stanford | demonstrated that binary rules are perfetly onvenient for expressing

sophistiated HPSG knowledge. Generalisation to rules of arbitrary length is not diÆult. (Our

system ould however deal with arbitrary long rules, in a version that ompiles rules as ordinary

feature strutures.) In the sequel, when not otherwise expliitly stated, we will refer to binary rules,

beause their treatment is of ourse more elaborated than that of unary rules.

Tehnially, for the speialised ompilation of a rule via program transformation a new feature

KEY-ARGS is introdued, and its value will be a list obtained from the rule's arguments (ARGS) list

simply by dupliating it (i.e., by oreferring the elements) and then moving the key argument on the

�rst position. The feature struture desribing a rule has to satisfy the following two well-formedness

onditions: i: the KEY-ARGS feature is the �rst one among those assoiated to the rule's root, and

ii: every oreferene has all assoiated (sort and feature) onstraints listed at its �rst ourrene. Note

that the �rst well-formedness ondition stated above ensures the partitioning of the abstrat ode into

the sequel.

the areas ARG1, ARG2, and LHS (all having both \read" and \write" parts), while the seond one

allows the removal of the LHS-read area in (the program transformation proess that will produe)

the new ompiled form of the rule.

In the ase of a binary rule, it is exatly at the slots S1, ..., S6 delimiting the areas ARG1, ARG2,

and LHS in the two-stream OSF abstrat ode of the rule's feature struture that ontrol sequenes

for doing parsing with this rule will be plaed. Newly designed abstrat instrutions | saveEnv and

restoreEnv are used at/by the ontrol sequenes plaed (via abstrat ode transformations) at the slot

plaes S1, ..., S6. An environment is a ouple of i: a set of indies orresponding to oreferened X

variables, together with their values (whih represent indies/addresses of heap ells) and ii: a trail

opy that registers the hanges done on the heap during uni�ation.

3

Also, environments will inlude

information useful for the (ompiled form of) quik-hek �ltering.

Example: Consider the next vp rule inspired by [9℄.

Its non-speialised (OSF) abstrat ode an be easily get following

the guidelines in [1℄, while its speialised ompiled form in Light is

given in below.

vp

[ARGS < verb

[HEAD #1,

OBJECT #3:np,

SUBJECT #2:sign ℄,

#3 >,

HEAD #1,

SUBJECT #2 ℄

vp: set orefs, { 3, 4, 5 }

ond E != -1, jump R3

R0: % ARG1 %S1

set X[2℄, Q

interset_sort X[2℄, verb

test_feature X[2℄, HEAD, X[3℄, 3, W3, verb

R1: test_feature X[2℄, OBJECT, X[4℄, 3, W4, verb

interset_sort X[4℄, np

R2: test_feature X[2℄, SUBJECT, X[5℄, 3, W5, verb

jump W6 %S2

R3: % ARG2

restoreEnv E %S3

ond unify(X[4℄, Q) = FALSE, Failure

R5:jump W0

W3: % ARG1 %S4

push_ell X[3℄

set_feature X[2℄, HEAD, X[3℄

write_test 3, R1

W4: push_ell X[4℄

set_feature X[2℄, OBJECT, X[4℄

set_sort X[4℄, np

write_test 3, R2

W5: push_ell X[5℄

set_feature X[2℄, SUBJECT, X[5℄

W6: saveEnv orefs %S5

jump W8 %

% ARG2

W0: % LHS

saveEnv NULL %S6

set Q, H %

W1: push_ell X[0℄

set_sort X[0℄, vp

W7: set_feature X[0℄, HEAD, X[3℄

set_feature X[0℄, SUBJECT, X[5℄

W8:

Apart from the (basi) fat that the parsing ontrol instrutions replae the KEY-ARGS list-

oriented stu� at the ontrol slots other transformations are done: 1. The LHS-read part is deleted,

sine it is no longer needed: one the two arguments unify (with two ertain feature strutures

represented on the abstrat mahine's heap), we have to built/write the LHS feature struture; no

\read" ation is any longer needed. For the same reason, the write test instrutions are eliminated from

3

Atually, the trail ontent will be saved in the (orresponding part of an) environment in a ompressed form.

the LHS-write area. 3. The ARGS feature is \disarded" i.e., not reated in the LHS ode.

4

Other,

interesting details on this abstrat program transformation shema for parsing rules in uni�ation

grammars are provided in [3℄.

This strategy of speialised ompilation of rules in Light provided us a fator of speeding up of 2.75

on the test suite provided by the CSLI, University of Stanford for the LinGO grammar.

This paper was written while the author was supported by an EPSRC grant in the framework of

the ROPA projet at the Computer Siene Department of the University of York. The oneption

and implementation side of the work here reported was done while the author worked at the LT Lab

of the German Researh Center for Arti�ial Intelligene (DFKI) in Saarbr�uken, Germany, and he

would like to express here his gratitude for the possibility he had to develop the Light system there.

Referenes

[1℄ H. A��t-Kai and R. Di Cosmo. Compiling order-sorted feature term uni�ation. Tehnial

report, Digital Paris Researh Laboratory, 1993. PRL Tehnial Note 7, downloadable from

http://www.isg.sfu.a/life/.

[2℄ L.-V. Ciortuz. Saling up the abstrat mahine for uni�ation of OSF-terms to do head-orner

parsing with large-sale typed uni�ation grammars. In Proeedings of the ESSLLI 2000 Work-

shop on Linguisti Theory and Grammar Implementation, pages 57{80, Birmingham, UK, August

14{18, 2000.

[3℄ L.-V. Ciortuz. Compiling HPSG into C. Researh report, The German Researh Center for

Arti�ial Intelligene (DFKI), Saarbrueken, Germany, and the Computer Siene Department,

University of York, UK, 2001. (In preparation).

[4℄ L.-V. Ciortuz. On ompilation of the Quik-Chek �lter for feature struture uni�ation. In

Proeedings of the IWPT 2001 International Workshop on Parsing Tehnologies, Beijing, China,

Otober 17{19, 2001.

[5℄ A. Copestake, D. Flikinger, and I. Sag. A Grammar of English in HPSG: Design and Imple-

mentations. Stanford: CSLI Publiations, 1999.

[6℄ M. Kay. Head driven parsing. In Proeedings of Workshop on Parsing Tehnologies, Pittsburg,

1989.

[7℄ R. Malouf, J. Carroll, and A. Copestake. EÆient feature struture operations without ompila-

tion. Journal of Natural Language Engineering, 6 (1) (Speial Issue on EÆient Proessing with

HPSG):29{46, 2000.

[8℄ C. Pollard and I. Sag. Head-driven Phrase Struture Grammar. Center for the Study of Language

and Information, Stanford, 1994.

[9℄ N. Sikkel. Parsing Shemata. Springer Verlag, 1997.

[10℄ S. Wintner and N. Franez. EÆient implementation of uni�ation-based grammars. Journal of

Language and Computation, 1(1):53{92, 1999.

4

This omission is supported by the Loality Priniple in the HPSG theory [8℄, and is adopted in the Light setup, as

it was implemented in the other LinGO-parsing systems.

