
A MULTI-INPUT DEPENDENCY PARSER

Salah A��t-Mokhtar Jean-Pierre Chanod Claude Roux

Xerox Research Centre Europe

6, Chemin de Maupertuis

38240 Meylan, France

fait-mokhtar,chanod,rouxg@xrce.xerox.com

Abstract

This paper describes a generic approach to compute dependencies from a variety of input ranging

from raw text to syntactic trees. The dependency calculus is incremental and combines topological

constraints on sub-tree patterns together with logical constraints de�ned as Boolean expressions over the

set of dependencies. This formalism has been successfully implemented and tested with a broad coverage

grammar for French, and leads to computationally e�cient and linguistically deep parsing.

1 Introduction

This paper describes a general calculus to compute dependencies out of a variety of input streams,

ranging from raw text to pre-analysed constituent structures. A dependency in this paper is an n-ary

relation that connects words or constituents in the input text according to a speci�c relationship, such

as standard syntactic dependencies, as in [7, 3], or, even broader relations including inter-sentential

relations (e.g. coreference). The calculus relies on topological constraints selecting speci�c con�gura-

tions within the input syntactic tree and on logical constraints applied to subsets of already computed

dependency relations.

After introducing the overall system and formalism, the paper shows how the proposed calculus

can handle various linguistic phenomena. The paper then presents an evaluation of a broad-coverage

French grammar within the framework. The computational and linguistic performance shows that

the proposed framework reconciles the need for deep syntactic representations as emphasised by lin-

guistically motivated parsers, and the requirements for broad coverage and speed as achieved by more

shallow approaches [5, 9, 4, 2].

2 Overview of the system

The system produces a set of dependency relations between linguistic objects. One of its main charac-

teristics is its ability to take as input di�erent kinds of linguistic objects: raw ascii texts, sequences of

tokenised and morphologically analysed words, sequences of POS-disambiguated words or sequences

of constituent structures, e.g. as produced by a chunker, provided that such input complies with the

prede�ned XML DTD of the system. As partial or shallow parsers that produce chunked structures

for raw text are now widespread, the ability for the system to process those structures is particu-

larly suitable. It allows for a deeper syntactic analysis, featuring explicit functional relations between

words, while preserving robustness. It can also be used for inter-sentential analysis.

Tokenization and

morphological

analysis

POS disambiguation

(Rule−based or

HMM−based)

Chunking

Dependency analysisDependency rules

Chunking rules

transducers

Lexical FS

POS disambiguation
rules or HMMs

Syntactically annotated

text

(chunks or consituents)

POS−disambiguated

text

Morphogically

analysed text

Resources External input types

Raw text

Processing modules

Analyzed text

Figure 1: Architecture of the multi-input dependency parser

3 Dependency analysis

We use the term dependency, though the modelled relations may go beyond syntax, e.g. inter-sentential

co-reference relations. The dependency rules state topological and logical constraints for the relation

to hold. The constraints involve linear and structural properties of the constituent trees and/or the

set of dependency relations that have been computed prior to the rule under scope. The structural

constraints are not limited to local trees. The syntax of a dependency rule is the following:

|<subtree pattern>| if <conditions> <d term>

<subtree pattern> is a tree matching expression that describes structural properties of a part

of the input tree (possibly the whole tree). <conditions> is any Boolean expression built up from

dependency terms, linear order statements and the operators & (conjunction), | (disjunction) and ~

(negation). <d term> is a dependency term of the form name<f list>(a

1

; a

2

; :::; a

n

), where name is

the name of the dependency relation, <f list> is a list of features, and a

1

; a

2

; :::; a

n

are the arguments.

A dependency rule states that a dependency term d term is added to the set of dependency relations

for the current input if <conditions> are satis�ed within the current set of dependency relations and

<subtree pattern> matches successfully a part of the current input. All the arguments of d term

should be variables that are also expressed in the conditions and/or the pattern. Thus, the satisfaction

of <conditions> and/or the successful match of <subtree pattern>, as a side e�ect, instantiate the

arguments of the new dependency term, which in turn is added to the current set of dependency

relations. The following 3 examples illustrate how di�erent types of linguistic relations are handled.

3.1 Example 1: surface relations and regular tree patterns

Dependency rules for surface syntactic relations usually feature a regular tree pattern for the con-

stituent or chunk trees. Features associated with the nodes (or with a dependency) are within square

brackets. Sister nodes are separated with a comma. It is also possible to go down and describe the

internal structure of a constituent at any level, using curly brackets. The following rule de�nes a

verb-complement dependency relation, as between enjoyed and wine in the chunked sentence: SCf

NPf Johng FVf has always enjoyedg g NPf good wineg.g :

|SCf?*, FV[trans:+]f?*,#1[last:+]gg,NP[time:~]f?*,#2[last:+]g|

vcomp[dir=+](#1,#2)

The rule de�nes a dependency of type vcomp between 2 words #1 (enjoyed) and #2 (wine) if #1 is

the head of a �nite verb chunk (FV) that has a trans feature (i.e. accepts a direct complement), and

the FV is within an SC (clause chunk) followed by an NP chunk with no time feature (i.e. not a time

expression), and the head of which is #2. The vcomp dependency relation is assigned the feature dir

(for direct verb complement). This sample rule has no condition on the current dependency relation

set and would derive a relation noted vcomp[dir](enjoyed,wine) from the above example sentence.

3.2 Example 2: coordination and shared functions

Some dependency relations can be derived from logical constraints bearing on the current set of de-

pendency relations. Handling coordinated verbs, the rule below infers a complement relation between

#1 and #3, on the condition that #1 is a transitive verb (#1[trans]), with no direct complement

(~vcomp[dir](#1,?)) and is coordinated with a verb #2 that takes #3 as a complement.

if (coord(#1[trans],#2) & vcomp[dir](#2,#3) & ~vcomp[dir](#1,?))

vcomp[dir=+](#1,#3)

3.3 Example 3: co-reference

The dependency rules can also de�ne inter-sentential relations [8]. An example is given below. It

shows conditions both on the current relation set and on the constituent structures. S is the top node

of a sentence, SC is the top node of a subclause, FV is a �nite verb chunk node, subj is the label of the

subject function, and within is a structural relation that is true if the second argument is embedded

within the �rst argument. The rule below selects the possible antecedent candidates for a pronoun.

|S#3,SfSCf?*,FVf?*,#1[last]ggg|

if (subj[imperso:~](#1,#2[pron,clit,p3,indef:~]) & within(#3,#4))

coref(#2,#4)

It states that if a pronoun #2 is the subject of a verb #1 (and not an impersonal subject), and if

there is a word #4 occurring within a sentence #3, expressed by the relation within(#3,#4), then

there is a potential coreference relation between the pronoun #2 and the word #4, given that the

structural conditions are satis�ed, i.e. sentence S#3 precedes the sentence S in which #1 is embedded

as the �nite verb of the main clause. This rule is only a �rst step towards co-reference resolution.

Next steps apply other constraints (e.g. agreement control) in order to eliminate unlikely candidates.

4 Evaluation

The system has been implemented in ANSI C++ and ported to several platforms (PC/Windows,

PC/Linux and Sparc/Solaris). The implementationof the engine and data structures is partly based on

a previous parser [6]. Among others, this system has been used to build a broad coverage dependency

grammar for French. In its current version, the grammar de�nes 22 types of functional dependencies,

implemented in 199 dependency rules. Lexical ressources include POS, morphological features and

subcategorization information for verbs, nouns and adjectives. The French parser (from raw text

to parsed text) runs at a speed of 1300 words/sec on a PC (Pentium II, 500 MHz, 128 MB of

RAM). As for the evaluation of linguistic performance, we used a corpus of 50K words (articles from

the newspaper Le Monde). We evaluated the subject dependency (including coordinated subjects,

in�nitive control and relative subjects) and direct complements of verbs. For subjects, precision and

recall were respectively 93.45% and 89.36%, while the �gures for verb complements were 90.62% and

86.56%.

5 Conclusion

This paper introduces an incremental parsing framework for deep dependency relations, at sentence

and inter-sentential level. The parser accepts multiple input forms ranging from raw to chunked texts.

It allows for linguistically deep robust parsing of unrestricted texts at a high speed. This system opens

the way to new research development and practical applications. It is being used over a variety of

corpora, for applications such as coreference resolution and knowledge extraction.

References

[1] Abney, S. P. (1991) Parsing by chunks. In R. Berwick, S. Abney, and C. Tenny (eds.), Principled-

Based Parsing. Dordrecht: Kluwer Academic Publishers.

[2] A��t-Mokhtar, S. and Chanod, J.-P. (1997a) Incremental Finite-State Parsing. In Proceedings of the

5th Conference on Applied Natural Language Processing (ANLP-97), Washington, DC, USA.

[3] A��t-Mokhtar, S. and Chanod, J.-P. (1997b) Subject and Object Dependency Extraction Using

Finite-State Transducers. ACL workshop on Automatic Information Extraction and Building of

Lexical Semantic Resources for NLP Applications. Madrid.

[4] Grefenstette, G. (1996) Light Parsing as Finite-State Filtering. In Proceedings ECAI'96 workshop

on \Extended �nite state models of language", August 11-12, 1996, Budapest.

[5] Jensen, K., Heidorn, G. E., and Richardson, S. D. (eds.) (1993) Natural language processing: the

PLNLP approach, Kluwer Academic Publishers, Boston/Dordrecht/London.

[6] Roux, C. (1996) Une m�ethode de parsage e�cace pour les Grammaires Syntagmatiques

G�en�eralis�ees. Ph.D, Universit�e de Montr�eal.

[7] Tapanainen, P., J�arvinen, T. (1997) A non-projective dependency parser. In Proceedings of the 5th

Conference on Applied Natural Language Processing, pp. 64{71, Washington, D.C.

[8] Trouilleux, F. (2001) (forthcoming) Th�ese de doctorat en Sciences du langage, Universit�e Blaise

Pascal, Clermont-Ferrand, France.

[9] Voutilainen, A. and Heikkila J. (1994) An English constraint grammar (EngCG): a surface syn-

tactic parser of English. In Fries, Tottie and Schneider (eds.), Creating and using English language

corpora. Rodopi.

