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Abstract  

Since the early 90s, there has been a rising interest in applying probabilistic models in syntactic parsing, 

and significant progress has been achieved. The most influential work include, among others, research using 

probabilistic lexicalized context free grammars in the form of production rules (or similarly, tree-adjoining 

grammars and its derivatives), probabilistic dependency grammars; and probabilistic constraints-based 

grammars [Lafferty, J., Sleator, D., and Temperley, D., 1992; Magerman, D., 1995; Collins, M, 1997; Eisner, 

J., 1997; Chelba and Jelinek, 1997; Ratnaparkhi, A., 1999; Charniak, E., 2000]. Based on the discussion of 

different methods, we propose a new bottom-up link unification parsing algorithm in the link grammar 

framework together with a novel probabilistic model. In addition, we also try to provide some intuitive 

justification for the assumptions made in the probabilistic model. Initial results in terms of bracket recall and 

precision on the Penn TreeBank close-test set have reached beyond 91%, which shows that our proposed 

probabilistic model is leading to an encouraging direction. 

 
1. Introduction 
Since the early 90s, there has been a rising interest in apply probabilistic models in natural language 

processing, particularly in syntactic parsing, and significant progress has been achieved. The most influential 
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work includes, among others, research using probabilistic lexicalized context free grammars in the form of 

production rules (or similarly, tree-adjoining grammars and its derivatives), probabilistic dependency 

grammars; and probabilistic constraints-based grammars.  

In [Briscoe, E. and J. Carroll 1993; Magerman, D., 1995; Hermjakob and Mooney 1997; Manning and 

Carpenter 1997; Chelba and Jelinek 1998; Ratnaparkhi, A., 1999], English grammars are represented by 

context-free production rules or compiled into parsing tables.  A parsing decision is made based on the 

parsing history, usually, the left context in the form of constructed partial and full phrases, stack, or LR 

states2. The probabilistic decision is computed through various methods, such as decision tree approach and 

maximum entropy model. To make the approaches work well, systematic and automatic selection of the 

features to be included in history becomes very important, since, on one hand, one needs to account for 

various linguistic phenomena, and on the other hand, one needs to avoid data-sparseness.  

In [Collins, M, 1997; Eisner, J., 1997; Charniak, E., 2000], a derivation of a sentence is modeled through 

the successful application of context-free production rules, and its probability is computed accordingly by 

applying the chain rule to the joint probability of all the rules applied (generative models). The head word of 

each production rule is kept for accurately characterizing its behavior. To properly handle the data sparseness 

problem and provide a feasible training, the probability of a production rule is computed by making explicit 

Markovian assumption so that only limited context is included in conditional part when chain rule is applied. 

To refine the general approach, [Charniak, E., 2000] integrates features in a ME-like fashion. 

 [Lafferty, J., Sleator, D. and Temperley, D., 1992; Collins, M., 1996; Eisner, J., 1996; Chelba, C., et al, 

1997] directly models dependency relations in sentences. While [Lafferty, J., Sleator, D. and Temperley, D., 

1992] computes the probability of a sentence strictly following the steps in the top-down link parsing 

algorithm, and making. Another approach [Chelba, C., et al, 1997] tries to compute the probability of the 

dependency strictly from left to right in a way similar to history-based approach.  

This paper describes our parsing work that directly models the dependency relations through link grammar 

formalism. Instead of decomposing the models based on the parsing algorithms, as described before, it 

focuses on the linguistic sound independence assumptions for model decomposition. The key idea is to grow 

regions bottom-up, similar to unification process with certain features encoded in the link names, and its 

probabilistic model for a unified region is computed through its two sub-regions with dependence ratios 

attached, which has a good intuitive explanation. Initial results on Penn Treebank close-test data have also 

shown encouraging sign in terms of parsing accuracy.  

The paper is organized as follows. Section 2 describes a novel link unification algorithm. Section 3 gives 

our probabilistic model, its derivation, and its rational, as well as an automatic conversion from the tree 

representation into the link grammar representation for training. Then, in Section 4, we present encouraging 

initial parsing results on Penn Treebank close-test data set, as well as some error analysis. Section 5 

concludes with comparison with other work and future directions. 

 

2. The Link Unification Algorithm 
In this paper, we introduce a new bottom-up link unification algorithm that simplifies the procedure of link 

analysis, nicely deals with partial parsing, and can smoothly integrate with a novel probabilistic model to be 

introduced in the next section.  

                                                                                                                      
2 [Ratnaparkhi, A. 1999] uses both left and right contexts. 



The original link parser works in a top-down fashion. It enumerates each disjunct of a word and tries to 

find a match with a disjunct from another word in consideration. Since a disjunct of a word represents a 

usage of that word (or a collocation), it is often that there are many different usages for one word. While the 

CMU link parser uses look-up in multiple pass pruning to reduce parsing complexity, the newly proposed 

algorithm takes advantages of the common prefix and suffix of the different usages of a word during parsing 

in a bottom-up fashion.  

The new parsing algorithm takes the lexicon as the linguistic knowledge source and a sentence as its input. 

It starts by considering every neighboring word pairs, unifies them if possible, and builds up the phrase 

chunks until the structure for the whole sentence is complete. It returns a set of possible word chunks with the 

largest combined probability when the input sentence is not covered by the word usage in the specified 

lexicon. 

Similar to CMU’s link parser, for each word in lexicon, its neighborhood information (disjuncts) is 

represented in the form of an and-or-tree. The alternative and/or nodes in the tree allow the sharing of the 

same prefix and suffix in different usages of a word/phrase, where and-node indicates the ordered sequence 

of disjuncts/disjunct sets, and or-node reflects the alternative disjuncts for this position. We may either 

deeply compress and-or-tree or take a relatively flat and-or-tree, which only permits the sharing of the 

leftmost and rightmost remaining connectors in different disjuncts of the same word/phrase. 

The word/phrase pair unification procedure in the algorithm works as follows. For any pair of neighboring 

words/phrases, the link unification algorithm tries to see whether any leftmost disjunct node of the right 

word/phrase can match any rightmost disjunct node of the left word/phrase to form a partially matched 

disjunct set for the connected word region, and this set of partially matched disjuncts is again represented in 

the form of an and-or-tree. As before, the resulting and-or-tree can be compressed for removing the 

redundancy in the prefix and suffix, and verified for legitimacy of all its disjuncts. This operation is called 

link unification (or lunification), since it is similar to the unification process. 

Because of the compression in the unification procedure, the number of link unification operations to be 

performed is reduced, hence the speed of parsing can be increased proportionally. The pseudo-code of the 

link unification parsing algorithm works as follows: 

1. Get input word string W  

2. Look up lexicon for the disjuncts of every word iw   in the form of and-or-tree, place it in 

]1][[ +iiunified  

3. for i  = 2, …, n do { 

4.         for j  = 0, …, n  –  i  do { 

5.                for k  = j +1, …, 1−+ ij  do {  

6.                       if  (unify( ]][[ kjunified , ]][[ ijkunified +  ) is not NULL) then  

7.                               add the unified result to the top or-node of ]][[ ijjunified +  

8.                } 

9.          } 

10.  } 

In the above algorithm, ]][[ jiunified   stores unified word strings from position i  to position j , and its 

remaining disjuncts towards outside of this region are represented in and-or-tree form. Function unify(tree1, 



tree2) tries to unify two consecutive phrasal chunks represented by tree1 and tree2, and returns the remaining 

disjuncts towards outside of this region in an and-or-tree.  

 

3. The Probabilistic Model for the Lunification Algorithm 
To improve the performance of the link parser, we made a few important modifications on the 

probabilistic aspects. First, we derive the disjuncts of a word directly from the Penn Treebank and collect 

statistics accordingly. Second, we use a novel probabilistic model during the lunification process.  

The derivation process of the disjuncts for each word is as follows. Let’s explain this through an example 

in Fig. 1. Assuming PP(in)ÅP(in) NP(mountain) is a single layer in a phrase structure tree, where P and NP 

are non-terminals/pre-terminals, “in” and “mountain” are the corresponding heads of the non-terminals/pre-

terminals, and “in” is the head word for PP. We derive one disjunct for word “in” from this level in the tree: 

+PP#P#NP#1 connecting NP from right. We also derive one disjunct for word “mountain” from this level in 

the tree: -PP#P#NP#1 connecting P from left. In this notation, the sign symbol – and + indicate the leftward 

or rightward disjuncts, and # is the delimiter. In +PP#P#NP#1, PP is the parent node in the sub-tree, and NP 

is to the right of P. Similarly, in -PP#P#NP#1, symbol PP is the parent node in that sub-tree, and P is a 

constituent to the left of constituent NP. The last symbol 2 (1) in the strings means that the head is on the 

right (left) side of the link. For the sub-tree with NP as its root in Fig. 1, we can derive additional word 

disjuncts. For probabilistic models, their statistics can be collected in the Treebank by traversing the trees. 

This notation and conversion are similar in spirit to [Collins, 1996], where, however, only base NPs were 

processed. 

 

 

 

 

 

 

 

 

 

                  1a) The original parse tree.                                 1b) The converted word disjuncts. 

                              Fig. 1. Converting parse trees to word disjuncts of Link Grammar. 

 

The probabilistic model for the Link Grammar is defined as follows. Let’s denote jiL ,  as the partial 

linkage covering the region between word i  and word j , and jiL ,  is a triple of ( jil , , kiw , , jkw ,1+ ) where 

jil ,  is the last link that connects its two head words kiw ,  and jkw ,1+ , representing the two sub-regions 

),( ki  and ),1( jk +   to be unified.  

)( , jiLP  = kiLP ,( , jkL ,1+ , ), jiL  

             = kiLP ,( , jkL ,1+ )| , jiL )( , jiLP     

                  (Conditional independence assumption, given jiL , )   
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Therefore, the probability for large region ),( ji   is computed through its two sub-regions, i.e. ),( ki  and 

),1( jk + ,,  and the last link, with an adjustment of two symmetrical ratios. Each ratio specifies the degree of 

the dependency of two consecutively built links. To look at the equation from an information-theoretic 

viewpoint, let’s take a log to both sides of equation (2). Then, we get the following equation. 
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  So, the left side is the description length for the whole region ),( ji , the items on the right side of the 

first line is the sum of the description lengths of the two sub-regions plus the length for the current link, and 

the second line is the mutual information of the representatives of the smaller regions and the unified region. 

So, an intuitive explanation for this equation is as follows. 

The description length for the unified region is the sum of the description length for its sub-regions and 

the final link, removing the redundancy of the mutual information between the representatives of the sub-

regions and the representative of the unified region.  

 This interpretation sheds some light on possible improvements to the model in the future, i.e., to make this 

model more accurate, we should consider other representative features for the model, possibly a wider 

context.  

We now list the boundary cases for equation (2), i.e., when one or both sub-regions are actually single 

words, here is the derivation. 

Case 1: One side of the link is a word, while this other side is a linked chunk. Assume the right side is a 

word, we have: 
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When we consider a degenerated case, i.e., for a right-branching tree with uniform links, the probability 

for the whole sentence has the following form: 

        ),|()....,|()|()()( 1121311,1 −= nnxn wwwPwwwPwwPwPWP  

where all the links are removed because of the redundancy. 

Case 2: Both sides of the link are words. This implies that these two words must be adjacent. The 

following equation can be easily derived from (3). 

     ),,()()( 11,1,1, ++++ == iiiiiiii wwlPLPLP                                                                                 (4) 

For practical reasons such as robust estimation of the parameters, we need to make further approximation 

to equation (1). For the sake of simplicity, assume that the head word for sub-region ),( ki  is kiw ,
  ((ii ..ee..,,  

liw ,
))  and it is also the left end of link kil , , its right end is klw ,1+  (we can do the same if the right end is the 

head word). For sub-region ),1( jk + , similarly, we assume that rkw ,1+  is on the left end of link jkl ,1+  

while jkw ,1+  (i.e., jrw ,1+
))  is on its right end and is the head word for the sub-region. Therefore, for sub-

region ),( ji , the two ends of link jil , are kiw ,  and jkw ,1+ .  
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Similarly, we can approximate the other half. 
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As in other probabilistic models proposed for lexicalized CFGs, due to the data sparseness, we need to 

estimate the cases that do not occur in the training data. One commonly used technique is the interpolation. 

Take (5) as an example, we can get the following equations, where T(w) is the tag for word w. 

)(*)|(*),|(*),|( ,
1
3,,

1
2

,
,,

1
1

,
,,

*
jikiji

ki
kiji

ki
kiji lPllPwllPwllP λλλ ++=                 (6) 

=),|( 1
,

2* wlwP ji  

)|)((*)|(*))(,|)((*),|(* ,
22

4,
22

3
1

,
22

2
1

,
22

1 jijijiji lwTPlwPwTlwTPwlwP λλλλ +++   (7) 



To see how this model differs from other models, such as [Collins, M., 1997; Charniak, E., 2000], let’s 

examine the first assumption made in the model, the conditional independence assumption. That is,  

  kiLP ,( , jkL ,1+ )| , jiL  = kiLP ,( jiL ,| ) )|( ,,1 jijk LLP +           

It is equivalent to the following equation: 

),|( ,,,1 kijijk LLLP + = )|( ,,1 jijk LLP + = ),,|( ,1,
,,1

jkki
jijk wwlLP +

+  

This is essentially to say that the model is to predict the right child based on the left/right head, the current 

head, and the relation between the left/right head and the current head. Because jil ,  encodes the information 

of non-terminals for both heads, which is somewhat close to Charniak’s 1st order Markov model. Notice that 

each disjunct contains information beyond single level context free rules. This, on one hand, makes the 

parser more powerful, while on the other hand the current probabilistic model doesn’t fully utilize the wider 

contextual features encoded in disjuncts, which can be further refined in the future, as pointed out as well 

from the above discussion on information-theoretic interpretation of the model.  

The computation for the probabilistic link unification algorithm using this model is through synchronized 

steps in the link unification algorithm. The details are given bellow, where n  is the  number of words in input 

word string W : 

1. Get input word string W  

2. Look up lexicon for the disjuncts of every word iw   in the form of and-or-tree, place it in 

]1][[ +iiunified  

3. for i  = 2, …, n do { 

4.         for j  = 0, …, n  –  i  do { 

5.                for k  = 1+j , …, 1−+ ij  do {  

6.                       if  (unify( ]][[ kjunified , ]][[ ijkunified +  ) is not NULL) then  

7.                                )(),(),(),( , ijjl Lpijkpkjpijjp ++=+  
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8.                              add the unified result to the top or-node of ]][[ ijjunified +  

9.                } 

10.          } 

11.  } 

12.  Viterbi search the best path in score chart ),0( nP .  

In the above algorithm, ]][[ jiunified   stores unified word strings from position i  to position j , and its 

remaining disjuncts towards outside of this region are represented in and-or-tree form. ),( jip  is the array 

for  probability ),( jiP , )( , jil Lp  for link probability )( , jiLP , and ),( 21, LLp ll   ffoorr  ),( 21 LLP ..  

Function unify(tree1, tree2) tries to unify two consecutive phrasal chunks represented by tree1 and tree2, and 

returns the remaining disjuncts towards outside of this region in an and-or-tree. 

 



4. Experiments 
To evaluate the lunification algorithm and the new probabilistic model, we conducted a few experiments 

on the WSJ part of the English Penn Treebank. In order to compare with other results, sections 2-21 are used 

for training. We first convert the Treebank to the Linkbank so to remove gaps (such as *NONE*) for easier 

processing. While currently, the Linkbank is still in a parsing tree format, we plan to make it a representation 

that directly encodes link dependency information of each word in all the Treebank sentences. The link & 

word statistics are computed on the Linkbank. Because the output of the lunification algorithm is the 

linkage(s), similar to the Link Parser, a mapping procedure is constructed to map the linkage to the phrase 

structure representation for bracket evaluation. 

The interpolation weights for smoothing the models in equation (6,7) are selected by using Section 24 of 

Penn Treebank WSJ data.  

To examine the effect of our model, we use Section 18 as our test data, and further assume that its 

sentences have correct tags labeled. That is, we perform a close-test on Section 18. Section 18 has 1806 

sentences of about 40,000 words. Using the un-smoothed model, we obtained the link recall and precision of 

93.12% and 93.11%. On the bracketing test, we obtained 91.42% and 91.21% for sentences, and 92.18% and 

91.75% for sentences of shorter than 40 words. Using the smoothed model, we obtained the link recall and 

precision of 90.17% and 90.16%. On the bracketing test, we obtained 87.86% and 85.93% for all the 

sentences, and 88.58% and 86.43% for sentences of shorter than 40 words. These numbers, though not fully 

comparable, are approaching to the systems reported in [Collins, 1997; Ratnaparkhi, 1999; Charniak, 2000], 

which are quite encouraging. We are going to refine our model to conduct experiments on Penn Treebank 

WSJ open test sentences.  

We also performed an error analysis on the close-test data set. While some bracketing errors are caused by 

the conversion from linkages to brackets, the major sources of the errors can be classified into three 

categories: 1) the flat structure problem; 2) the reverse structure problem; and 3) the long distance attachment 

confusion problem. The typical example of category 1) is the case where noun-noun compounds have only 

one level structure in Penn Treebank and no internal structure within the compounds is given there. For the 

second category, there are significant amount of OVS or OSV in WSJ that the current system does not handle 

properly. These sentences usually have the patterns “XXX, said Mr. ZZZ”. For the third category, it is 

usually the case that the sentences are long with various conjunctions. We will fix these problems in near 

future. 

 
5. Conclusion 

In this paper, we present a new bottom-up link unification parsing algorithm for link/dependency 

grammar, the lunification algorithm, and a novel probabilistic model that tries to directly capture the 

collocation of head words and their links. The bottom-up approach picks up the best path (the one with the 

highest probability) from found phrases/phrasal chunks through Viterbi search. The proposed probabilistic 

model decomposes a linkage model covering a large region into two smaller ones. It has an interpretation that 

matches well with both linguistic intuition and information theory. This decomposition also allows a smooth 

integration with lower level processing, and it can be well suitable to the integration with word segmentation 

algorithm for Chinese and other oriental languages. In addition, the proposed training procedure and the 

parsing approach reflect the connection among the production rule based model, the dependency grammar 



based model, and the link grammar based model. Although still at its early stage, the initial results have 

shown a quite encouraging sign in terms of parsing accuracy. 

[Eisner, J., 1996]’s dependency models only capture the dependency between words but ignore the types 

of the dependency (bare-bone dependency structures). In [Eisner, J., 1996]’s model C, the closest one to ours 

among his three models, the score (or probability) for a combined region is computed through its two smaller 

regions multiplied with the probability of the covering link, i.e., score(C)=score(A)score(B)Pr(covering link). 

[Collins, M., 1996] gives a bi-gram lexical dependency model for baseNPs, which is similar with the current 

approach in terms of converting the parse Treebank to the dependency links. However, in [Collins, M., 

1996], the model assumes that the dependency links are independent in the process of decomposing the 

probabilistic model for baseNPs. This newly proposed approach differentiates itself from the above two with 

a model that directly models the interdependency among consecutive dependency links. The interdependency 

is nicely captured by the two dependency ratios in equation (2).  

 [Lafferty, J., Sleator, D. and Temperley, D., 1992; Chelba C., et al, 1997] directly model dependency 

relations in sentences. While [Lafferty, J., Sleator, D. and Temperley, D., 1992] computes the probability of 

a sentence following the steps in the top-down link parsing algorithm, and making corresponding Markovian 

assumptions for practical purposes. Another approach [Chelba, C. et al, 1997] tries to compute the 

probability of the dependency strictly from left to right in a way similar to history-based approach, but using 

Maximum Entropy approach to combine different features.  

In a different framework from above, English grammars are represented by context-free production rules 

[Briscoe, E. and J. Carroll 1993; Magerman, D., 1995; Hermjakob and Mooney 1997; Manning and 

Carpenter 1997; Chelba and Jelinek 1998; Ratnaparkhi, A., 1999].  A parsing decision is made based on the 

parsing history, usually, the left context in the form of constructed partial and full phrases, stack, or LR 

states. The probabilistic decision is computed through various methods, including decision tree approach and 

maximum entropy model. To make the approaches feasible, systematic and automatic selection of the 

features to be included in history becomes very important, since, on one hand, one needs to account for 

various linguistic phenomena, and on the other hand, one needs to avoid data-sparseness. Furthermore, as 

pointed out by [Eisner, J., 1996], probability models derived from parsers sometimes focus on incidental 

properties, which might not be desirable. Our approach, on the contrast, is more independent of a particular 

parsing algorithm, i.e., the model can be either taken as a generative model, or as a comprehensive model.  

[Collins, M., 1997]’s probabilistic models start from generating the head in a production rule, then given 

the head, the approach generates its right modifiers and left modifiers in the rule consecutively. The distance 

between the head and its modifier is also included in the conditional part of the probability. [Charniak, E. 

2000] proposed a generative model that also starts from lexicalized CFG. His approach leans towards more 

on the flexibility of incorporating new features and tries to ease the difficulty in isolating the conditional 

events as what has been done by Maximum-Entropy approaches. However, as he pointed out, the integration 

of the new features in the model is not strictly probabilistic. In contrast, our approach tries to directly model 

the dependency relation and tries to capture not only the words but also the dependency relations among 

them with a solid probabilistic formation. 

Our future work will include improving and finishing our probabilistic lunifier for an open-test set, 

integrating wider contextual features in the models naturally, and establishing connections with lower level 

language processing. Additional tunings and improvements on the models, such as the ones used in [Collins, 

M., 2000; Johnson, M. et al 1999], will also be considered. 
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