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Abstrat

Spoken utteranes do not always abide by linguistially motivated grammatial rules. These utteranes

exhibit various phenomena onsidered outside the realm of theoretially-oriented linguisti researh. For a

language model that extends linguistially motivated grammars with probabilisti reasoning, the problem

is how to feature the robustness that is neessary for speeh understanding. This paper addresses the

issue of the robustness of the Data Oriented Parsing (DOP) model within a Duth speeh-based dialogue

system. It presents an extension of the DOP model into a head-driven variant, whih allows for Markovian

generation of parse-trees. It is shown empirially that the new variant improves over the original DOP

model on two tasks: the formal understanding of speeh utteranes, and the extration of semanti-

onepts from \word-latties" output by a speeh-reognizer.

1 Introdution

Speeh understanding is a hallenging task for probabilisti parsing models. The problem with speeh

utteranes is that they do not always abide by linguisti grammar rules. Speeh utteranes exhibit

phenomena suh as repairs, repetitions and hesitations, all of whih are onsidered problems outside

the domain of linguisti researh. The hallenge for a parsing model is to deal with suh phenomena.

A greater hallenge is set by real speeh understanding tasks in noisy environments, suh as speeh

over the telephone. In suh ases, the speeh-reognizer's auray degrades and language models

might be of some use in reovering some of the lost auray.

OVIS is a national projet of the Duth Organization for Sienti� Researh (NWO) aiming at

building a prototype dialogue system for the domain of railway time-table information. The dialogue

in OVIS takes plae over the telephone. The system interats through \dialogue" with a human

user aiming at providing the user with travel information. The system onsists of di�erent modules

inluding a dialogue manager, a speeh reognizer, a Natural Language Proessing (NLP) module,

and a language generation module. In speeh understanding, we fous on the role of the NLP module

whih onsist of the interfae between the speeh reognizer and the dialogue manager. The output

of the speeh reognizer is proessed by the NLP module, and the \semanti ontent" of the user's

utterane is extrated and supplied to the dialogue manager.

The OVIS system provides an interesting problem for language modeling beause it addresses a real

appliation of the proessing of spoken language in a noisy environment. Furthermore, the task of

language understanding in OVIS has been formalized in terms of domain dependent semanti riteria

making the evaluation of language models more linked to the atual task. In earlier work, two language



models were ompared on this task [22, 21℄: a system based on a broad-overage grammar for Duth,

and a system based on the Data Oriented Parsing (DOP) model.

In this paper we address the problem of robust language understanding within the OVIS domain

using the DOP model. We present a new version of the DOP model whih is more suitable for

the proessing of spoken language utteranes than the original DOP model. Robustness in this new

version, alled the Tree-gram model, is the result of integrating into DOP the \Markovian" approah

for grammar-rule generation, as in some exiting models, e.g. [10, 8℄. We exhibit signi�ant empirial

improvements, over the DOP model, in both OVIS tasks: (1) the formal understanding of spoken

utteranes and (2) the extration of the \best" semanti ontent from an ambiguous word-lattie

(also alled \word-graph"), output by a speeh-reognizer.

The struture of this paper is as follows. Setion 2 provides a short overview of the OVIS system, the

OVIS tree-bank and the experiene with applying DOP within OVIS. Setion 3 provides a review of

the DOP model and presents the new version: the Tree-gram model. Setion 4 attempts a theoretial

omparison between the two models onerning the issue of robustness. Setion 5 exhibits the empirial

results of experiments in applying DOP and the Tree-gram model to speeh understanding within the

OVIS domain. Finally, setion 6 onludes the paper.

2 Brief overview of OVIS

In the OVIS demonstrator system, the ommuniation with the human user takes plae over the

telephone through a spoken-language dialogue aiming at providing the user with travel information.

The dialogue manager in OVIS maintains an \information state" to keep trak of the information

extrated from the user's answers to questions posed by the system. This information state onsists

of a small number of slots that are typial of train travel information, e.g. origin, destination, date,

time. The semanti ontent of a user's utterane is used for updating the slots in the information

state. Hene, the output of the natural language proessing module is exatly an \update expression"

speifying what slots must be updated and with what values. In OVIS, these update expressions are

terms in a formal language of \update semantis" developed by [23℄. This update language provides

ways for expressing various updates inluding \speeh-at information" suh as denials and orretions.

Here, we are merely interested in the fat that the update-language has been expressed in terms of

a formally spei�ed hierarhy of the slots: for example, the slots \plae" and \time" provide more

spei� information over the slot \destination".

The OVIS tree-bank [13℄ ontains 10000 utteranes annotated syntatially and semantially. The

interesting part of the OVIS tree-bank is that the semantis is largely ompositional [5℄: the se-

mantis of a non-terminal node is expressed in terms of the semantis of its hild-nodes; this is

expressed as a simpli�ed form of Lambda expressions, e.g. \(D1;D3)" where Di refers to the i

th

hild.

The part-of-speeh (POS) tag labeled nodes are annotated with ground semanti expressions, e.g.

\(PPN-amsterdam amsterdam)" or \(PP-origin.plae naar)". In [5℄ a method is also desribed for

transforming the semanti expressions at every node into a label using the semanti hierarhy of [23℄:

roughly speaking, the semanti expressions are ategorized aording to the kind of slots whih they

aim at �lling, e.g. plae expressions speify a ategory while time expressions speify another, dif-

ferent ategory. Cruially, this semanti ategorization aims at labeling the grammar rules in the

tree-bank trees in suh a way that it is possible to retain the exat semantis of the tree-bank trees

unambiguously. In this work we employ the OVIS tree-bank enrihed with this ategorization sheme.
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Figure 1: An example OVIS parse-tree.

Figure 2 exhibits an OVIS parse-tree with the ompositional semantis shown under the label of

every node. The update expression of the whole utterane is omputed ompositionally in a bottom-

up fashion, substituting for Di the update expression of the i

th

hild. The English equivalent of

the given utterane is \I do not want to travel from Amsterdam I want to travel tomorrow". The

update expression for this partiular parse-tree is: (user.wants.travel.[#origin.plae.town.amsterdam℄;

user.wants.travel.tomorrow), where the operator \[#A℄" denotes the denial of A, \A;B" denotes the

onatenation of update expressions A and B and \A.B" denotes that B is a more spei� slot than A

or that B is the update value for slot A

The present paper addresses the problem of applying the Data Oriented Parsing (DOP) model [15, 2℄

to the understanding of utteranes and word-graphs that are output by a speeh reognizer [14℄ in the

OVIS domain. In earlier experiments [22℄, the DOP model sored signi�antly worse than a omplex

hybrid system whih ombines a broad overage grammar for Duth, a word trigram model and a

smart onept spotting strategy [21℄. Our researh revealed three soures of problems with DOP: lak

of robustness, weak lexialization and a biased probability estimation method. Among these three

problems, the fous here is on robustness.

In [18℄ we extend the DOP model with apabilities similar to the so alled Markov-Grammar models

e.g. [10, 8℄. The new model, alled the Tree-gram model, is apable of generating parse-trees that the

original DOP model is not apable of generating, possibly enhaning robustness. Furthermore, the

model allows for head-driven parsing, albeit the implementation desribed in [18℄ is not head-lexialized

in the sense argued for by e.g. [10, 8℄. Hene, the problem with the Tree-gram model, just like DOP,

is that it does not ondition the model parameters on lexial information, i.e. word-ourrene.

The question is whether this kind of "weakly lexialized" model onstitutes any improvement on the

original DOP model ? Next we show that the Tree-gram model signi�antly improves on the results

of the DOP model, in parsing and interpretation of speeh utteranes as well as word-graphs. We

show that on parsing and interpretation of speeh utteranes, the model ahieves results that ome

very lose to those exhibited by the Duth broad overage grammar on the same task. Despite these



enouraging results, we onlude this study with stressing the weakness of the unlexialized nature of

the DOP model and the urrent unlexialized implementation of the Tree-gram model, and speulate

on future work in this diretion.

3 Overview of the DOP and Tree-gram models

A probabilisti model assigns a probability to every parse-tree given an input sentene S, thereby

distinguishing one parse

T

�

= argmax

T

P (T jS)

= argmax

T

P (T; S)

P (S)

= argmax

T

P (T; S):

The probability P (T; S) is usually estimated from o-ourrene statistis of linguisti phenomena ex-

trated from a given tree-bank. In generative models, the tree T is generated through top down

derivations that rewrite the start symbol TOP into the sentene S. Eah rewrite-step involves

a \rewrite-event" together with its estimated probability of appliation. Next we provide a short

overview of two generative models: the DOP model and the Tree-gram model.
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Figure 2: Some subtrees: DOP deomposition.
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3.1 The DOP model

In Data-Oriented Parsing (DOP1) e.g. [2℄, the rewrite-events are \subtrees" of the tree-bank trees: a

subtree of a given parse-tree is a multi-node onneted subgraph in whih every node either dominates

all its hildren

1

or it dominates none of them. If we view the tree-bank trees as generated by derivations

of some linguisti Context-Free Grammar (CFG) [1℄, then a DOP subtree onsists of one or more

onneted CFG rules that o-our in a tree-bank tree. Hene, the parse-trees and sentenes whih

a DOP model reognizes are exatly those whih the original linguisti CFG does. The di�erene,

however, is in the fat that DOP assigns probabilities to the subtrees, whih an be seen as probabilities

of o-ourrenes of CFG rules. Figure 2 shows some DOP subtrees extrated from the parse-tree

that is idential to the subtree in the top-left orner of the same �gure.

The probability of a subtree in DOP is estimated from its relative frequeny in the tree-bank.

Let root(t) denote the root-label of the root of any subtree t, and let freq(x) denote the frequeny-

ount of subtree x in the tree-bank. The probability of a subtree t is estimated by the formula:

1

Thereby preserving the diret dominane relations of the original tree-bank parse-trees.



P (tjroot(t)) =

freq(t)

P

x:root(x)�root(t)

freq(x)

. The probability of a derivation d, involving subtrees t

1

� � � t

n

,

is estimated as

P (d) =

Y

1�i�n

P (t

i

jroot(t

i

)):

Aording to Bod [3, 4, 2℄, the probability of a parse-tree T and a sentene S, generated respe-

tively by the sets of derivations D(T ) and D(S), are estimated by P (T; S) =

P

d2D(T )

P (d), and by

P (S) =

P

d2D(S)

P (d). In [16℄ it is shown that the problems of disambiguation under the DOP model,

onerning the omputation of the Most Probable Parse (MPP) (and the Most Probable Sentene

(MPS) in a word-graph) are NP-omplete, i.e. it is not possible to devise deterministi polynomial

algorithms to exatly ompute the MPP (or MPS from a word-graph). Here we suggest to approx-

imate the probabilities of a parse-tree T and a sentene S as follows: P (T ) � argmax

d2D(T )

P (d),

P (S) � argmax

d2D(S)

P (d). This formulation has the advantage of being eÆiently solvable by a

polynomial-time algorithm, similar to the well known Viterbi-algorithm [24℄. The negative side, how-

ever, is that it still ontains some of the bias that the original DOP de�nition had (see [6℄) and that

it under-estimates the probabilities. However, we think that this under estimation in itself is not

harmful sine the exat values are not important as muh as the relative ordering between the parses

(and sentenes). We suspet that under some assumptions that has to do with the nature of the given

tree-bank annotation, the relative frequeny of DOP subtrees, as in e.g. Stohasti CFGs (SCFGs),

provides a \useful" ordering over the derivation probabilities. Sine this is not the plae to elaborate

on this theoretial point, we seek the help of empirial evidene on this issue, as exhibited in the

experiments in setion 5.

3.2 The Tree-gram model

In the Tree-gram model, the set of \rewrite-rules" subsumes the CFG rules and the onneted om-

binations thereof that an be extrated from the tree-bank, i.e. the DOP subtrees. We refer to these

rewrite-events with the term Tree-grams (abbreviated T-grams). A T-gram extrated from a parse-

tree in the training tree-bank is a multi-node onneted subgraph of that parse-tree. Note that the set

of T-grams extrated from a tree-bank subsumes (or is equal to) the set of DOP subtrees extrated

from the same tree-bank; the set of T-grams inludes onneted subgraphs of the training parse-trees

whih do not retain the diret dominane relation (i.e. parent-hild) as found in the tree-bank. Hene,

when extrating a T-gram from some node �, not neessarily all hildren of � are inluded into the

T-gram. In the urrent implementation, however, we demand that the hildren of � that are inluded

in the T-gram are diret sisters to one another, e.g. we do not allow inluding the �rst and the

�fth hild if any of the seond, third and fourth are not inluded also. This simpli�es the parsing

algorithms. Some example Tree-grams extrated from the parse-tree in �gure 3 are shown in Figure 4.

T-grams are inspired by Markov Grammars [10, 8℄: in fat T-grams provide a diret general-form

both for Markov Grammar rules (alled bilexial dependenies) as well as DOP subtrees. Next we

desribe in short how T-grams are employed in the Tree-gram model. Further formal detail an be

found in [18℄.

We assume that for every non-leaf node � in the training tree-bank trees, one of its hild nodes is

spei�ed as being the \head-hild": the hild that dominates the head-word of �. The Tree-grams

aquired from the tree-bank trees are partitioned into three subsets, alled roles, aording to the kind

of hildren that the root of a Tree-gram dominates. When a Tree-gram's root dominates its head-hild
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Figure 4: Some T-grams extrated from the tree in �gure 3: the supersript on the root label spei�es

the T-gram role,. e.g. the left-most T-gram is in the LEFT role. Non-leaf nodes are marked with \["

(left-STOP) and \℄" (right-STOP) to speify whether they are omplete from the left/right or both

(the other non-omplete nodes, i.e. from both sides, are not marked at all).
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Figure 5: A T-gram is generated by attahment at � in a partial parse-tree. The T-gram being

generated is marked with L (or R) to denote its role. We show a LEFT Tree-gram being generated.

(and possibly other hildren), the Tree-gram is in the \Head" role; when it dominates only hildren

whih are originally found (in the tree-bank tree from whih the Tree-gram was extrated) to the left

(right) of the head-hild (e.g. left-modi�ers of the head-hild), it is in the LEFT (RIGHT) role. In

essene, these roles express information about the nature of the Tree-gram with respet to the ontext

from whih it was extrated. Some example Tree-grams are shown in Figure 4.

In ontrast with DOP subtrees, Tree-grams allow also for a \horizontal" expansion of the parse-trees

as depited in �gure 5. This horizontal expansion of parse-trees takes plae by ombining Tree-grams

labeled with the same root node in a \Markovian fashion". Formally speaking, the horizontal ombi-

nation of Tree-grams must have a probability of terminating. Therefore, the horizontal ombination of

Tree-grams is governed by a formal de�nition of when a node \terminates". The termination proess

is \inherited" from the tree-bank trees: the sequene of hildren of every node in a tree-bank tree is

expliitly marked as terminated from the left and from the right by a speial symbol \STOP". To

the left of the sequene of hildren, the STOP is denoted by \[" and to the right it is denoted by \℄".

When a Tree-gram is extrated from a tree in the tree-bank, the STOP symbols (\[" and \℄") might

either be inluded or they might not be inluded with the non-leaf nodes of the Tree-gram. For any

non-leaf node in a Tree-gram, if both STOP symbols are inluded along with its hildren, the node is

alled omplete. When STOP is absent from either the left or right hand sides of a node (or both),

the node is inomplete. In the latter ase, the partial parse-trees that the node dominates may be

extended with additional Tree-grams as desribed next (hene, non-terminal leaf nodes are always

inomplete allowing substitution as in DOP). See �gure 4 for examples.

Tree-gram rewrite proesses, i.e. derivations, start from the start-symbol TOP, whih is an in-

omplete non-terminal. At eah rewrite-step, an inomplete node � is seleted and rewritten by a

suitable Tree-gram as follows. When � is a leaf node labeled with a non-terminal A, it is rewritten

by a HEAD Tree-gram with a root labeled A (muh like rewriting takes plae in DOP, i.e. \vertial



expansion"); when a non-leaf node � is labeled with a non-terminal A and it is inomplete, it may

be rewritten with LEFT and RIGHT Tree-grams that have roots also labeled A. The latter rewriting

allows horizontal expansion of the parse-tree at node � (see Figure 5). The rewrite proess terminates

when the resulting parse-tree onsists entirely of omplete nodes.

The onditioning ontext (or history) h

t

in the probability P (tjh

t

) of a Tree-gram t, onsists of the

label of the root-node of t (i.e. root(t)), the role of t (i.e. HEAD, LEFT or RIGHT) and the following

spei� information:

� A HEAD Tree-gram's probability is further onditioned on the POS tag of the head-word of the

root node of t.

� A LEFT (RIGHT) Tree-gram's probability is further onditioned on

{ the label of the head-sister of its root-node, and on

{ the label of the sister to the right (resp. left) of the root-node in the original tree-bank tree,

thereby yielding a 1

st

-order Markovian proess.

Our onditioning ontext is similar to those used in e.g. [8℄. Just like in DOP, the probability of a

Tree-gram derivation d involving the sequene of T-grams t

1

; � � � ; t

n

is estimated by

P (d) =

n

Y

i=1

P (t

i

jh

t

i

):

As we argued for DOP earlier, we approximate the probabilities of a parse-tree and a sentene as the

highest probability of any of their derivations.

4 A theoretial omparison on robustness

Formally speaking, both models assign probabilities to ontext-free languages. However, as Bod

shows [2℄, the probability distribution assigned to the members of the set of parse-trees generated

by a DOP model annot always be generated by a Stohasti Context-Free Grammar (SCFG) [11℄.

For a given tree-bank, the set of sentenes aepted (or generated) by the Tree-gram model aquired

from that tree-bank is a superset of (or equal to) the set aepted by the DOP model aquired from

the same tree-bank. The same relation applies between the respetive sets of parse-trees generated

by both models. Hene, the Tree-gram model, just like \Markov-grammars", generates sentenes and

parse-trees that annot be generated the DOP model or by the linguisti grammar that underlies the

annotation of the tree-bank.

The question of ourse is: how do the distributions over derivations, parse-trees and sentenes

generated by both models ompare to one another ? The empirial estimation of probabilities from

a tree-bank makes this omparison ompliated due to problems of bias in the urrent method of

probability estimation whih both models su�er from [6℄. However, if we restrit the subtrees and

Tree-grams that are aquired from the tree-bank by formal means (i.e. restritions on depth or width

of a subtree/Tree-gram { see setion 5), then one an already sense that both models will assign a

\similar" relative ordering to the derivations that they generate. This an be seen only intuitively

by the fat that all subtrees of the DOP model are inluded as HEAD Tree-grams in the Tree-gram

model with the same relative frequeny (up to a �ner onditioning ontext in Tree-grams). In any

ase, the Tree-gram model, at least theoretially, allows for a more \subtle" model than the DOP



system Math Pre. Reall

DOP 93.0 94.0 92.5

Tgram 94.5 95.0 95.6

DBCG 95.7 95.7 96.4

Table 1: Results on utteranes

system WA SA Math Pre. Reall

DOP 72.2 71.8 77.2 82.0 77.3

Tgram 79.6 74.0 81.4 85.2 84.3

Tgram - DOP +7.4 +2.2 +4.2 +3.2 +7.0

Table 2: Results on word-graphs

model. The question is of ourse, does this subtlety of the Tree-gram model translate into more

robust proessing for speeh understanding ? We investigate this question in the ontext of the OVIS

speeh-understanding system in an empirial way in the next setion.

5 Parsing and interpretation of the OVIS domain

Before applying the Tree-gram model to the OVIS domain, it is neessary to speify how we signify

the head-hildren in the tree-bank trees. Given the ompositional semantis in the tree-bank, with

a few exeptions, every CFG rule has a semanti formula assoiated with it. This formula expresses

how the semantis of the node is omposed from the semantis of its hildren using a small set of

operators, e.g. onatenation \D1;D2", orretion \[!D2℄", denial \[#D3℄". Some of these operators

take a single argument, others take two arguments. We deided to speify, the head-hildren using

these formulae through a few rules of thumb, (e.g. take the �rst hild spei�ed in the formula, exept

for a few spei� situations). This spei�es the head-hildren for all tree-bank nodes unambiguously.

The Markovian nature of the Tree-gram model, allows us to apply the Katz bako� smoothing

tehnique [12, 9℄ using the 0

th

-order Markovian onditioning for LEFT and RIGHT Tree-grams: we

apply that to all T-grams of depth 1 only. Furthermore, we allow bako� on the stop symbols \[" and

"℄" on the root-node of a T-gram of depth 1 in one of two ways: (1) we add a stop symbol \[" to the

left (\℄" to the right) of the node with a suitable bako� probability, or (2) we remove these symbols,

if they are there, with a suitable bako� probability. The resulting \bako� T-grams" are inluded in

the model together with the original ones. For semanti interpretation, all new rules generated by the

Tree-gram model are assigned a heuristi formula depending on the parse-tree in whih they our;

the heuristi semantis of a new rule depends on the types of the semantis of the hild-nodes, and

aims at ombining these types in aeptable ways (with respet to the OVIS update language).

We use the same parser for the DOP model as well as the Tree-gram model [17℄. This is a CYK [25℄

based algorithm using an optimized version of the Viterbi-algorithm with a simple pruning tehnique.

The parser is appliable to utteranes as well as word-graphs (the latter extension is straightforward

- see [19, 17℄).

We trained a DOP model (with subtree depth

2

upperbound 4) and a Tree-gram model (with Tree-

gram depth

3

upperbound 5) on the same training tree-bank of 10000 utteranes. We ompare the

models on a held-out set of 1000 utteranes, whih was used for similar experiments in [22℄. We also

report preliminary results on a set of 500 speeh-reognizer's word-graphs

4

.

2

In various experiments reported in [5, 22, 17℄, it turns out that DOP models with subtrees deeper than 4 show

worse results than a DOP model with subtree depth upperbound 4.

3

Tree-gram depth here is measured after \binarization" of the Tree-gram in a head-driven fashion. This head-driven

\binarization" transforms the hildren of every node as follows: the hildren to the left (right) of the head-hild are

transformed into a left (resp. right) branhing binary tree (the head-hild remains diretly under the urrent node).

After this proess every node dominates at most three hildren (head-hild and a left and right nodes added by the

proess). Hene, Tree-gram depth is a mix of atual depth with the branhing fator under the internal nodes.

4

The probability of a DOP/Tree-gram derivation of a path in an input word-graph is multiplied with the speeh-



The semanti evaluation riteria have been developed by [20℄ following similar riteria suggested

in [7℄. A semanti expression is translated into a set of \semanti units"; eah semanti unit addresses

a spei� OVIS slot. Given this view on semanti expressions, now we an ompare the semanti-

expression U output by a given system to the gold-standard expression G in the same way as in

Labeled Reall and Preision in syntati parsing: (1) semanti exat math is the average test-set

utteranes for whih U � G, (2) semanti reall (preision) is the average, over the test-set utteranes,

of

jU\Gj

jGj

(resp.

jU\Gj

jUj

{ when jU j = 0, this is by de�nition zero). For word-graph parsing we also use

the word-auray (WA) and sentene-auray (SA) measures to ompare the proposed utterane P

to the gold G: WA = 1�

d

n

, where n is the length of the G, and d is the Levenshtein distane between

G and P (see [22℄ for detail).

Table 1 shows the results of the Tree-gram model, the DOP model and the Duth broad-overage

grammar (DBCG) on utteranes. Clearly, the latter system is still produing the best results, however

the Tree-grammodel has narrowed the gap on utteranes for reall from 3.9% (DOP) to 0.8% (Tgram).

For word-graphs, our results an not be ompared to those of the DBCG-based system (although we

suspet that the DBCG improves over the Tree-gram results) beause this preliminary experiment is

on a di�erent set than the �nal test-set. However, the Tree-gram model improves over DOP by at

least 7% on WA and semanti reall and 4.2% on semanti math.

Our explanation to the improvements on DOP's results is that on utteranes the Tree-gram model

is apable of produing parses whih DOP annot produe; on about 2.2% of the utteranes, DOP

does not produe any parse and these utteranes are usually some of the longer ones. Then, in a few

more ases, it seems that DOP produes only a less useful parse than the Tree-gram model. When

we inspeted some of the ases it turned out that DOP tends to assign the speial label \ERROR"

(used to mark repetitions and orretions in the OVIS tree-bank) to various onstituents for whih it

ould not �nd an approximate label.

We an think of various reasons why the Tree-gram's results are still lagging behind those of the

DBCG results: (1) the DBCG grammar has been developed manually in an inremental fashion

inspeting how the system behaves on a large olletion of over 100000 utteranes from the OVIS

domain, while our models are trained on a relatively small training tree-bank of 10000 parse-trees,

(2) the tree-bank syntati and semanti annotations ontain minor inonsistenies that disturb the

models, (3) the model probabilities are not onditioned on lexial information, and (4) in ontrast to

the DBCG module, we did not try to transform \informative", yet formally wrong, semanti formulae

output by the parser

5

.

6 Conlusions

We have shown how the DOP model an be extended in a useful way for more robust parsing of speeh

utteranes. The present extension, alled the Tree-gram model, generalizes over the DOP model by

assigning non-zero probability values to some utteranes for whih a DOP model assigns probability

zero. We are enouraged by the fat that the Tree-gram model has narrowed the gap with the results

reognizer's likelihoods that are found on the transitions in the path (after applying a simple saling heuristi). This is

a kind of standard Bayesian ombination of the two modules.

5

It is possible to devise a few set of heuristi rules based on the OVIS semanti hierarhy, for the orretion of suh

\informative" formulae: these formulae usually onsist of multiple orret subformulae without the formally neessary

ombination operators. Often the operators an be guessed by inspetion of the semanti types of the subformulae and

the OVIS semanti hierarhy.



of the Duth Broad-Coverage Grammar (DBCG) system: our system is automatially aquired from

a tree-bank, while the DBCG took more than three years to develop. Nevertheless, it remains not

lear how fast eah of the two systems an be suessfully adapted to a new domain of language use.

Our preliminary results on word-graphs improve onsiderably over DOP's results. Again this is due

to the more robust nature of the new model in omparison with the original DOP model. However, in

�rst inspetion of some of the problems, we �nd that the model still su�ers from the weak lexialization,

just like DOP. The gain is solely due to the fat that the Tree-gram model ould parse many more of

the word-graph paths than DOP did, thereby having more paths to hoose from.

We suspet that the fat that our word auray and sentene auray are still lagging behind

those of simpler models (e.g. a word trigram model) implies that neither DOP nor the urrent Tree-

gram model is suÆiently suitable for the task of speeh-understanding from word-graphs. As the

word-graphs beome larger, it beomes harder to selet the orret sequene of words. In suh ases,

word o-ourrene probabilities are at least as important as probabilities that express "grammatial

plausibility", whih is taken are of by the urrent models. We think that it is neessary to ondition

the probabilities in these models on lexial information, possibly in a head-driven fashion similar to

the bilexial dependeny models, e.g. [10, 8℄.
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