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Abstract 

In this paper, we introduce a novel MDL-based grammar learning algorithms, which can automatically 

induce a good amount of high quality parsing-oriented grammar rules from a tagged corpus with a minimal 

annotation. Comparing between the basic best-first MDL induction algorithm and a pseudo-grammar 

induction process, we identify problems associated with the current MDL-based grammar induction 

approaches. Based on this, we present a novel two-stage grammar induction algorithm to overcome a local-

minimal problem by clustering the left hand sides of the induced grammar rules with a classifier trained 

through a seed grammar. Preliminary experimental results show that the resulting induction curve is very 

close to its upper bound and outperforms the traditional MDL-based grammar induction. 

1. Introduction 

With the increasing demand for natural language processing in the various Internet applications, such as 

automatic speech recognition and dialog systems, the acquisition of large amount of high quality grammar 

rules become more important. The availability of hand-annotated corpora, such as Penn Treebank Project, 

offers the possibilities for overcoming this knowledge-engineering bottleneck. However, the parsers based on 

such grammar rules have the risk of becoming too tailored to these labeled training data so as not be able to 

reliably process sentences from other domains. To parse sentences from a new domain, one would then try to 

obtain a new set of grammar rules from that domain, which often would require hand-parsed sentences for 

the new domain. Because to (semi-)manually parse a large corpus is both a labor-intensive and a time-

consuming task, it would be beneficial to automatically derive grammar rules from raw text data from that 

domain with minimal annotations.  

In this paper, we report our ongoing research work in automatic grammar acquisition within the minimal 

description length (MDL) [ Ris78, Ris89] paradigm, together with contextual distribution classification to 

infer the LHS of those induced rules. Particularly, we want to address three MDL-related grammar induction 

issues: 1) What problems do current MDL-based grammar induction approaches have? 2) What MDL values 

may we obtain using the basic MDL induction approach when both the grammar rules and their application 

order is known? This way, we can have a good idea about the upper bound for the basic MDL-based 

grammar induction. 3) Are there any new approaches that can lead to a performance close to that upper 

bound? 

To answer these questions, we conducted a set of experiments that compare the induction curves under 

different settings using both automatically induced grammar rules and hand-annotated rules in Treebank.  



The results show that the MDL principle alone induces reasonable phrase grammar rules at the beginning, 

but quickly leads to a local-minimal and most of induced rules then are not adequate. However, applying the 

rules from Treebank by MDL principle in bottom-up order shows monotonous and sharp decrease of MDL 

values, compared with the results from the basic MDL principle. We speculate that it may be due to the 

vagueness of the LHS symbols from the MDL principle alone, and therefore, we improve our algorithm to 

determine LHS using distributional classification. The experimental results show that the new approach is 

very close to the hand-annotated rule induction approach in term of MDL values. 

The rest of paper is organized as follows: section 2 presents the MDL principle, with an emphasis on 

description length gain (DLG), described in [Kit98] following classic information theory [Shannon49, 

Cover&Thomas91]. The next section presents two grammar induction strategies, i.e. the basic induction 

algorithm, which aims to find optimal grammar rules from the scratch with the guide of MDL principle 

alone, and a two-stage improved induction algorithm that first explores the context distribution of five 

syntactic categories from some “seed grammar”. During the next induction stage, those induced grammar 

rules are dynamically classified as one of the five categories to avoid the deficiency of MDL-based search 

strategy. Section 4 reports experimental settings, results and algorithm evaluation. Section 5 reviews previous 

MDL-based  research on grammar learning and gives our conclusions. 

2. Grammar induction by MDL Principle 

Grammar induction can be viewed as a process that searches for the best grammar in a predefined 

grammar (or hypothesis) space. If a set of permissible rules or rule formats, e.g., context-free grammar 

(CFG) rules, are given, it is widely adopted to use the Baum-Welch (or forward-backward) algorithm and its 

extension, the inside-outside algorithm [Baker79, Lari&Young90], to estimate the probabilistic parameters 

for these grammars. Essentially, there are two sub-tasks in obtaining a CFG rule. One is to decide what the 

right-hand terminals or non-terminals should be, and the other is to decide the left-hand symbol (LHS). 

 

2.1. MDL Principle 
Researchers have proposed various techniques and criteria to constrain the grammar space and to guide the 

search process. For example, [Hol75] used genetic algorithm and [KVG83] applied stimulated annealing 

algorithm to facilitate the search process. However, at the core of the search process, the goodness criterion 

for search is a critical issue, this is because it tells which grammar rule is better. Among those approaches,  

the minimal description length (MDL) principle, which  is based on the classic and algorithmic information 

theory [Shannon49, Solo64, and Kol65], has received a wide attention. 

For any given set of data, i.e. legal sentences, there are usually multiple theories (i.e. a set of grammar 

rules) that can account for the data, and we need to decide which one to select. An often used principle is the 

Occam’s razor principle, which states that given a choice of the theories, the simplest is best. There are two 

aspects associated with the simplicity. One is that how simple is the theory describes the data, and the other 

is that how simple is the description of the theory itself. There is clearly a tradeoff between these two aspects. 

[Ris78] formalized this as follows: given some data D, we should pick that theory T which minimizes. That 

is: 

L(T) +L(D|T)  (1) 

where L(T) is the number of bits needed to minimally encode the theory T, and L(D|T) is the number of 

bits needed to minimally encode the data D given the theory T. 



From Shannon’s information theory [Shannon49], we know that if we have a discrete set X of items with a 

probability distribution P(x), then to send a message identifying x∈ X, we need approximately L(x) = -

log2(P(x)) bits. In other words 

P(x) = 2 –L(x)  (2) 

This enables us to interpret the MDL principle in Bayesian framework. From the equation it can easily be 

seen that minimizing L(T) + L(D|T) corresponds to maximizing P(T)*P(D|T) and hence P(T|D). This shows, 

theoretically, searching for the most likely theory for a given data in a Bayesian modeling framework is 

equivalent to searching for a model with the minimal description length. 

It should be noted that the MDL principle enables us to assign prior probabilities to items in a meaningful 

way, even if we do not really have enough prior knowledge. We can do this through minimal length encoding 

for the items. 

2.2. Description Length Gain 
The application of MDL is independent of encoding scheme [Ris89]. To calculate the description length 

L(T) +L(D|T), what we need is an ideal encoding scheme, instead of a real compression program. This can be 

formulated in terms of token counts in the corpus as below for empirical calculation [Kit 98], following 

classic information theory [Shannon49, Cover&Thomas91]:  
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where V is the set of distinct tokens (i.e. the vocabulary) in corpus X and c(x) is the count of x in X. 

Accordingly, the description length gain of selecting the substring xixi+1…xj (denoted as xi…j, i < j) as 

possible RHS candidate of a grammar in a given corpus is defined as 
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rX →  represents a resultant corpus from the operation of replacing all instances of xi…j 

with r throughout X, and ⊗ denotes a string concatenation operation with a delimiter inserted between its 

two operands, the current corpus and newly learned phrase xi…j. 

It is worth to note that we can choose the substring with maximum DLG value at each iteration without 

carrying out the real string substitution throughout the original corpus. The calculation is based on the token 

count change involved in the substitution to derive the new corpus. After finding the substring with 

maximum DLG, we replace the substring with a new string r in the original corpus. 

Another problem is that we need to derive the count of x, for all possible sub-strings x in the corpus X, 

because during the induction process, it is necessary to consider all segments (i.e. all n-gram) in the corpus in 

order to select a set of good candidates. For one thing, MDL principle itself prefers short grammar rules over 

long grammar rules and long rules normally occur less frequent than short rules and hence less possible to 

become good grammar rules in the induction. In addition, it is too computationally expensive to consider 

each possible of these n-grams at every point in the search. Therefore, we use only bi-gram and tri-gram in 

the induction process. However, we will consider two cases: using bi-gram and tri-gram RHS with automatic 

MDL principle alone, and using the same number of RHS hand-annotated rules.  

3. Learning Strategies 

3.1. Basic Induction Algorithm 



Accordingly, the best first learning algorithm using the goodness criterion is illustrated in figure 1. Given 

an utterance U = t0t1…tn as input string of some linguistic token, e.g. part-of-speech tags, the unsupervised 

grammar induction looks for the substring with maximum description length decrease, i.e. maximum DLG, at 

each iteration and then replaces the n-gram (bi-gram or the tri-gram in our work) with a random symbol in 

the whole corpus, at the same time, output the learned rules in this iteration. It loops until description length 

value does not decrease, or DLG have a zero or negative value. 

 

 

Figure 1 Basic MDL Induction Algorithm 

  

3.2. Pseudo-Grammar Learning by MDL Principle 
One may see that the learning algorithm may not reach the real shortest description length, since it is a 

best first strategy that stops at local minima. To evaluate if the MDL principle is applicable for those hand-

annotated rules in Treebank corpus, we implement a pseudo-grammar induction algorithm to gain insights. 

Figure 2 outlines this pseudo-grammar induction algorithm. 

 

  
Figure 2 pseudo-grammar induction algorithm 

In the algorithm, by simple extracting all hand-annotated rules from the corpus, the rule form (RHS and 

LHS) and the rule application order are predetermined based on the parse trees. We only use MDL principle 

to pick a rule in the current step so to get maximum description length gain. When all the child rules are 

selected and applied, their parent rule will be considered subsequently. Thus, we apply these hand-annotated 

rules roughly in the bottom-up parsing order, guided by the MDL criterion. From this experiment, we want to 

figure out how the basic induction algorithm differs from the pseudo-induction, where the rule and the order 

of the application are already known, under the same criterion. In addition, through this experiment, we try to 

find an upper bound for MDL-based grammar induction. 

11..  EExxttrraacctt  aall ll   hhaanndd--aannnnoottaatteedd  ggrraammmmaarr  rruulleess  ffrroomm  TTrreeeebbaannkk  ccoorrppuuss,,  ssoorrtt  tthhoossee  rruulleess  aaccccoorrddiinngg  ttoo  

bboottttoomm--uupp  ppaarrssiinngg  oorrddeerr,,  mmaarrkk  ggrraammmmaarr  rruulleess  aass  ““ hhiiddddeenn”” ,,  eexxcceepptt  ffoorr  lleeaaff  ggrraammmmaarrss  iinn  tthhee  eevveerryy  

sseenntteennccee  ttrreeee  aanndd  aadddd  tthheemm  ttoo  tthhee  rruullee  ppooooll ;;  

22..  FFoorr  aall ll   rruulleess  iinn  tthhee  rruullee  ppooooll ,,  aappppllyy  sstteepp  22  aanndd  33  ooff  bbaassiicc  iinndduuccttiioonn  aallggoorrii tthhmm  iinn  ff iigguurree  11  iinn  

eeaacchh  rruunn  ttoo  cchhoooossee  tthhee  rruullee  wwii tthh  mmaaxxiimmuumm  DDLLGG;;  

33..  OOuuttppuutt  tthhee  lleeaarrnneedd  ggrraammmmaarr  aanndd  aappppllyy  ii tt  iinn  oorrddeerr  ttoo  iinnvvoollvvee  mmoorree  hhiigghheerr  lleevveell   ggrraammmmaarrss,,  tthhaatt  

iiss  ,,  ii ff   aall ll   tthhee  cchhii llddrreenn  ooff  oonnee  ggrraammmmaarr  aarree  aappppll iiccaabbllee,,  tthhee  ggrraammmmaarr  ccaann  bbee  mmaarrkkeedd  aass  ““ vviissiibbllee””   

aanndd  hheennccee  aadddd  ttoo  tthhee  rruullee  ppooooll ;;  

44..  GGoo  ttoo  sstteepp22  ii ff   tthheerree  aarree  rruulleess  iinn  tthhee  rruullee  ppoooorr..    

11..  sseett  kk  ==  00  aanndd  eexxttrraacctt  aall ll   22--ggrraamm  aanndd  33--ggrraamm  iinn  XXkk  wwii tthh  tthheeiirr  ccoouunnttss;;  

22..    ffoorr  eevveerryy  nn--ggrraamm  ((nn  ==  22,,33))  iinn  XXkk,,  eexxaammiinnee::  

                      ((aa))  II ff   nnoo  mmoorree  xxii jj  ((22≤ jj --ii ≤ 33))  tthhaatt  DDLL  ((XXkk[[ rr-->>  xxii jj  ]] ))  <<  DDLL((XXkk)),,  oouuttppuutt  tthhee  pphhrraassee  aanndd  eexxii tt;;  

                      ((bb))  EEllssee  rrkk  ==  aarrggmmaaxx  ∆∆DDLL  ((XXkk[[ rr-->>  xxii jj  ]] ));;  

33..    XXkk++11  ==  XXkk[[ rrkk  -->>  xxii jj]] ,,  oouuttppuutt  tthhee  rrkk,,  ggoo  ttoo  sstteepp  22;;  



 

3.3. MDL Induction by Dynamic Distributional Classification 
Comparing the results of the two experiments, we discover that the basic MDL induction algorithm alone 

does infer reasonable phrasal grammar rules at the beginning, but after getting about a hundred of rules, it 

quickly reaches a local-minimum and most of the induced rules are not adequate.  

We suspect that it may be due to the random labeling of LHS for those induced rules, because if all the 

LHS symbols of the induced rules are different, the repetition of certain patterns becomes less and therefore 

its MDL value decreases less dramatically.  

Based on this observation, we come up with a new algorithm. We decide to integrate some linguistic 

information into the search strategy, which tries to classify the LHS symbols of the induced rules, using 

distributional analysis, and to help the search process to infer more syntactic plausible rules.  

The algorithm is divided into two stages, one is the context vector training stage and the other is an 

improved MDL induction process.  

The context vector training algorithm is based on the assumption that similar grammar rules tend to occur 

in similar contexts. The contexts of the rules from “VP” category, for instance, differ greatly from those of 

the “NP” rules. If the context is restricted to a fixed sliding window (e.g., three part-of-speech tags in our 

work, on either side of rules), then we can define the context distribution over all rules in that syntactic 

category. The context distribution of one category can be estimated from the observed contexts of sample 

sentences in category. 

In the next MDL induction stage, we measure the similarity of each MDL induced rule to the center of 

context vectors of each syntactic category using Kullback-Leibler (KL) divergence as the distance function 

and assign to the LHS of the rule the category with the shortest distance. At each iteration, we also 

dynamically update the contexts and their centers of the induced rules for every syntactic category. 

For simplicity, the syntactic categories are limited to five non-terminals, i.e., “NP”, “VP”, “S”, “ADJP”, 

and “PP”, which are main syntactic components in the syntactic parsing.  We take, as “a seed grammar”, a 

set of most frequently used grammar rules for each of 5 syntactic categories and analyze the contexts (3 left 

and 3 right part-of-speech tags) for each of those rules in the sample corpus. The thirty seed rules we used in 

the algorithm are illustrated in Table 1. Note that we not only use the base grammar rules, i.e. the rules at the 

leaves of the parsing tree, but also the ones at the upper levels, since exploiting the context of these rules on 

the fly will make the search process more robust. Another critical issue concerning the selection of the seed 

grammar rules is to decide the number of rules for each category. The ratio we choose is roughly the same 

ratio for these five categories in the training corpus. In addition, we discover that “NP” rules alone account 

for two thirds of all rules in the hand-annotated Treebank corpus and they dominate other kind of rules 

especially in the bottom level of parsing trees. Therefore, we choose many “NP” rules as seed grammar 

rules. 

 

 

NNPP-->>DDTT  JJJJ  NNNN  NNPP-->>DDTT  JJJJ  NNNNSS  NNPP-->>DDTT  NNNN  NNPP-->>DDTT  NNNNSS  NNPP-->>PPRRPP  NNPP-->>JJJJ  NNNNSS  
NNPP-->>JJJJ  NNNN  NNPP-->>NNNNPP  PPOOSS  NNPP-->>DDTT  NNNN  PPOOSS  NNPP-->>JJJJ  JJJJ  NNNN  NNPP-->>JJJJ  JJJJ  NNNNSS  NNPP-->>DDTT  NNNN  NNNN  
NNPP-->>DDTT  CCDD  NNNNSS  NNPP-->>NNPP  NNPP  NNPP-->>NNPP  CCCC  NNPP  AADDJJPP-->>RRBB  JJJJ  AADDJJPP-->>RRBB  JJJJRR  AADDJJPP-->>RRBB  JJJJSS  
AADDJJPP-->>RRBBSS  JJJJ  AADDJJPP-->>RRBBRR  JJJJ  PPPP-->>IINN  NNPP  PPPP-->>TTOO  NNPP  PPPP-->>IINN  SS  VVPP-->>VVBB  NNPP  
VVPP-->>TTOO  VVPP  VVPP-->>MMDD  VVPP  VVPP-->>VVBBDD  NNPP  VVPP-->>VVBBZZ  NNPP  SS-->>NNPP  VVPP  SS-->>PPPP  NNPP  VVPP  

Table 1 the Seed Grammar Rules 



 

 

 

 

 

 

 

 

 

4. Experiments and Results 

A number of preliminary experiments on unsupervised phrase and lexical learning have been conducted on 

parts of Treebank corpus. These experiments show promising results by DLG measure [Kit 98]. It shows 

certain ability to capture the regularities in the data. Since it takes a learning-via-compression approach, i.e. 

MDL principle approach, the result is a set of deterministic CFG rules. 

We perform four experiments and all of them use 2,500 sentences extracted from Treebank corpus with 

hand-annotated part-of-speech tag for each word as input. Backing off to POS tags is necessary because it 

alleviates the sparse data problem. 

 

4.1. Experiment 1: Basic MDL Grammar Induction 
The first experiment is the basic MDL principle induction. The testing corpus contains 2,500 short 

sentences and the vocabulary set is made up of 32 POS tags, a subset of 47 tags used in Treebank corpus. We 

apply MDL principle on the grammar space, where the RHS of a CFG is bi-gram or tri-gram. The first thirty 

of induced rules are given in appendix A.  

From the appendix, we can see that most learned grammar rules are reasonable, such as [NNP NNP], [TO 

VB] and [MD VB]. However, some other rules seem to be quite “flat”, i.e. lack of internal structures of the 

rule. The rule [PRP RB VBD], for instance, should be broken down into [PRP [RB VBD]]. In addition, we 

plot MDL value curve to show the MDL decrease trend along the search procedure. The curve is given in 

figure 3. 

It is clear that having induced about a hundred rules, the basic MDL induction algorithm reaches the local 

minimal quickly. For comparison and verification of whether the MDL principle is useful for real world data, 

we perform another experiment using the pseudo-induction algorithm in subsection 3.2. 

4.2. Experiment 2: Learning by Pseudo-Grammar Induction 
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Figure3 The Two Grammar Induction Curves (MDL Value vs. Rules Induced) 



In this experiment, we use the same search strategy but to the manually annotated rules found in Treebank 

corpus. The search process only chooses the rule with the maximum description length decrease, while the 

rule forms are all predetermined in advance. The MDL curve is illustrated in the figure 3. The detail of the 

algorithm is described in section 3.2. 

From the figure, we observe that although the two curves are very closely to each other in the beginning, 

they differ greatly in the whole process in that: firstly, no local minimal is found in this case, while the basic 

induction process quickly becomes flat and has to be terminated because it is too computational expensive to 

infer new rules – large amount of randomly selected LHS of the induced rules lead to a very sparse 

distribution. Secondly, for the pseudo-grammar induction case, the curve decreases irregularly, that is, a few 

“critical” rules make the description length drop dramatically than the rest of them. We still work on 

understanding the effects. 

To verify if it is just a special case for pseudo-grammar induction, we perform similar experiment on 

different sentence sets, illustrated in figure 4. The three curves are obtained by applying pseudo-grammar 

induction algorithm on different number of sentences extracted from Treebank corpus, namely 2,500, 5,000 

and 10,000 sentences respectively. The chart shows the consistency among varied numbers of sentences. 

 

                  Figure 4 Different Data Set used in Pseudo-Grammar Induction Experiment 

  

4.3. Experiment 3: MDL Induction by Dynamic Distributional Classification 
In this section, we give experiment results of the two-stage induction algorithm described in section 3.3.  

The goal of the experiment is to incorporate some linguistic knowledge into the search process to get more 

syntactic plausible grammar and overcome the local-minimal problem. 

After training the classifier on 1,000 POS tagged sentences using the seed grammar rules, we obtain the 

context vector centers for all the 5 syntactic categories. Then, we construct the induction sets using a 

different set of 2,500 sentences (which is the same as the previous experiements).  

The curve labeled with “MDL Induction by DDC” in Figure 5 summarizes the outcome of the experiment. 

From the chart, we see that it decreases monotonically, however, with no local minimal found at this time in 

the curve; the search process repeats until no rules can be induced by MDL framework. In addition, the curve 

is very close to the pseudo-grammar induction case, i.e. the upper bound of the algorithm. 

This algorithm learns not only the right-hand sequences of terminals/non-terminals, but also their LHS 

syntactic categories. 



We also conduct another experiment to see the effect when both the classification of syntactic category 

and the MDL induction are accurate, that is, assume the syntactic category of every induced rule is correctly 

identifiable using extra knowledge, and also assume all induced rules are subset of the grammar rules found 

in the hand-annotated Treebank corpus.  

We vary the experiment settings in this algorithm to explore the upper bound for experiment 3. Because 

many induced grammar rules, which reduce the description length dramatically, are not syntactic plausible 

rules and are not found in manual rule set, however, the algorithm assigns a syntactic category for them and 

updates the center of the context vector for that category in the search process. This, in turn, impacts on the 

classification in the later part of the process. Although we try to use several high-level grammar rules as seed 

grammar and explore their context in the induction process to compensate this effect, how to improve the 

robustness needs further investigation. 

Another major factor to certain poor performance is the limited number of syntactic category, (five in our 

work, but more than fifteen in the Treebank), and the restricted number of n-gram (many ‘flat’ grammar rules 

are found in Treebank [Gai95]) that we applied in the experiment all impact the induction procedure. To 

investigate their impact, we loose the restriction on the limited number of LHS categories. In the each 

induction process, as described in section 2.3, we sort the candidate rules by their DLGs in a descending 

order, choose only the first rule found in hand-annotated Treebank grammar and apply it by replacing its 

RHS sequence with the correct LHS.  

In such procedure, no classification is performed, therefore the classifier is always assumed to be accurate, 

which removes the effect that grammar rules induced early influence the rules induced later. On the other 

hand, all rules learned are syntactic plausible ones, since they are subset of the manual-annotated grammar 

rules. The only difference between them is the number of the right-hand symbol and the syntactic category of 

the left-hand symbol. 

The experiment result is illustrated in the figure 5 with the label, “Simulated induction”. From the figure, 

we find that the different number of n-grams and the syntactic categories does affect the results, especially in 

Figure 5 The MDL Curve 



the later search process, when compared with the “Pseudo-Grammar Induction” curve. On the other hand, 

compared with “Grammar Induction by DDC” curve, the classifier is really distracted by the previously 

induced “bad” grammar rules. This is the place where future research work can be directed. 

In addition, we also calculate the precision and recall for those induced rules, in contrast with the hand-

annotated grammar rules extracted from the same set of 2,500 sentences. The result is illustrated in table2. 

 
Rules after 100 200 500 1000 
Precision 0.92 0.89 0.82 0.74 
Recall 0.13 0.16 0.18 0.22 

                                             Table2 the precision and recall for induced rules 

5. Related Work and Conclusions 

The difficulty of grammar induction depends greatly on the amount of supervision provided. 

[Charniak96], for example, has shown that a grammar rule can be easily constructed when the examples are 

fully labeled parse tree. However, if the examples consist of only raw sentences with no extra structural 

information, grammar induction is very difficult, even theoretically impossible [Gold67]. Part of our work 

explores the in-between case, where the category of learned rules could be decided by the result of a 

supervised learning algorithm. 

Second, the search criterion also impacts the induction process. Besides the MDL principle, there are other 

search criteria, similar to us, to guide the “guessing game”. Cook et al. [Cra76] explores a hill-climbing 

search for a grammar of a smaller weighted sum of grammar complexity and the discrepancy between the 

grammar and corpus; Brill et al. [BMMS90] derive phrase structures from a bracket corpus by generalized 

mutual information approach; and Brill and Marcus [BM92] attempt to induce binary branching phrases with 

distribution analysis using the information-theoretical measure divergence, derived from relative entropy. de 

Marcken gives an in-depth discussion on the kind of issues involved in the pure distribution analysis and on 

the disadvantages of the inside-outside algorithm for grammar induction in his PhD thesis [deMa95]. 

Recently, following Cook’s work, Stolcke [Sto94] worked under the Bayesian modeling framework, whereas 

Chen [Chen95, Chen 96] uses the universal prior probability p(G) = 2–l(G) for grammar induction. Their 

learning strategy reports to work well on small to medium size artificial corpora, using measures such as 

entropy, perplexity or likelihood. But, to our knowledge, no one has tried to induce all levels of syntactic 

grammar rules on large scale real corpora before. 
In the paper, we have shown two MDL-based grammar induction algorithms. Both of them try to infer 

syntactic plausible grammar rules for parsing with one focusing on a best-first search strategy with minimal 

supervision and the other focusing on integration of language constrains into the learning model. Comparing 

these two approaches through experiments, we show that MDL principle alone could induce phrase-level 

grammar well, but fails to learn high-level grammar rules. In addition, with integrated language constraints, 

the MDL principle could infer not only the grammar rules, but also the categories of the LHS of the learned 

rules. The experiments show that the result of the second algorithm is very close to that of the pseudo-

grammar induction algorithm. 

To further improve the grammar learning algorithms for high performance parsing, we still need to 

investigate the failed instances and come up with more sophisticated learning algorithms. Evaluating learned 

rules for parsing and further improving learning algorithms are the two main tasks in our future work. 
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Appendix A 

The first 30 grammar rules learned by basic MDL grammar induction algorithm from 2,500 sentences in 

the Treebank corpus are given below. The rules are marked as true (t), false (f) and unsure (u) respectively 

according to human evaluators. There are four columns in the table, namely, rule number, the current 

description length with model and data combined when the grammar rule is acquired, the rule and the 

evaluation flag. The POS tags in these rules are listed below. 

 
1 146186 NNP NNP t 16 136398 NNP NNPS t 
2 144823 TO VB t 17 136274 TO CD CD t 
3 142641 MD VB t 18 136128 NNP POS t 
4 141748 MD RB VB t 19 135916 EX VBZ u 
5 141411 DT JJ NN t 20 135839 WDT [MD VB]  t 
6 140245 IN DT NN t 21 135762 WDT VBD t 
7 138981 PRP VBP u 22 135666 PRP RB VBD u 
8 138625 PRP VBD u 23 135569 PRP [MD RB VB] t 
9 138119 PRP VBZ u 24 135508 EX VBZ u 
10 137703 PRP [MD VB] t 25 135456 WP VBZ t 
11 137471 NNS VBP t 26 135369 JJR IN CD f 
12 136989 NNS WDT VBP f 27 135271 TO DT NN t 
13 136834 WDT VBZ t 28 135082 PRP RB VBP u 
14 136681 NNS WP VBP f 29 135023 NNS RB VBP f 
15 136567 RB VB t 30 134936 [NNP NNP] POS t 

 
CD: Cardinal number PRP: Personal pronoun 
DT: Determiner MD: Modal 
JJ: Adjective RB: Adverb 
JJS: Adjective, superlative To: ‘to’ 
IN: Preposition or subordinating conjunction VBD: Verb, past tense 
POS: Possessive ending VBN: Verb, past participle 
VB: Verb, base form VBZ: Verb, 3rd person singular present 
NNP: Noun, singular form NN: Noun, base form 

 


