
ON COMPILATION OF THE QUICK-CHECK FILTER

FOR FEATURE STRUCTURE UNIFICATION

Liviu Ciortuz

Computer Siene Department

University of York

Heslington, York, YO10 5DD, UK

iortuz�s.york.a.uk

Abstrat

The quik-hek (QC) tehnique introdued by [11℄ is a highly e�etive optimisation tehnique for

�ltering out the (eventually unsuessful) uni�ation of feature strutures. This paper presents the

ompilation of the QC �lter as it was designed and implemented in the Light ompiler system [4℄. (Light

stands for LIGHT | Logi, Inheritane, Grammars, Heads, and Types.

1

)

Up to our knowledge, it is the �rst attempt to inorporate this pre-uni�ation speed-up tehnique

in a ompiler system dealing with large-sale typed-uni�ation grammars, and what makes this work

interesting is that it proposes a ompiled form of the QC test, whih is signi�antly more elaborated than

its original form.

This elaboration is motivated not only by the ompilation's overall aim to get an inreased speed

up for parsing, the fat is that the original, simple, interpreted form of the QC �lter annot diretly

aommodate with other optimisation tehniques for ompiled parsing with typed-uni�ation grammars,

and this very fat made ompilation of Quik-Chek fully justi�ed.

2

0 Introdution

Signi�ant progress has been ahieved during the last ouple of years in the area of eÆient natural

language proessing with large-sale feature-based grammars. A reent work [15℄ presented some of

the most advaned results onerning parsing with wide-overage HPSG grammars [16℄, notably the

LinGO grammar [8℄ for English developed at CSLI, University of Stanford. The QC pre-uni�ation

�lter [11℄, one of the most remarkable speed-up tehniques in this area is, up to our knowledge, used

now in all but one of the systems able to ope with LinGO. (We named LKB [7℄, TDL [10℄, PET and

Light; the exeption | the LiLFeS system [12℄ | instead of using QC, employs a CFG �lter whih

leads to pratial results omparable to (the best of) the other systems but, up to our knowledge, it is

muh more memory onsuming. For PET, the reportedly fastest system running LinGO, the author

reports a fator of speed up of about 63% after the introdution of the QC test [2℄.)

The present paper deals with getting a ompiled form of the QC �lter, suitable for an elegant and

eÆient integration with ompilers for uni�ation-based grammars.

Making it simple, the idea behind the pre-uni�ation QC test is the following:

Having got the knowledge about the most probable failure paths �

1

; �

2

; :::; �

n

in the appliation of

parsing rules,

3

before doing the uni�ation of a ertain feature struture

1

(representing a phrase)

1

The analogy with the name of LIFE | Logi, Inheritane, Funtions and Equalities | a well-known onstraint

logi language based on the OSF onstraint system [1℄ is evident.

2

The oneption and implementation side of the work here reported was done while the author was employed at the

LT Lab of the German Researh Center for Arti�ial Intelligene (DFKI) in Saarbr�uken, Germany.

3

These most probable failure paths are identi�ed by running the system (without QC) on a large orpus.

with another feature struture

2

(representing a syntati rule argument), one an hek whether

for every path �

i

, its values in

1

and respetively

2

are ompatible, i.e., root(

1

:�

i

) ^ root(

2

:�

i

)

6= ?, where the funtion root designates the root sort of its argument FS, :� is the usual notation

for the sub-struture identi�ed inside by the (feature) path �, and ? is the bottom/inonsistent

sort in the grammar's sort hierarhy. This sort hierarhy is assumed an inferior semi-lattie, with s^ t

designating the unique greatest lower bound (glb) of the sorts s and t.

If for suh a path this ompatibility test is not passed, then it follows immediately that the feature

strutures

1

and

2

don't unify. This simple tehnique eliminates muh of the atually unneessary

work performed during uni�ation in ase of failure.

Now, surprisingly enough, the introdution of the QC tehnique in the ompilation approah for the

HPSG-like type uni�ation grammars as tried out for the Light system was not immediately e�etive.

Here follows a �rst explanation:

Even at the �rst sight, one an see that the QC �lter might not be so muh e�etive in the

ompilation approah, sine ompiled uni�ation is signi�antly faster than interpreted uni�ation.

Of ourse, doing the QC test osts (it is �nally a waste in ase of atual suessful uni�ation).

Measurements done �rst on the LKB, TDL, PET systems revealed that in ase of interpreted-like

parsing with LinGO-like grammar, it is worth to pay for the QC test, sine most/many uni�ations

fail (even after the rules' ombinatorial �lter was applied). But in the ase of ompiled parsing, the

trade to be made between the time required by the QC test (expressed as a funtion of the number

of failure paths to be heked) on one side, and the speed of the uni�ation proedure on the other

side is dramatially narrowed. A ompiled form of the QC �lter as will be presented here is proven

able to \enlarge" again this trade area for speeding up the parsing/dedution.

Basially, this paper shows how QC-vetors froot(:�

1

), root(:�

2

), ..., root(:�

n

)g an be om-

puted in two stages, the �rst one done one for all at the ompilation time (we all it QC pre-

omputation), ompleted at the run-time by the seond one aording to spei� irumstanes. The

basis for this \two-step" omputation of QC-vetors resides in the fats that i . the order in whih one

rule's arguments will be proessed is known at the grammar preproessing/ompilation time, and ii .

for any (in general not known in advane) feature struture whih will be involved in the QC test,

we know that will be an instane of (i.e., subsumed by) a ertain feature struture 	 fully known

at the ompilation time (v).

Remark: Formally, for any QC feature-path �, the QC

�

() = root(:�) value will be omputed

by applying at the run-time a funtion � to a ertain argument preComp(; �), omputed at the

ompilation time:

QC

�

() = �(preComp(; �)).

The three setions of the present paper deal respetively with 1. explaining the problems we

enountered when we tried to aommodate the simple (interpreted-like) QC �lter into the Light

ompiler setup, in partiular its o-existene with the other main optimisation tehnique we proposed

| the speialised ompiled form of rules [5℄; 2. getting the ompiled (inomplete, \pre-omputed")

form of the QC-vetors followed by a simple example; 3. omputing their run-time, ompleted form,

and suggestions for improvements. A �nal, evaluation paragraph provides �gures on the ompiled QC

eÆieny, namely the measurements done for LinGO by running the Light system on the CSLI test

suite both with and without the QC �ltering.

1 Can the (interpreted) QC test be aommodated into

the (ompiled) parsing in Light?

Let us �rst analyse the way the QC was oneived in the interpreting setup (of the LKB and

PAGE/TDL systems) for parsing with HPSG-like grammars:

{ as soon as a phrase is parsed, a \passive" QC-vetor is omputed for its assoiated feature struture

(FS) . This QC-vetor is de�ned as froot(:�

1

), root(:�

2

), ..., root(:�

n

)g. If one of the paths �

i

is not de�ned for , then the i-th omponent in the omputed QC-vetor is taken by de�nition >, the

top element in the grammar's sort hierarhy;

{ every m-ary rule is assoiated m \ative" QC-vetors; in the ase of a binary rule ', we will have

�rst a \key" QC-vetor froot('

0

:�

1

), root('

0

:�

2

), ..., root('

0

:�

n

)g, where '

0

= '.key-arg, namely

the sub-struture orresponding to the head/key argument in the FS representing the rule;

{ before trying to apply the rule ' to a presumptive key argument i.e., before unifying with

'

0

, the QC pre-uni�ation test does root(:�

i

)^ root('

0

:�

i

) for i = 1; n, that means the onjuntion

of the orresponding omponents of the two QC-vetors. If the onjuntion result is always onsistent

(i.e., not ?), the system uni�es with '

0

, and if this uni�ation sueeds, then the system produes

a new, \ative" QC-vetor, orresponding to the next argument to be parsed. If the urrent rule is

a binary one, this new ative QC-vetor is what we all the \omplete" QC-vetor, orresponding to

'

00

= �.non-key-arg: froot('

00

:�

1

), root('

00

:�

2

), ..., root('

00

:�

n

)g, where � is what ' has beome

after '

0

= '.key-arg has been uni�ed with .

As already mentioned in the introdutory setion, the main problem that we've got when we tried

to integrate the QC pre-uni�ation test with the Light ompiler was its aommodation with the

previously inluded main optimisation: the speialised ompilation of rules. While the \key" QC-

vetor '

0

an be thoroughly omputed at the grammar ompilation/loading time, omputing the

QC-vetor for '

00

= �.non-key-arg is not immediately possible simply beause the �.non-key-arg

struture does not e�etively exists (on the heap). Let us detail this issue:

In Light, syntati rules are represented as feature strutures, and their appliation is done in a

bottom-up manner. In order to eliminate unneessary opying, when dealing with LinGO-like gram-

mars (working with only binary and unary rules), we have speialised one rule's exeution into i:

key/head-orner (mode) appliation, and ii: omplete (mode) appliation. This distintion between

two di�erent modes for one (binary) rule appliation | together with the FS sharing (environment-

based) faility | allows for an inremental onstrution of the feature struture representing a phrase,

in suh a way that, if ompletion is �nally not possible, then no spae (otherwise needed in an inter-

preter framework) for onstruting the FS orresponding to the rule's omplement/non-key argument

is wasted. This strategy of inremental parsing in Light | whih is simple and elegant due the use

of open reords/FSs as in the OSF onstraint theory [1℄, in ontrast with losed reords used in the

appropriateness-based approah [3℄ underlying other LinGO-parsing systems | provided us a fator

of speeding up of 2.75 on the test suite provided by the CSLI, University of Stanford.

Note that even in the hyper-ative head-orner parsing approah proposed by Oepen and Car-

roll [14℄, in whih an indexing shema is used to minimise the opying of possibly unneessary parts of

a rule's FS (notably the non-key argument and the LHS of the rule), one initial full representation of

the rule's FS must be onstruted before applying the rule in order to �ll its key-argument. In Light

a full FS representation of a rule is obtained only after the rule arguments were suessfully uni�ed

with FSs already present on the heap.

In order to solve the above problem | namely, that the omputation of the \omplete" QC-vetor

is prevented by the missing representation of the non-key argument | we proposed �rstly a rather

naive solution: we relaxed the QC-test for the omplete/non-key argument by heking the QC-vetor

of the andidate argument � against the QC-vetor omputed for '.non-key-arg. As this last QC-

vetor is more general than the one omputed for '

00

| in the sense that if both ':non-key-arg:�

and '

00

:� exist, then root(':non-key-arg:�) � root('

00

:�) in the sort hierarhy |, we were entitled

to use it for QC. However, in this way the speed up e�et of the QC test with Light when parsing

the CSLI test suite with the LinGO grammar was not signi�ant. (We used here the notation priorly

established: ' is the FS assoiated to the rule whih is being applied, and '

00

is obtained from ' after

'

0

= ':key-arg was uni�ed with , the FS orresponding to a passive item.)

The seond, atual solution we proposed was to ompile (the omputation of) the QC-vetors. It

will be presented in the next setions. Basially, the idea is that instead of omputing for instane

for a binary rule three QC-vetors like in the interpreted approah | one \key" QC-vetor at the

loading/pre-proessing time, a \omplete", and �nally a \passive" one at the run-time

4

|, in the

ompilation approah we will ompute �ve QC-vetors, among whih three are omputed at the

ompilation time and two at the run-time, the last two building upon the pre-omputed ones.

QC test \key" QC-vetor \omplete" QC-vetor \passive" QC-vetor

ompilation-time preComp('

0

) = preComp('

00

) preComp(')

run-time = QC('

0

) QC(�) QC(�

0

)

Figure 1: The QC-vetors omputed for a rule ' in the ompilation approah.

In the notation used in Figure 1, � is what ' beame after the key argument ('

0

) was uni�ed with

 , the FS of a passive item, and �

0

is what � beame after the non-key argument ('

00

) was uni�ed

with

0

the FS of another passive item.

5

2 Pre-omputing QC vetors

So far we have shown that

� the QC test ats as a pre-uni�ation �lter for rule appliation; in interpreted-like parsing with

LinGO-like grammars, rules are represented as FSs, and therefore omputing whether a given FS

will math the argument of a rule is straightforward;

� what makes pre-omputation of QC neessary is that speialised ompilation of rules in Light

eliminates the presene (of full representation) of rule FSs from the heap.

Note that | assuming like in the head/key-orner parsing [9℄ that the key argument is parsed

always before the non-key/omplement arguments | the \key" QC-vetor, as introdued in the pre-

vious setion for a ertain rule ' is unique for all key-mode appliation of that rule. All the other

omputed QC-vetors depend on the atual appliation of ' i.e., on the already parsed/�lled argu-

ments. However, one an see all these QC-vetors as omputable in two stages/omponents: i: a

4

These QC-vetors are shown on the bottom line in the (somehow) synopti table in Figure 1.

5

A more suggestive for the two run-time omputed QC-vetors notation would be perhaps QC('

00

;) and QC(�;

0

).

preComp(; �) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

s : sort if root(:�) = s; and

 :�

0

62 X ; for any pre�x �

0

of �;

at the run time QC

�

() = s;

i : int if :�#; :� = X

i

; and

 :�

0

2 X ; for a pre�x �

0

of �;

at the run time QC

�

() = heap[X

i

℄.SORT;

�j : int if :�";

 :�

0

2 X ; for a pre�x �

0

of �;

�

0

= f

1

: ::: :f

j

is the longest pre�x of � suh that

 :�

0

#; and :� = X

j

;

at the run time QC

�

() = heap[X

j

:f

j+1

: ::: :f

n

℄.SORT:

Figure 2: QC

�

() as funtion of preComp(; �).

pre-omputed/preliminary form of QC-vetors, whih an be omputed at the ompilation time inde-

pendently of the FS that will be eventually uni�ed with the arguments; and ii: the atual, form/ontent

of QC-vetors will be �lled at the run time starting form the pre-omputed forms, dependent on the

already parsed arguments.

The QC test idea as introdued in the previous setion is very simple: given a �nite set of feature

paths � = f�

1

; :::; �

m

g, and the feature strutures

1

;

2

, hek whether

root(

1

:�

i

) ^ root(

2

:�

i

) 6= ?; for i = 1; :::;m:

It will be assumed by de�nition that root(:�) = > if the feature path � is unde�ned for (this fat

will be denoted as :�").

Important Remark: Atually, if �

0

= f

1

: ::: :f

j

is the longest pre�x of � = f

1

: ::: :f

n

suh that :�

0

is de�ned (:�

0

#), and root(:�) = s

j

, then we an improve our de�nition of QC-values and take

root(:�) = s

n

, where s

j+1

= 	(s

j

):f

j+1

, s

j+2

= 	(s

j+1

):f

j+2

, ..., s

n

= 	(s

n�1

):f

n

, where 	(s) is

the type assoiated to the sort s in the input grammar. Of ourse, 	(s):f has to be onsidered > if f

is not de�ned at the root level in 	(s). Alternatively, we ould try to expand by loal unfolding,

i.e. unifying :�

0

with (a opy of) the type 	(s

j

) provided by the grammar. If neessary, further

loal expansion/unfolding an be done. Note that loal expansion/unfolding provides more re�ned

onstraints (for the QC-vetors), so it is good to use it at ompile time, but it is not reommendable

at run time, beause it would onsume additional time and spae. At the run time, the previous

solution, based on appropriateness onstraints is preferable.

6

We distinguish the following three ases in (pre-)omputing the QC-vetors:

1. If is a rule argument without ontaining referenes to preedent

7

arguments | this is the ase

of the �rst/head-orner argument in simple/head-orner hart-based parsing | then we de�ne

preComp(; �) = s : sort, where s = root(:�):

2. If is a rule argument with referenes to substrutures of the preedent arguments, X is the set

of all variables/tags in whih refer to preedents arguments (aording to the parsing order), and

6

Our laim that this Remark invalidates the the opinion of PET's author [2℄ who stated that partial expansion [6℄

is reduing the quik-hek's eÆieny.

7

Here the term \preedent" is used in the sense of the parsing order.

sentene

[ARGS < vp

[HEAD #1:verb

[AGREEMENT #3:agr ℄,

OBJECT np ℄,

#2:np

[HEAD noun

[AGREEMENT #3 ℄ ℄ >,

HEAD #1,

SUBJECT #2 ℄

Figure 3: The OSF-term assoiated to a sentene rule.

failure paths key QC-vetor preComp omplete QC-vetor

�

1

= head verb noun noun

�

2

= objet np #2:objet >

�

3

= head:agreement agr #3 3sg

Figure 4: The ative (\key" and \omplete") QC-vetors for the sentene rule.

� = f

1

f

2

::: f

n

is a feature path, then assuming that the heap is the (main) data struture used for

the internal representation of FSs, we de�ne the values of QC-vetors stating from their pre-omputed

form (preComp) like in Figure 2.

Important Remark: Aording to the Remark made in the Introdution, in Figure 2 the underlined

expressions are in fat extended to QC

�

(') = ..., for any feature struture ' subsumed by .

Note that if, as in the urrent implementation of Light, the omputation of ertain QC-vetors

is delayed until really needed, then the atual values of the variables X

i

; X

j

| representing ad-

dresses/indies of heap ells | will have to be saved (together with those in the set X) in the

environment assoiated to the preedent argument (saved after it has been parsed), so to make them

available to the urrent argument.

3. If is the feature struture orresponding to a non-unary rule instane, the \passive" QC-vetor

orresponding to that instane is de�ned in a similar way to the one detailed above, with the only one

di�erene that X is taken as the set of all variables/oreferenes shared between the rule's LHS and

the arguments (RHS).

In the Light system, a pre-omputed QC-vetor is stored as an array of tuples of the form (s, sort),

(i, int), (�j, int), with i � 0, and j > 0, while (at run-time) a QC-vetor is represented simply as an

array of sorts.

Example

Let us onsider | adapted from [17℄ | a simple rule made of a ontext-free bakbone s ! np �vp

augmented with feature onstraints like in Figure 3. (The � sign marks the rule's head/key argument.)

Suppose that we want to onsider the failure paths �

1

= head, �

2

= objet, �

3

= head.agreement.

The \key" QC-vetor and the two \omplete" QC-vetors (the preComp form and respetively the

�nal form) are shown in Figure 4. The preComp QC-vetor is shown in a more intuitive form than

in the formalisation given in Setion 2. The �nal, omplete QC-vetor orresponds to the (expeted)

analysis of the sentene The at athes a mouse. (Note that in the omplete QC-vetor, the value

vp

[ARGS < athes

[HEAD #7:verb

[AGREEMENT #5:3sg ℄,

OBJECT #6:np

[ARGS < a

[HEAD det ℄,

mouse

[HEAD #4:noun

[AGREEMENT 3sg ℄ ℄ >,

HEAD #4 ℄,

SUBJECT #8:sign

[HEAD top

[AGREEMENT #5 ℄ ℄ ℄,

#6 >,

HEAD #7,

SUBJECT #8 ℄

paths QC-vetor

�

1

verb

�

2

>

�

3

3sg

np

[ARGS < the

[HEAD det ℄,

at

[HEAD #9:noun

[AGREEMENT 3sg ℄ ℄ >,

HEAD #9 ℄

paths QC-vetor

�

1

noun

�

2

>

�

3

3sg

Figure 5:

The parses orresponding to the vp athes a mouse and the np the at,

and the omputed \passive" QC-vetors.

for �

2

is > sine the FS orresponding to the noun phrase a mouse doesn't have the objet feature

de�ned.)

One an easily see that the vp feature struture orresponding to the verb phrase athes a mouse,

as shown in Figure 5, passes the QC test with the key QC-vetor presented in Figure 4.

Then the np FS shown in Figure 5 for the noun phrase the at passes the QC test in onjuntion

with the omplete QC-vetor in Figure 4, but the (slightly di�erent) FS for the ats wouldn't, due

to an (agreement) inonsisteny on the path �

3

(non-3sg vs. 3sg). The sorts non-3sg and 3sg are

both assumed subsorts of agr.

3 From pre-omputed QC to ompiled QC

After getting the preComp vetors at ompilation time, we must �nd the right plae to put together

i. the QC-vetors omputation, and ii. the QC test within the ompiled rule's ode or, alternatively,

into the sequene ontaining a all to the rule's appliation.

Let us onsider the FS orresponding to a rule and ' the FS (orresponding to a passive item) to

be uni�ed with the next-to-be-parsed argument. For LinGO, whih deals only with binary and unary

rules,

1. for the rule's head-orner/key argument, (i:) its QC assoiated vetor is omputed at ompile time,

and (ii:) the QC test an be ompiled as a sequene of onditional statements of the form

if (glb(s

�

, QC

�

(') = ?) return FALSE;

where s

�

= QC

�

(.key-arg) = preComp(.key-arg, �) is known at ompile time.

2

0

. if is binary rule, and (after the QC test) ' uni�es suessfully with the rule's head-orner

argument, then before building (and saving) the orresponding environment, we have to (i:) ompute

the QC-vetor for the non-head-orner argument:

8

set QC

�

(

0

), t

�

where

0

= .non-key-arg and

t

�

= �(preComp(

0

; �)) =

8

>

>

<

>

>

:

s if preComp(

0

; �) = s : sort;

heap[X

i

℄.SORT if preComp(

0

; �) = i : int; i � 0;

heap[path(�; j;X

j

)℄:SORT if preComp(

0

; �) ={j : int; j > 0:

and path(�; j;

0

) omputes the value for the path f

j+1

: ::: :f

n

inside the FS

0

, starting from the node

X

j

. (Like in the previous setion, � = f

1

: ::: :f

n

.)

2

00

. if is a binary rule, and ' is a andidate for its non-head-orner argument, before restoring the

environment for the item orresponding to ', we have to (ii:) perform the QC test, in fat a sequene

of onditional statements of the following form, one for eah QC path �:

if (glb(QC

�

(.non-key-arg), QC

�

(') = ?) return FALSE;

Note that QC

�

(.non-key-arg) was already omputed (see 2

0

).

3. if the rule was suessfully ompleted, then we have to (i:) ompute the \passive" QC-vetor

for the newly reated item/FS: we proeed like above (2

00

), with the single di�erene that instead

of preComp(

0

; �) we have to onsider preComp

0

(; �), where preComp

0

is omputed similarly to

preComp, but taking X as the set of all variables used in the rule's arguments (as already notied at

the point 3 of the previous setion, when we presented the pre-omputed QC-vetors).

Possible improvements

The QC test an be inorporated into the funtions \enapsulating" the rules ompiled ode as a

sequene of if statements. This would have the following advantages (whih further improve the

QC-�lter eÆieny):

� tests like >^ root(�), whih in fat orrespond to paths that are not fully de�ned in the argument

being urrently heked, must be eliminated sine they always sueed;

� also, when using appropriateness onstraints [3℄, tests like s^ root(�:f) may be eliminated if s is

the maximal appropriate sort for the feature f ;

� ertain parts in the preComp vetors overlap; subjet to the failure paths' order, the de�nition of

these vetors an be improved so to eliminate dupliate work:

if QC

�

() = heap[X

j

:f

j+1

: ::: :f

k

:f

k+1

: ::: :f

n

℄.SORT, and

QC

�

0

() = heap[X

j

:f

j+1

: ::: :f

k

:f

0

k+1

::: :f

0

m

℄.SORT, then QC

�

0

() an be omputed as

heap[Y

l

:f

j+l

: ::: :f

k

:f

0

k+1

::: :f

0

m

℄.SORT, where Y

l

is the last Y de�nable variable in the sequene

Y

1

= X

j

:f

1

; :::; Y

k

= Y

k�1

:f

k

is the sequene used to ompute QC

�

();

9

� the sort glb tests (represented by the if statements) an be reordered, depending on the applied rule

and the type of the �ltered argument, beause most probable failure paths at the grammar-level are

not neessarily most probable failure paths for eah rule and argument.

8

This QC-vetor will be stored within the ative item orresponding to the head-orner argument and will be used

for the QC test at the rule's ompletion attempt.

9

Note that the Y

1

= X

j

:f

1

; :::; Y

k

= Y

k�1

:f

k

sequene might not be entirely omputed.

Indeed, one of the main ritis that an be addressed to the QC-�lter tehnique in the form presented

in the beginning of this setion (and used as suh in the LKB, PAGE and PET systems) is that it is

a grammar-level devised tehnique, in the sense that the QC-paths to be tested are grammar+orpus

dedued, but they are not \personalised" at the rule and argument level. However, one an ompute

suh QC-vetors so to be rule+argument dependent. A disadvantage still remaining is that the QC-

vetors assoiated to a passive item (ompleted rule) must ontain/over all paths addressed by those

rules and arguments for whih that ompleted rule/passive item is a potential andidate. (Therefore

it is unlikely that the dimension of the \personalised" QC-vetors would be signi�antly redued.)

Evaluation and onlusion

Without the Quik Chek pre-uni�ation �lter when running the LinGO grammar on the CSLI test

suite, the Light system sored 0.07 se/sentene. With Quik Chek turned on, Light registered 0.04

se/sentene. The ompiled QC �lter in Light provided thus a speed-up fator of 37%. The tests

were run on a SUN Spar server at 400MHz. The optimal set of failure paths ontained 43 paths with

lengths between 2 and 14 (features).

As expeted | and already explained in the introdutory setion | this fator is lower than the

speed-up fator of simple, interpreted QC (63% for PET) beause ompiled uni�ation is already

signi�antly faster than interpreted uni�ation. Otherwise said, one has to keep in mind that in Light

the speialised ompiled form of rules already speeds up signi�antly the parsing, before applying

the QC �lter. However this fator an be further inreased by implementing the above mentioned

improvements.

Those improvements apply also to interpreter-like parsing systems, and the tehnique for ompiling

the QC �lter here presented is in our opinion easily transferable to other ompilers for parsing with

uni�ation-based grammars.

The outlined ompilation shema for the Quik Chek pre-uni�ation test is by no means HPSG

dependent. Moreover, it is basially independent of the variant of (order-sorted) feature onstraint

logis that supports parsing/dedution (whih in turn alls uni�ation). In Light we used as logi

bakground the order- and type-onsistent OSF-theories [5℄, a slightly more general lass of typed

feature strutures than that (of appropriate FSs) de�ned by [3℄. The tehnique here presented an

therefore be applied to other systems dealing with typed-uni�ation grammars like Amalia [18℄ [19℄

and LiLFeS.

Aknowledgements

Thanks go to Ulrih Callmeier for having had implemented the interpreted form of the QC �lter for

CHIC/ago,

10

the development prototype of the Light ompiler. I wish to express speial thanks to

Professor Hans Uszkoreit for the kind support I reeived in order to get Light designed and imple-

mented during my employment at the Language Tehnology Lab of DFKI | the German Researh

Center for Arti�ial Intelligene in Saarbrueken, Germany.

This paper was written while the author was supported by an EPSRC grant in the framework of the

ROPA projet at the Computer Siene Department of the University of York. The Light system is

used in this new projet to learn typed-uni�ation grammars within the Indutive Logi Programming

framework [13℄.

10

CHIC stands for Compiling Hpsg Into C. The CHIC/ago name must pronouned exatly like Chiago.

Referenes

[1℄ H. A��t-Kai and A. Podelski. Towards a meaning of LIFE. Journal of Logi Programming,

16:195{234, 1993.

[2℄ U. Callmeier. PET | a platform for experimentation with eÆient HPSG proessing teh-

niques. Journal of Natural Language Engineering, 6 (1) (Speial Issue on EÆient Proessing

with HPSG):99{108, 2000.

[3℄ B. Carpenter. The Logi of Typed Feature Strutures { with appliations to uni�ation grammars,

logi programs and onstraint resolution. Cambridge University Press, 1992.

[4℄ L.-V. Ciortuz. Saling up the abstrat mahine for uni�ation of OSF-terms to do head-orner

parsing with large-sale typed uni�ation grammars. In Proeedings of the ESSLLI 2000 Work-

shop on Linguisti Theory and Grammar Implementation, pages 57{80, Birmingham, UK, August

14{18, 2000.

[5℄ L.-V. Ciortuz. Compiling HPSG into C. Researh report, The German Researh Center for

Arti�ial Intelligene (DFKI), Saarbrueken, Germany, and the Computer Siene Department,

University of York, UK, 2001. (In preparation).

[6℄ L.-V. Ciortuz. Expanding feature-based onstraint grammars: Experiene on a large-sale HPSG

grammar for English. In Proeedings of the IJCAI 2001 o-loated Workshop on Modelling and

solving problems with onstraints, Seattle, USA, August 4{6, 2001.

[7℄ A. Copestake. The (new) LKB system. CSLI, Stanford University, 1999.

[8℄ A. Copestake, D. Flikinger, and I. Sag. A Grammar of English in HPSG: Design and Imple-

mentations. Stanford: CSLI Publiations, 1999.

[9℄ M. Kay. Head driven parsing. In Proeedings of Workshop on Parsing Tehnologies, Pittsburg,

1989.

[10℄ H.-U. Krieger and U. Sh�afer. TDL { A Type Desription Language for HPSG. Researh Report

RR-94-37, German Researh Center for Arti�ial Intelligene (DFKI), 1994.

[11℄ R. Malouf, J. Carroll, and A. Copestake. EÆient feature struture operations without ompila-

tion. Journal of Natural Language Engineering, 6 (1) (Speial Issue on EÆient Proessing with

HPSG):29{46, 2000.

[12℄ Y. Miyao, T. Makino, K. Torisawa, and J. Tsujii. The LiLFeS abstrat mahine and its evaluation

with the LinGO grammar. Journal of Natural Language Engineering, 6 (1) (Speial Issue on

EÆient Proessing with HPSG):47{61, 2000.

[13℄ S. Muggleton and L. De Raedt. Indutive logi programming: Theory and methods. Journal of

Logi Programming, 19,20:629{679, 1994.

[14℄ S. Oepen and J. Caroll. Performane pro�ling for parser engineering. Journal of Natural Lan-

guage Engineering, 6 (1) (Speial Issue on EÆient Proessing with HPSG: Methods, Systems,

Evaluation):81{97, 2000.

[15℄ S. Oepen, D. Flikinger, H. Uszkoreit, and J. Tsujii. Introdution to the speial issue on eÆient

proessing with HPSG: Methods, systems, evaluation. Journal of Natural Language Engineering,

6 (1), 2000.

[16℄ C. Pollard and I. Sag. Head-driven Phrase Struture Grammar. Center for the Study of Language

and Information, Stanford, 1994.

[17℄ N. Sikkel. Parsing Shemata. Springer Verlag, 1997.

[18℄ S. Wintner. An Abstrat Mahine for Uni�ation Grammars. PhD thesis, Tehnion { Israel

Institute of Tehnology, 32000 Haifa, Israel, 1997.

[19℄ S. Wintner and N. Franez. EÆient implementation of uni�ation-based grammars. Journal of

Language and Computation, 1(1):53{92, 1999.

