
1

attempts have been made to induce Constraint
Grammar rules – or ‘Constraint Grammar’ -like
rules – from manually annotated corpora (Samu-
elsson et al. 1996; Cussens 1997; Eineborg &
Lindberg 1998; Lindberg & Eineborg 1998; 1999).

In (Lager 1999) it was suggested that the trans-
formation-based learning method used to train
Brill taggers can, with minor modifications, be
used to train Constraint Grammar taggers as well.
This paper develops this suggestion further.

2 An Overview of the µ-TBL System

2.1 Background
The µ-TBL system – described in detail in (Lager
1999) – represents an attempt to use the search and
database capabilities of the Prolog programming
language to implement a generalized form of
transformation-based learning.

The µ-TBL system is designed to be theoreti-
cally transparent, flexible and efficient. Transpar-
ency is achieved by performing a ‘ logical
reconstruction’ of transformation-based learning,
and by deriving the system from there. Flexibility
is achieved through the use of a compositional rule
and template formalism, and ‘pluggable’ algo-
rithms. As for the implementation, it turns out that
transformation-based learning can be imple-
mented very straightforwardly in a logic program-
ming language such as Prolog. Efficient indexing
of data, unification and backtracking search, as
well as established Prolog programming tech-
niques for building rule compilers and meta-inter-
preters, contribute to the making of a logically
transparent, easily extendible, and fairly efficient
system.

2.2 Transformation Rules
The object of TBL is to learn an ordered sequence
of transformation rules. The µ-TBL system sup-
ports five kinds of transformation rules, but the
relevant kind of rule in connection with learning
Constraint Grammars is the reduction rule.

Transformation-Based Learning of Rules
for Constraint Grammar Tagging

Torbjörn Lager
Department of Linguistics

Uppsala University, SWEDEN

Torbjorn.L ager@ling.uu.se

Abstract
If we conceive of a Constraint Grammar as an
ordered sequence of transformation rules of a par-
ticular kind – as reduction rules rather than
replacement rules – the transformation-based
learning method used to train Brill taggers can,
with minor modifications, be used to train
Constraint Grammar taggers as well . This paper
makes a few observations based on this approach,
and presents some initial and rather promising
experimental results.

1 Introduction
Two kinds of rule based taggers – Brill taggers
(Brill 1995) and Constraint Grammar taggers
(Karlsson et al. 1995) – have, in terms of accuracy,
efficiency, compactness and intelligibility, quite
successfully stood up to the competition from the
statistical camp. How these rule-based taggers
work, and how they differ in the way they work,
can be briefly explained as follows.

In a Brill tagger, a lexical lookup module
assigns exactly one tag to each occurrence of a
word (usually the most frequent tag for that word
type), disregarding context. A rule application
module then proceeds to replace some of the tags
with other tags, on the basis of what appears in the
local context.

In a Constraint Grammar tagger, a lexical
lookup module assigns sets of alternative tags to
occurrences of words, disregarding context. A rule
application module then removes tags from such
sets, on the basis of what appears in the local con-
text. However, in order to guarantee that each
word token is left with at least one tag, the rule
application module adheres to the following prin-
ciple: don’t remove the last remaining tag.

Whereas Brill taggers came with a novel and
effective learning method which made it possible
to learn rules for new languages very quickly,
Constraint Grammar taggers were from the outset
developed by hand only. Since then, several

Online Proceedings of NODALIDA 2001

2

Reduction rules reduce the set of tags assigned
to a word with a certain tag. An example would be
“reduce a word’s tag set with tag vb if the word
immediately to the left is uniquely tagged as dt ” .
Here is how this rule is represented in the µ-TBL
system’s formalism:

pos:r ed vb <- unique pos:dt@[-1]

This kind of rule will only remove a tag from a
word if it is not the last tag for the word. If vb is
the last value the above rule is not applicable and
the reduction will not take place.

The use of the unique/1 operator in a condi-
tion of a rule has the effect that the rule will trigger
only if the assignments of tags to words in the rel-
evant surroundings are non-ambiguous. (As Karls-
son et al. (1995) put it, the rules are run in “careful
application mode”.)

Two or more rules may be connected into
sequences – or composed – by means of the com-
position operator ‘o’ , where (R o Rs) basically
means that the output of applying the rule R forms
the input to the application of the rules Rs.

2.3 Rule Templates
Rules that can be learned in TBL are instances of
templates, such as “ reduce with tag A if the word
immediately to the left is uniquely tagged as B” ,
where A and B are variables. Here is how we write
this template in the µ-TBL system:

pos:r ed A <- unique pos:B@[-1] .

2.4 Rule Evaluation Measures
We now define two important rule evaluation
measures. The score of a rule is the number of its
positive instances minus the number of its nega-
tive instances:

The accuracy of a rule is its number of positive
instances divided by the total number of instances
of the rule:

Score is a standard measure in TBL. The notion of
rule accuracy is well-known in rule induction and
inductive logic programming, and in this paper we
will see that it has a role to play in the context of
transformation-based learning too.

Corresponding to these two measures are two
thresholds that are used to control the behaviour of
the system and influence the learning results. The
score threshold and the accuracy threshold are the
lowest score and the lowest accuracy, respectively,
that the highest scoring rule must have in order to
be considered.

2.5 Learning
Transformation-Based Learning is a matter of
repeatedly instantiating rule templates in training
data, scoring rules on the basis of counts of posi-
tive and negative evidence of them, selecting the
highest scoring rule on the basis of this ranking,
and applying it to the training data. When the
highest scoring rule does not meet the thresholds,
the learning algorithm is terminated.

3 Learning Constraint Grammars
Using transformation-based learning to train Bril l
taggers is a well-established practice, and since
(Lager 1999) contains examples of how to do this
with the µ-TBL system, no more will be said on
this issue here. However, (Lager 1999) also
reports on a small experiment on the learning of
Constraint Grammar rules from tagged corpora,
and this will be further elaborated in the present
paper.

In particular, the following aspects of transfor-
mation-based learning of Constraint Grammars
will be investigated. How do the use of the unique-
ness condition, the setting of the accuracy thresh-
old, and the size of the training corpus, effect the
result of training? How does the fact that rules are
ordered matter?

Apart from the use of templates for reduction
rules rather than templates for replacement rules,
the learning of Constraint Grammars contrasts
with the learning of Brill tagger rules only in how
the accuracy threshold is set.

It is well known that replacement rules do not
have to be very accurate: if a rule early in a
sequence of replacement rules makes some errors,
the errors can often be corrected by rules later in
the sequence. By contrast, in a sequence of reduc-
tion rules there are no rules that can add tags once
they have been (falsely) removed. Therefore, in
order to maximize the accuracy of the whole
sequence of rules, it must be induced under a vali -
dation bias which sees to it that each rule is as
accurate as possible. In the µ-TBL system, this is

score R() posit i ve R() negative R()–=

accuracy R() positi ve R()
positi ve R() negative R()+
--=

Online Proceedings of NODALIDA 2001

3

taken care of by setting the accuracy threshold to a
value of 1.0, or to a value close to 1.0.

3.1 Tagger Evaluation Measures
For all the experiments performed in the present
paper, recall (R) and precision (P) will be calcu-
lated exactly as in (Karlsson et al. 1995:172), i.e.
as follows.

The F-score, calculated as is
used as a straightforward way of combining the
measures of recall and precision. The tags per
word ratio (T/W) is calculated as well.

3.2 Experiment 1
In the first experiment, each word token in a train-
ing corpus of 60,000 words was assigned the set of
part of speech tags that it can have according to a
lexicon. The data also indicated which member of
this set was the correct one.

The score threshold and the accuracy threshold
was set to 4 and 1.0, respectively, and the system
was run with 26 templates which mixed in various
ways conditions on part of speech tags with condi-
tions on word forms. The uniqueness operator was
not used in this experiment.

The system learned 902 rules, the first ten of
which are shown below:

pos:r ed nn|dt <- pos:in@[-1,-2,-3] o
pos:r ed rp <- wd:in@[0] & pos:nn@[-1] o
pos:r ed rb <- wd:in@[0] & pos:nn@[-1] o
pos:r ed nn|dt <- pos:nn@[1] o
pos:r ed vb <- pos:dt@[-1] o
pos:r ed vbn <- wd:said@[0] o
pos:r ed vbp <- pos:to@[-1,-2] o
pos:r ed vbp <- pos:md@[-1,-2,-3] o
pos:r ed vbz <- wd:'s@[0] & pos:nn@[1] o
pos:r ed rp <- wd:in@[0] & pos:nns@[-1] o

The graph in Figure 1 shows how recall and preci-
sion develops as the rules are applied to the test
corpus.

As can be seen from the graph, precision
increases with the number of rules that have been
applied. It starts at 69.2% and reaches its maxi-
mum at 93.4%, when all rules have been applied.
Recall decreases with the number of rules that are

applied. It starts from 100% and reaches its mini-
mum of 98.9% when all rules have been applied.

Figure 1: Recall and Precision as functions of
the number of rules that have been applied

3.3 Experiment 2
In a second experiment, training was performed
exactly as in Experiment 1, except that templates
where the uniqueness condition was imposed on
the context were used instead.

Training resulted in 1,030 rules. The effect
when evaluating them on the test corpus is shown
in the table and the graph in Figure 2.

Figure 2: The effect of using the unique operator

Note that the tags per word ratio increases when
the uniqueness operator is used. This is not hard to
explain. The rules in the previous tagger were
more ‘daring’ , and therefore removed tags where
the more careful tagger wil l not do so.

R
received appropriate tags
intended appropriate tags
--=

P
received appropriate tags

all received tags
--=

F 2RP() R P+()⁄=

Unique #(Rs) R P F T/W

yes 1030 98.7 92.6 95.6 1.066

no 902 98.9 93.4 96.0 1.059

65

70

75

80

85

90

95

100

0 100 200 300 400 500 600 700 800 900 1000

R
ec

al
l a

nd
 P

re
ci

si
on

 (
%

)

Rule sequence position

recall

precision

65

70

75

80

85

90

95

100

0 200 400 600 800 1000 1200

R
ec

al
l a

nd
 P

re
ci

si
on

 (
%

)

Rule sequence position

R - no unique
P - no unique

R - unique
P - unique

Online Proceedings of NODALIDA 2001

4

However, one would expect that there is some-
thing to be won by being careful, but surprisingly,
the use of the uniqueness operator does not make
any noticeable difference to recall. This is harder
to explain, and we shall not attempt that here.

3.4 Experiment 3
In another experiment, the accuracy threshold
(AT) was set to four different values: 1.0 (as
before), 0.98, 0.95 and 0.90. Training was per-
formed on the 60,000 word corpus, with templates
and score threshold as before.

Figure 3: The effect of varying the accuracy
threshold

The graph in Figure 3 illustrates nicely how the
accuracy threshold can be used to control the
recall-precision trade-off. Furthermore, it appears
to be the case that an accuracy threshold slightly
lower than 1.0 may have a beneficial effect on the
overall result (in terms of F-score), perhaps by
compensating for noise in the data.

4 Rule Order Dependency
Transformation rules are essentially ordered, with
later transformations being dependent upon the
outcome of applying earlier transformation rules.

Earlier reduction rule applications can affect
what rules might later apply at a particular posi-
tion P by removing a part of speech tag from the
set of tags assigned to P. For example, given the
(sketchy) ‘ text’

... ques t ion/{nn,vb} .. .

and the (sketchy) rules

pos:red nn <- ... o
pos:red vb <- .. .

it is clear that if the first rule is applicable to the
word “question” , the second is not, since that
would have removed the last remaining tag.

The use of unique conditions introduces
another kind of order dependency. Earlier reduc-
tion rule applications can also affect what rules
might later apply at a particular position P by
removing elements from the sets of parts of speech
assigned to words in positions local to P. For
example, given the (sketchy) ‘ text’

... what / {dt,pn} gave/{nn,vb} him/{pn} .. .

and the rules

pos:red nn <- unique pos:pn@[1] o
pos:red dt <- unique pos:vb@[1]

the second rule is applicable only because the first
rule is.

4.1 Experiment 4
To establish how much the order means in practice
for sequences of reduction rules, a simple experi-
ment was performed, in which a sequence of
learned rules was reordered randomly, and then
applied to the test corpus.

Figure 4: Comparing an ordered and a scram-
bled rule sequence

Recall decreased from 98.7% to 97.4% when the
previous sequence of 902 rules was randomly
reordered, and (as a consequence) precision
dropped too (from 93.4% to 92.1%), but the
number of tags per word stayed roughly the same.

AT #(Rs) R P F T/W

1.00 902 98.9 93.4 96.0 1.059

0.98 738 98.7 94.3 96.5 1.047

0.95 561 98.7 94.7 96.7 1.042

0.90 417 97.9 95.8 96.8 1.023

65

70

75

80

85

90

95

100

0 100 200 300 400 500 600 700 800 900 1000

R
ec

al
l a

nd
 P

re
ci

si
on

 (
%

)

Rule sequence position

Recall AT=1.0

Precision AT=1.0

Recall AT=0.98

Precision AT=0.98

Recall AT=0.95

Precision AT=0.95

Recall AT=0.90

Precision AT=0.90

65

70

75

80

85

90

95

100

0 100 200 300 400 500 600 700 800 900 1000

R
ec

al
l a

nd
 P

re
ci

si
on

 (
%

)

Rule sequence position

R with ordered rule sequence

P with ordered rule sequence

R with scrambled rule sequence

P with scrambled rule sequence

Online Proceedings of NODALIDA 2001

5

Note that the precision curve corresponding to the
randomly reordered rules sequence is flatter than
the original curve. The explanation for this is that
the really powerful rules are no longer applied
first, but spread out randomly. This also accounts
for the jaggedness of the curve.

How can the drop in recall be explained? Intui-
tively, if we change the order of rules, some rules
apply too early, and others too late. For example,
when a given CG rule is placed late in the
sequence, the ‘don’t remove the last tag’ -principle
stops it from applying in (most) cases where it
would have hurt, if it was placed earlier in the
sequence. ‘Being a bad rule’ (or ‘being a good
rule’) is not a property of a rule just by itself, but
of a rule in a particular place in a sequence.

4.2 Discussion
Whereas order dependency is a well-known prop-
erty of a sequence of Brill tagging rules, it may be
argued that this is a point where our CG ‘ recon-
struction’ departs from the spirit of original Con-
straint Grammar. Whether this change of
‘semantics’ is for good or for bad, remains to be
investigated further, but it does seem to be the case
that the fact that a rule can leverage off the work
performed by rules earlier in the sequence can
boost the overall performance of a tagger.

Our Constraint Grammar rules – in contrast
with rules in the original Constraint Grammar
framework – share another interesting property
with Bril l tagging rules. The sequence of rules is
optimized in the sense that it need only be applied
once. This has been verified empirically by apply-
ing the sequence of rules twice on the same data,
and the second pass has always turned out to have
no effect at all.

5 Scaling Up
In an attempt to see how well transformation-
based learning of Constraint Grammars works for
a larger training corpus, 240,000 words of Swed-
ish data was used. The tag set was also much
larger: 156 tags instead of the 42 tags used before.

Training with 15 templates – which took three
weeks to complete (sic!) – resulted in a sequence
of 4,866 rules. These rules were applied to a
30,000 word test corpus. This resulted in 393
errors, which corresponds to a recall of 98.7%.
The initial number of tags per word was 1.46
(which corresponds to a precision of 68.4%). After

applying the rules there were only 1.10 tags per
word left, corresponding to a precision of 89.8%.

6 Summary and Conclusions
This paper has shown that if we conceive of a
Constraint Grammar as an ordered sequence of
transformation rules of a particular kind – as
reduction rules rather than as replacement rules –
the transformation-based learning method used to
train Brill taggers can, with minor modifications,
be used to train Constraint Grammar taggers as
well.

The performance of the taggers – around 99%
recall and 90% precision – is probably good
enough to warrant further research. First and fore-
most, TBL algorithms which are more efficient for
the particular task of learning reduction rules
should be sought for. Secondly, an attempt to
make better use of complex morphological fea-
tures should be made, so that more general rules
can be learned. Finally, work has already begun to
develop ways to learn other kinds of Constraint
Grammar rules (e.g. selection rules), and this may
eventually improve the performance further.

References
Bril l, E., 1995, Transformation-Based Error-Driven

Learning and Natural Language Processing: A Case
Study in Part of Speech Tagging. Computational
Linguistics, December 1995.

Cussens, J., 1997, Part of speech tagging using Progol,
In Proceedings of the 7th International Workshop
on Inductive Logic Programming (ILP-97), Prague.

Karlsson, F., Voutilainen, A., Heikkilä, J., Anttila, A.
(eds.), 1995, Constraint Grammar. A Language-
Independent System for Parsing Unrestricted Text.
Mouton de Gruyter.

Lager, T., 1999, The µ-TBL System: Logic Program-
ming Tools for Transformation-Based Learning,
Paper presented at the Third International Work-
shop on Computational Natural Language Learn-
ing (CoNLL-99), Bergen, 1999.

Lindberg, N. and Eineborg M., 1998, Learning Con-
straint Grammar-style disambiguation rules using
Inductive Logic Programming. In Proceedings of
COLING/ACL'98.

Samuelsson, C., Tapanainen, P. and Voutilainen, A.,
1996, Inducing Constraint Grammars, In: Laurent,
M. and de la Higuera, C. (eds.) Grammatical Infer-
ence: Learning Syntax from Sentences, Springer
Verlag.

Online Proceedings of NODALIDA 2001

