
Resource sharing among HPSG and LTAG communities
by a method of grammar conversion from FB-LTAG to HPSG

Naoki Yoshinaga Yusuke Miyao
Department of Information Science, Graduate school of Science, University of Tokyo

Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan

fyoshinag, yusukeg@is.s.u-tokyo.ac.jp

Kentaro Torisawa
School of Information Science, Japan Advanced Institute of Science and Technology

Asahidai 1-1, Tatsunokuchi-cho, Noumi-gun, Ishikawa, 923-1292, Japan

Information and Human Behavior, PRESTO, Japan Science and Technology Corporation

Kawaguchi Hon-cho 4-1-8, Kawaguchi-shi, Saitama, 332-0012, Japan

torisawa@jaist.ac.jp

Jun’ichi Tsujii
Department of Computer Science, Graduate school of Information Science and Technology, University of Tokyo

Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan

CREST, JST (Japan Science and Technology Corporation)

Kawaguchi Hon-cho 4-1-8, Kawaguchi-shi, Saitama, 332-0012, Japan

tsujii@is.s.u-tokyo.ac.jp

Abstract

This paper describesthe RenTAL sys-
tem, which enables sharing resources
in LTAG and HPSG formalisms by a
method of grammar conversion from
an FB-LTAG grammar to a strongly
equivalent HPSG-style grammar. The
system is applied to the latest version
of the XTAG English grammar. Ex-
perimental results show that the ob-
tained HPSG-style grammar success-
fully worked with an HPSG parser, and
achieved a drastic speed-up against an
LTAG parser. This system enables to
share not only grammars and lexicons
but also parsing techniques.

1 Introduction

This paper describes an approach for shar-
ing resources in various grammar formalisms
such as Feature-Based Lexicalized Tree Adjoin-

ing Grammar (FB-LTAG1) (Vijay-Shanker, 1987;
Vijay-Shanker and Joshi, 1988) and Head-Driven
Phrase Structure Grammar (HPSG) (Pollard and
Sag, 1994) by a method of grammar conver-
sion. The RenTAL systemautomatically converts
an FB-LTAG grammar into a strongly equiva-
lent HPSG-style grammar (Yoshinaga and Miyao,
2001). Strong equivalence means that both gram-
mars generate exactly equivalent parse results,
and that we can share the LTAG grammars and
lexicons in HPSG applications. Our system can
reduce considerable workload to develop a huge
resource (grammars and lexicons) from scratch.

Our concern is, however, not limited to the
sharing of grammars and lexicons. Strongly
equivalent grammars enable the sharing of
ideas developed in each formalism. There
have been many studies onparsing tech-
niques(Poller and Becker, 1998; Flickinger et
al., 2000), ones ondisambiguation models(Chi-
ang, 2000; Kanayama et al., 2000), and ones
on programming/grammar-development environ-

1In this paper, we use the termLTAG to refer to FB-
LTAG, if not confusing.

LTAG Resources

Grammar:

Elementary tree

templates

Lexicon

Type hierarchy

extractor

Tree

converter

Lexicon

converter

RenTAL System

HPSG Resources

Grammar:

Lexical entry

templates

Lexicon

LTAG parsers HPSG parsers

Derivation trees Parse trees
Derivation

translator

LTAG-based application HPSG-based application

Figure 1: The RenTAL System: Overview

ment (Sarkar and Wintner, 1999; Doran et al.,
2000; Makino et al., 1998). These works are re-
stricted to each closed community, and the rela-
tion between them is not well discussed. Investi-
gating the relation will be apparently valuable for
both communities.

In this paper, we show that the strongly equiv-
alent grammars enable the sharing of “parsing
techniques”, which are dependent on each com-
putational framework and have never been shared
among HPSG andLTAG communities. We ap-
ply our system to the latest version of the XTAG
English grammar (The XTAG Research Group,
2001), which is a large-scale FB-LTAG gram-
mar. A parsing experiment shows that an efficient
HPSG parser with the obtained grammar achieved
a significant speed-up against an existing LTAG
parser (Yoshinaga et al., 2001). This result im-
plies that parsing techniques for HPSG are also
beneficial for LTAG parsing. We can say that the
grammar conversion enables us to share HPSG
parsing techniques in LTAG parsing.

Figure 1 depicts a brief sketch of the RenTAL
system. The system consists of the following four
modules:Tree converter, Type hierarchy extrac-
tor, Lexicon converterandDerivation translator.
The tree converter module is a core module of the
system, which is an implementation of the gram-
mar conversion algorithm given in Section 3. The
type hierarchy extractor module extracts the sym-
bols of the node, features, and feature values from
the LTAG elementary tree templates and lexicon,
and construct the type hierarchy from them. The
lexicon converter module converts LTAG elemen-
tary tree templates into HPSG lexical entries. The
derivation translator module takes HPSG parse

S

NP VP

V

run

VP

VPV

can

*NP

N

We

α1

α2 β1

anchor

foot node
*

substitution node

Initial tree Auxiliary tree

Figure 2: Elementary trees

trees, and map them to LTAG derivation trees. All
modules other than the last one are related to the
conversion process from LTAG into HPSG, and
the last one enables to obtain LTAG analysis from
the obtained HPSG analysis.

Tateisi et al. also translated LTAG into
HPSG (Tateisi et al., 1998). However, their
method depended on translator’s intuitive analy-
sis of the original grammar. Thus the transla-
tion was manual and grammar dependent. The
manual translation demanded considerable efforts
from the translator, and obscures the equiva-
lence between the original and obtained gram-
mars. Other works (Kasper et al., 1995; Becker
and Lopez, 2000) convert HPSG grammars into
LTAG grammars. However, given the greater ex-
pressive power of HPSG, it is impossible to con-
vert an arbitrary HPSG grammar into an LTAG
grammar. Therefore, a conversion from HPSG
into LTAG often requires some restrictions on the
HPSG grammar to suppress its generative capac-
ity. Thus, the conversion loses the equivalence of
the grammars, and we cannot gain the above ad-
vantages.

Section 2 reviews the source and the tar-
get grammar formalisms of the conversion algo-
rithm. Section 3 describes the conversion algo-
rithm which the core module in the RenTAL sys-
tem uses. Section 4 presents the evaluation of
the RenTAL system through experiments with the
XTAG English grammar. Section 5 concludes this
study and addresses future works.

2 Background

2.1 Feature-Based Lexicalized Tree
Adjoining Grammar (FB-LTAG)

LTAG (Schabes et al., 1988) is a grammar formal-
ism that provides syntactic analyses for a sentence
by composingelementary treeswith two opera-

Arg :

we can run

ID grammar rule

unify
Sym : NP

Arg :

Sym : VP

Arg : VP

Sym : VP

Arg : NP

Arg :

Sym :

Arg :

22

33
22

unify

33

unify

ID grammar rule

we can run

Sym : NP

Arg :

Sym : VP

Arg : VP

Sym : VP

Arg : NP

Arg : NPSym :

Arg :

Arg :

11

11 | 22

Arg : 22

unify

we can run

Sym : NP
Arg :

Sym : VP
Arg : VP

Sym : VP
Arg : NP

Arg : NP

Arg :

Figure 6: Parsing with an HPSG grammar

S

NP VP

V

run

NP

N

We

substitution

α1

α2
S

NP VP

V

run

N

We

Figure 3: Substitution

VP

VPV

can

*

adjunction β1
S

NP VP

V

run

N

We

S

NP VP

VPV

can

N

We V

run

Figure 4: Adjunction

tions calledsubstitutionandadjunction. Elemen-
tary trees are classified into two types,initial trees
andauxiliary trees(Figure 2). An elementary tree
has at least one leaf node labeled with a terminal
symbol called ananchor(marked with�). In an
auxiliary tree, one leaf node is labeled with the
same symbol as the root node and is specially
marked as afoot node(marked with�). In an el-
ementary tree, leaf nodes with the exception of
anchors and the foot node are calledsubstitution
nodes(marked with#).

Substitution replaces a substitution node with
another initial tree (Figure 3). Adjunction grafts
an auxiliary tree with the root node and foot
node labeledx onto an internal node of another
tree with the same symbolx (Figure 4). FB-
LTAG (Vijay-Shanker, 1987; Vijay-Shanker and
Joshi, 1988) is an extension of the LTAG formal-
ism. In FB-LTAG, each node in the elementary
trees has a feature structure, containing grammat-
ical constraints on the node. Figure 5 shows a
result of LTAG analysis, which is described not

derived tree

α2

β1α1

derivation tree

S

NP VP

VPV

can

N

We V

run

Figure 5: Derived trees and derivation trees

only byderived trees(i.e., parse trees) but also by
derivation trees. A derivation tree is a structural
description in LTAG and represents the history of
combinations of elementary trees.

There are several grammars developed in the
FB-LTAG formalism, including the XTAG En-
glish grammar, a large-scale grammar for En-
glish (The XTAG Research Group, 2001). The
XTAG group (Doran et al., 2000) at the Univer-
sity of Pennsylvania is also developing Korean,
Chinese, and Hindi grammars. Development of
a large-scale French grammar (Abeill´e and Can-
dito, 2000) has also started at the University of
Pennsylvania and is expanded at University of
Paris 7.

2.2 Head-Driven Phrase Structure
Grammar (HPSG)

An HPSG grammar consists oflexical entriesand
ID grammar rules, each of which is described
with typed feature structures (Carpenter, 1992). A
lexical entry for each word expresses the charac-
teristics of the word, such as the subcategorization
frame and the grammatical category. An ID gram-
mar rule represents a relation between a mother
and its daughters, and is independent of lexical
characteristics. Figure 6 illustrates an example of
bottom-up parsing with an HPSG grammar. First,
lexical entries for “can” and “run” are unified re-
spectively with the daughter feature structures of

Canonical elementary trees Non-canonical elementary trees

think

S

NP VP

V S
* it

S

NP VP

N V VP

V

ε

is

Non-anchored subtree

S

NP VP

V PP

P NP

for

look PP S

P NP

a) Exception for Condition 1 b) Exception for Condition 2

Figure 7: A canonical elementary tree and exceptions

an ID grammar rule. The feature structure of the
mother node is determined as a result of these uni-
fications. The center of Figure 6 shows a rule ap-
plication to “can run” and “we”.

There are a variety of works on efficient pars-
ing with HPSG, which allow the use of HPSG-
based processing in practical application con-
texts (Flickinger et al., 2000). Stanford Univer-
sity is developing the English Resource Gram-
mar, an HPSG grammar for English, as a part
of the Linguistic Grammars Online (LinGO)
project (Flickinger, 2000). In practical con-
text, German, English, and Japanese HPSG-based
grammars are developed and used in the Verb-
mobil project (Kay et al., 1994). Our group
has developed a wide-coverage HPSG grammar
for Japanese (Mitsuishi et al., 1998), which is
used in a high-accuracy Japanese dependency an-
alyzer (Kanayama et al., 2000).

3 Grammar conversion

The grammar conversion from LTAG to
HPSG (Yoshinaga and Miyao, 2001) is the
core portion of the RenTAL system. The
conversion algorithm consists of:

1. Conversion ofcanonical elementary treesto
HPSG lexical entries.

2. Definition of ID grammar rules to emulate
substitution and adjunction.

3. Conversion of non-canonical elementary
trees to canonical ones.

The left-hand side of Figure 7 shows a canoni-
cal elementary tree, which satisfies the following
conditions:

Condition 1 A tree must have only one anchor.

Sym:

Arg:

Sym :

Leaf :

Dir : right left
,

Foot?: +
_

*

think

V S

VP

S

NP

V

think: S

VP S

NP

foot node

anchor

trunk

*

substitution node

Sym :

Leaf :

Dir :

Foot?:

Figure 8: A conversion from a canonical elemen-
tary tree into an HPSG lexical entry

mother�
Sym : 1

Arg : 2

�
�
�
�
��h

Sym : 3
Arg : h i

i
substitution node

X
X
X
XX2

4 Arg :

*24 Sym : 1

Leaf : 3

Dir : left

Foot? : �

3
5 j 2

+ 3
5

trunk node

Figure 9: Left substitution rule

Condition 2 All branchings in a tree must con-
tain trunk nodes.

Trunk nodes are nodes on atrunk, which is a path
from an anchor to the root node (the thick lines in
Figure 7) (Kasper et al., 1995). Condition 1 guar-
antees that a canonical elementary tree has only
one trunk, and Condition 2 guarantees that each
branching consists of a trunk node, a leaf node,
and their mother (also a trunk node). The right-
hand side of Figure 7 shows elementary trees vi-
olating the conditions.

Canonical elementary trees can be directly con-
verted to HPSG lexical entries by regarding each
leaf node as a subcategorization element of the
anchor, and by encoding them into a list. Fig-
ure 8 shows an example of the conversion. By
following the trunk from the anchor “think” to the

mother�
Sym : 1

Arg : 2 � 3

�
�

�
�

���
Sym : 4

Arg : 3

�

foot node

P
P
P
PP2

4Arg :

*24Sym : 1

Leaf : 4
Dir : left

Foot? : +

3
5 j 2

+35
trunk node

� append

Figure 10: Left adjunction rule

root node labeled S, we store each branching in
a list. As shown in Figure 8, each branching is
specified by a leaf node and the mother node. A
featureSym represents the non-terminal symbol
of the mother node. FeaturesLeaf, Dir, Foot?
represent the leaf node; the non-terminal symbol,
the direction (on which side of the trunk node the
leaf node is), and the type (whether a foot node or
a substitution node), respectively.

Figures 9 and 10 show ID grammar rules to em-
ulate substitution and adjunction. These grammar
rules are independent of the original grammar be-
cause they don’t specify any characteristics spe-
cific to the original grammar.

In the substitution rule, theSym feature of the
substitution node must have the value of theLeaf
feature 3 of the trunk node. TheArg feature of
the substitution node must be a null list, because
the substitution node must be unified only with
the node corresponding to the root node of the ini-
tial tree. The substitution rule percolates the tail
elements2 of theArg feature of a trunk node to
the mother in order to continue constructing the
tree.

In the adjunction rule, theSym feature of a
foot node must have the same value as theLeaf
feature 4 . The value of theArg feature of the
mother node is a concatenation list of bothArg
features 2 and 3 of its daughters because we
first construct the tree corresponding to the ad-
joining tree and next continue constructing the
tree corresponding to the adjoined tree. The value
“+” or “�” of the Foot? feature explicitly de-
termines whether the next rule application is the
adjunction rule or the substitution rule.

Figure 11 shows an instance of rule applica-
tions. The thick line indicates the adjoined tree
(�1) and the dashed line indicates the adjoining

Sym : NP

Arg :

Sym : S

Arg :

Sym : S

α1

22

11

55

33

Sym : S

Leaf : NP

Dir : left

Foot? : �

22

11

Sym : VP

Leaf : S

Dir : right

Foot? : +

Sym : NP

Arg :

Sym : NP

Arg :

Sym : V

Sym : S

Sym : VP

Sym : V

think:

loves:

you

… A

*

… B

44

44

77

77

88

66

Sym : S

Leaf : NP

Dir : left

Foot? : �

55

Sym : S

Leaf : NP

Dir : left

Foot? : �

22

11

55

Sym : S

Leaf : NP

Dir : left

Foot? : �

22

11

33

66

88

Sym : S

Leaf : NP

Dir : left

Foot? : �

33

66

Sym : S

Leaf : NP

Dir : left

Foot? : �

,

55

Sym : S

Leaf : NP

Dir : left

Foot? : �

22

11

,

44

99

99

β1

he

α2

α4

α3

Arg :

Arg :

Arg : Arg :

Arg :

what

… C

Figure 11: An example of rule applications

S

NP VP

V PP

P NP

for

S

NP VP

V

P NP

for

look look

cut off

PP look_forPP look_for PP look_forPP look_for

identifier

Figure 12: Division of a multi-anchored elemen-
tary tree into single-anchored trees

tree (�2). The adjunction rule is applied to con-
struct the branching marked with?, where “think”
takes as an argument a node whoseSym feature’s
value isS. By applying the adjunction rule, the
Arg feature of the mother node (B) becomes a
concatenation list of bothArg features of�1 (8)

and�1 (5). Note that when the construction of
�1 is completed, theArg feature of the trunk node
(C) will be its former state (A). We can continue
constructing�1 as if nothing had happened.

Multi-anchored elementary trees, which violate
Condition 1, are divided into multiple canonical
elementary trees. We call the cutting nodes in the
divided treescut-off nodes(Figure 12). Note that
a cut-off node is marked by anidentifier to pre-
serve a co-occurrence relation among the multiple
anchors. Figure 12 shows an example of the con-
version of a multi-anchored elementary tree for a
compound expression “look for”. We first select
an anchor “look” as the syntactic head, and tra-
verse the tree along the trunk from the root node
S to the anchor “look”. We then cut off the multi-

P

Ad P

P

substitution

all candidate initial trees

for substitution

, …

non-anchored subtree

multi-anchored trees without non-anchored subtrees

it

S

NP VP

N V

is

VP

V

ε

PP S

P NP

breaking points

on

tonext

it

S

NP VP

N V

is

VP

V

ε

PP S

P NP

it

S

NP VP

N V

is

VP

V

ε

PP S

P NP

, …

Ad Pon

tonext

Figure 13: Combination of a non-anchored subtree into anchored trees

anchored elementary tree at the node PP, and cut-
off nodes PP in resulting single-anchored trees are
marked by an identifierlook for.

Non-canonical elementary trees violating Con-
dition 2 have anon-anchored subtreewhich is
a subtree of depth 1 or above with no anchor.
A non-anchored subtree is converted into multi-
anchored trees by substituting the deepest node
(Figure 13). Substituted nodes are marked as
breaking pointsto remember that the nodes orig-
inate from the substitution nodes. In the resulting
trees, all subtrees are anchored so that we can ap-
ply the above conversion algorithms. Figure 13
shows a conversion of a non-canonical elemen-
tary tree forit-cleft. A substitution node P in the
non-anchored subtree is selected, and is substi-
tuted by each initial tree. The substituted node
P in resulting multi-anchored trees are marked as
breaking points.

The above algorithm gives the conversion of
LTAG, and it can be easily extended to handle an
FB-LTAG grammar by merely storing a feature
structure of each node into theSym feature and
Leaf feature together with the non-terminal sym-
bol. Feature structure unification is executed by
ID grammar rules.

The strong equivalence is assured because only
substitution/adjunction operations performed in
LTAG are performed with the obtained HPSG-
style grammar. This is because each element
in the Arg feature selects only feature structures
corresponding to trees which can substitute/be
adjoined by each leaf node of an elementary
tree. By following a history of rule applications,
each combination of elementary trees in LTAG
derivation trees can be readily recovered. The
strong equivalence holds also for conversion of
non-canonical elementary trees. For trees violat-
ing Condition 1, we can distinguish the cut-off

Table 1: The classification of elementary tree
templates in the XTAG English grammar (LTAG)
and converted lexical entry templates correspond-
ing to them (HPSG):A: canonical elementary
trees,B: elementary trees violating only Condi-
tion 1, C: elementary trees violating only Condi-
tion 2,D: elementary trees violating both condi-
tions

Grammar A B C D Total
LTAG 326 764 54 50 1,194
HPSG 326 1,992 1,083 2,474 5,875

nodes from the substitution nodes owing to iden-
tifiers, which recover the co-occurrence relation
in the original elementary trees between the di-
vided trees. For trees violating Condition 2, we
can identify substitution nodes in a combined tree
because they are marked as breaking points, and
we can consider the combined tree as two trees in
the LTAG derivation.

4 Experiments

The RenTAL system is implemented inLiL-
FeS (Makino et al., 1998)2. LiLFeS is one of
the fastest inference engines for processing fea-
ture structure logic, and efficient HPSG parsers
have already been built on this system (Nishida
et al., 1999; Torisawa et al., 2000). We ap-
plied our system to the XTAG English gram-
mar (The XTAG Research Group, 2001)3, which
is a large-scale FB-LTAG grammar for English.

2The RenTAL system is available at:
http://www-tsujii.is.s.u-tokyo.ac.jp/rental/
3We used the grammar attached to the latest distribution

of an LTAG parser which we used for the parsing experi-
ment. The parser is available at:
ftp://ftp.cis.upenn.edu/pub/xtag/lem/lem-0.13.0.i686.tgz

Table 2: Parsing performance with the XTAG En-
glish grammar for the ATIS corpus.

Parser Parse Time (sec.)

lem 19.64
TNT 0.77

The XTAG English grammar consists of 1,1944

elementary tree templates and around 45,000 lex-
ical items5. We successfully converted all the
elementary tree templates in the XTAG English
grammar to HPSG lexical entry templates. Ta-
ble 1 shows the classifications of elementary tree
templates of the XTAG English grammar, ac-
cording to the conditions we introduced in Sec-
tion 3, and also shows the number of correspond-
ing HPSG lexical entry templates. Conversion
took about 25 minutes CPU time on a 700 Mhz
Pentium III Xeon with four gigabytes main mem-
ory.

The original and the obtained grammar gener-
ated exactly the same number of derivation trees
in the parsing experiment with 457 sentences
from the ATIS corpus (Marcus et al., 1994)6 (the
average length is 6.32 words). This result empir-
ically attested the strong equivalence of our algo-
rithm.

Table 2 shows the average parsing time with
the LTAG and HPSG parsers. In Table 2,lem
refers to the LTAG parser (Sarkar et al., 2000),
ANSI C implementation of the two-phase pars-
ing algorithm that performs the head corner pars-
ing (van Noord, 1994) without features (phase
1), and then executes feature unification (phase
2). TNT refers to the HPSG parser (Torisawa et
al., 2000), C++ implementation of the two-phase
parsing algorithm that performs filtering with a
compiled CFG (phase 1) and then executes fea-
ture unification (phase 2). Table 2 clearly shows
that the HPSG parser is significantly faster than
the LTAG parser. This result implies that parsing
techniques for HPSG are also beneficial for LTAG

4We eliminated 32 elementary trees because the LTAG
parser cannot produce correct derivation trees with them.

5These lexical items are a subset of the original XTAG
English grammar distribution.

6We eliminated 59 sentences because of a time-out of
the parsers, and 61 sentences because theLTAG parser does
not produce correct derivation trees because of bugs in its
preprocessor.

parsing. We can say that the grammar conversion
enables us to share HPSG parsing techniques in
LTAG parsing. Another paper (Yoshinaga et al.,
2001) describes the detailed analysis on the factor
of the difference of parsing performance.

5 Conclusion

We described the RenTAL system, a grammar
converter from FB-LTAG to HPSG. The grammar
conversion guarantees the strong equivalence, and
hence we can obtain an HPSG-style grammar
equivalent to existing LTAG grammars. Experi-
mental result showed that the system enabled to
share not only LTAG grammars, but also HPSG
parsing techniques. This system will enable a
variety of resource sharing such as the sharing
of the programming/grammar-development envi-
ronment (Makino et al., 1998; Sarkar and Wint-
ner, 1999) and grammar extraction methods from
bracketed corpora (Xia, 1999; Chen and Vijay-
Shanker, 2000; Neumann, 1998). Although our
system connects only FB-LTAG and HPSG, we
believe that our approach can be extended to other
formalisms such as Lexical-Functional Gram-
mar (Kaplan and Bresnan, 1982).

Acknowledgment The authors are indebted
to Mr. Anoop Sarkar for his help in using his
parser in our experiment. The authors would like
to thank anonymous reviewers for their valuable
comments and criticisms on this paper.

References

Anne Abeillé and Marie-H´elène Candito. 2000.
FTAG: A Lexicalized Tree Adjoining Grammar for
French. In Anne Abeill´e and Owen Rambow, edi-
tors,Tree Adjoining Grammars: Formal, Computa-
tional and Linguistic Aspects, pages 305–329. CSLI
publications.

Tilman Becker and Patrice Lopez. 2000. Adapting
HPSG-to-TAG compilation to wide-coverage gram-
mars. InProc. of TAG+5, pages 47–54.

Bob Carpenter. 1992.The Logic of Typed Feature
Structures. Cambridge University Press.

John Chen and K. Vijay-Shanker. 2000. Automated
extraction of TAGs from the Penn Treebank. In
Proc. of IWPT 2000.

David Chiang. 2000. Statistical parsing with an
automatically-extracted Tree Adjoining Grammar.
In Proc. of ACL 2000, pages 456–463.

Christy Doran, Beth Ann Hockey, Anoop Sarkar,
B. Srinivas, and Fei Xia. 2000. Evolution of the
XTAG system. In Anne Abeill´e and Owen Ram-
bow, editors,Tree Adjoining Grammars: Formal,
Computational and Linguistic Aspects, pages 371–
403. CSLI publications.

Dan Flickinger, Stephen Oepen, Jun’ichi Tsujii, and
Hans Uszkoreit, editors. 2000.Natural Language
Engineering – Special Issue on Efficient Processing
with HPSG: Methods, Systems, Evaluation. Cam-
bridge University Press.

Dan Flickinger. 2000. On building a more effi-
cient grammar by exploiting types.Natural Lan-
guage Engineering – Special Issue on Efficient Pro-
cessing with HPSG: Methods, Systems, Evaluation,
6(1):15–28.

Hiroshi Kanayama, Kentaro Torisawa, Yutaka Mitsu-
isi, and Jun’ichi Tsujii. 2000. Hybrid Japanese
parser with hand-crafted grammar and statistics. In
Proc. of COLING 2000, pages 411–417.

Ronald Kaplan and Joan Bresnan. 1982. Lexical-
Functional Grammar: A formal system for gram-
matical representation. In Joan Bresnan, editor,The
Mental Representation of Grammatical Relations,
pages 173–281. The MIT Press.

Robert Kasper, Bernd Kiefer, Klaus Netter, and
K. Vijay-Shanker. 1995. Compilation of HPSG to
TAG. In Proc. of ACL ’94, pages 92–99.

M. Kay, J. Gawron, and P. Norvig. 1994.Verbmo-
bil: A Translation System for Face-to-Face Dialog.
CSLI Publications.

Takaki Makino, Minoru Yoshida, Kentaro Torisawa,
and Jun’ichi Tsujii. 1998. LiLFeS — towards a
practical HPSG parsers. InProc. of COLING–ACL
’98, pages 807–811.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1994. Building a large annotated
corpus of English: the Penn Treebank.Computa-
tional Linguistics, 19(2):313–330.

Yutaka Mitsuishi, Kentaro Torisawa, and Jun’ichi Tsu-
jii. 1998. HPSG-style underspecified Japanese
grammar with wide coverage. InProc. of
COLING–ACL ’98, pages 876–880.

Güter Neumann. 1998. Automatic extraction of
stochastic lexcalized tree grammars from treebanks.
In Proc. of TAG+4, pages 120–123.

Kenji Nishida, Kentaro Torisawa, and Jun’ichi Tsujii.
1999. An efficient HPSG parsing algorithm with ar-
ray unification. InProc. of NLPRS ’99, pages 144–
149.

Carl Pollard and Ivan A. Sag. 1994.Head-Driven
Phrase Structure Grammar. University of Chicago
Press and CSLI Publications.

Peter Poller and Tilman Becker. 1998. Two-step TAG
parsing revisited. InProc. of TAG+4, pages 143–
146.

Anoop Sarkar and Shuly Wintner. 1999. Typing as a
means for validating feature structures. InProc.of
CLIN ’99, pages 159–167.

Anoop Sarkar, Fei Xia, and Aravind Joshi. 2000.
Some experiments on indicators of parsing com-
plexity for lexicalized grammars. InProc. of COL-
ING 2000, pages 37–42.

Yves Schabes, Anne Abeille, and Aravind K. Joshi.
1988. Parsing strategies with ‘lexicalized’ gram-
mars: Application to Tree Adjoining Grammars. In
Proc. of 12th COLING ’92, pages 578–583.

Yuka Tateisi, Kentaro Torisawa, Yusuke Miyao, and
Jun’ichi Tsujii. 1998. Translating the XTAG En-
glish grammar to HPSG. InProc. of TAG+4, pages
172–175.

The XTAG Research Group. 2001. A Lex-
icalized Tree Adjoining Grammar for English.
http://www.cis.upenn.edu/˜xtag/.

Kentaro Torisawa, Kenji Nishida, Yusuke Miyao, and
Jun’ichi Tsujii. 2000. An HPSG parser with CFG
filtering. Natural Language Engineering – Special
Issue on Efficient Processing with HPSG: Methods,
Systems, Evaluation, 6(1):63–80.

Gertjan van Noord. 1994. Head corner parsing for
TAG. Computational Intelligence, 10(4):525–534.

K. Vijay-Shanker and Aravind K. Joshi. 1988. Fea-
ture structures based Tree Adjoining Grammars. In
Proc. of 12th COLING ’92, pages 714–719.

K. Vijay-Shanker. 1987.A Study of Tree Adjoining
Grammars. Ph.D. thesis, Department of Computer
& Information Science, University of Pennsylvania.

Fei Xia. 1999. Extracting Tree Adjoining Grammars
from bracketed corpora. InProc. of NLPRS ’99,
pages 398–403.

Naoki Yoshinaga and Yusuke Miyao. 2001. Grammar
conversion from FB-LTAG to HPSG. InProc. of
ESSLLI 2001 Student Session. To appear.

Naoki Yoshinaga, Yusuke Miyao, Kentaro Torisawa,
and Jun’ichi Tsujii. 2001. Efficient LTAG parsing
using HPSG parsers. InProc. of PACLING 2001.
To appear.

