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Abstract

We examine what purpose a
dialog metric serves and then
propose empirical methods for
evaluating systems that meet that
purpose. The methods include a
protocol for conducting a wizard-
of-oz experiment and a basic set
of descriptive statistics for
substantiating performance claims
using the data collected from the
experiment as an ideal benchmark
or “gold standard” for making
comparative judgments. The
methods also provide a practical
means of optimizing the system
through component analysis and
cost valuation.

1 Introduction

In evaluating the performance of dialog systems,
designers face a number of complicated issues.
On the one hand, dialog systems are ultimately
created for the user, so usability factors such as
satisfaction or likelihood of future use should be
the final criteria. On the other hand, because
usability factors are subjective, they can be
erratic and highly dependent on features of the
user interface (Kamm et al., 1999). So, designers
have turned to “objective” metrics such as
dialog success rate or completion time.
Unfortunately, due to the interactive nature of
dialog, these metrics do not always correspond
to the most effective user experience (Lamel et
al., 2000). Furthermore, several different metrics
may contradict one another (Kamm et al., 1999),
leaving designers with the tricky task of
untangling the interactions or correlations
between metrics.

Instead of focusing on developing new
metrics that circumvents the problems above, we

maintain that designers need to make better use
of the ones that already exist. Toward that end,
we first examine what purpose a dialog metric
serves and then propose empirical methods for
evaluating systems that meet that purpose. The
methods include a protocol for conducting a
wizard-of-oz experiment and a basic set of
descriptive statistics for substantiating
performance claims using the data collected
from the experiment as an ideal benchmark or
“gold standard” for making comparative
judgments. The methods also provide a practical
means of optimizing the system through
component analysis and cost valuation.

2 Purpose

Performance can be measured in myriad ways.
Indeed, for evaluating dialog systems, the one
problem designers do not encounter is lack of
choice. Dialog metrics come in a diverse
assortment of styles. They can be subjective or
objective, deriving from questionnaires or log
files. They can vary in scale, from the utterance
level to the overall dialog (Glass et al., 2000).
They can treat the system as a “black box,”
describing only its external behavior (Eckert et
al., 1998), or as a “glass box,” detailing its
internal processing. If one metric fails to suffice,
dialog metrics can be combined. For example,
the PARADISE framework allows designers to
predict user satisfaction from a linear
combination of objective metrics such as mean
recognition score and task completion (Kamm et
al., 1999; Litman & Pan, 1999; Walker et al.,
1997).

Why so many metrics? The answer has to do
with more than just the absence of agreed upon
standards in the research community,
notwithstanding significant efforts in that
direction (Gibbon et al., 1997). Part of the
reason deals with what purpose a dialog metric
serves. Designers often have multiple and



sometimes inconsistent needs. Four of the most
typical needs are:

• Provide an accurate estimation of how
well a system meets the goals of the
domain task.

• Allow for comparative judgments of one
system against another, and if possible,
across different domain tasks.

• Identify factors or components in the
system that can be improved.

• Discover tradeoffs or correlations between
factors.

The above list of course is not intended to be
exhaustive. The point of creating the list is to
highlight the kinds of obstacles designers are
likely to face in trying to satisfy just these
typical needs. Consider the first need.

Providing an accurate estimation of how well
a system meets the goals of the domain task
depends on how well the designers have
delineated all the possible goals of interaction.
Unfortunately, users often have finer goals than
those anticipated by designers, even for domain
tasks that seem well defined, such as airline
ticket reservation. For example, a user may be
leisurely hunting for a vacation and not care
about destination or time of travel, or the user
may be frantically looking for an emergency
ticket and not care about price. The
“appropriate” dialog metric should reflect this
kind of subtlety. While “time to completion” is
more appropriate for emergency tickets,
“concept efficiency rate” is more appropriate for
the savvy vacationer. As psychologists have
long recognized, when people engage in
conversation, they make sure that they mutually
understand the goals, roles, and behaviors that
can be expected (Clark, 1996; Clark & Brennan,
1991; Clark & Schaefer, 1989; Paek & Horvitz,
1999, 2000). They evaluate the “performance”
of the dialog based on their mutual
understanding and expectations.

Not only do different users have different
goals, they sometimes have multiple goals, or
more often, their goals change dynamically in
response to system behavior such as
communication failures (Danieli & Gerbino,
1995; Paek & Horvitz, 1999). Because goals
engender expectations that then influence
evaluation at different points of time, usability
ratings are notoriously hard to interpret,

especially if the system is not equipped to infer
and keep track of user goals (Horvitz & Paek,
1999; Paek & Horvitz, 2000).

The second typical need for a dialog metric –
allowing for comparative judgments, introduces
yet further obstacles. In addition to
unanticipated, dynamically changing user goals,
different systems employ different dialog
strategies operating under different architectural
constraints, rendering the search for dialog
metrics that generalize across systems a lofty if
not unattainable pursuit. While the PARADISE
framework facilitates some comparison of
dialog systems in different domain tasks,
generalization is limited because different
architectural constraints obviate certain factors
in the statistical model (Kamm et al., 1997). For
example, although the ability to “barge-in” turns
out to be a significant predictor of usability,
many systems do not support this. Task
completion based on the kappa statistic appears
to be a good candidate for a common measure,
but only if every dialog system represented the
domain task as an Attribute-Value Matrix
(AVM). Unfortunately, that requirement
excludes systems that use Bayesian networks or
other non-symbolic representations. This has
prompted some researchers to argue that a
“common inventory of concepts” is necessary to
have standard metrics for evaluation across
systems and domain tasks (Kamm et al., 1997;
Glass et al., 2000). As we discuss in the next
section, the argument is actually backwards; we
can use the metrics we already have to define a
common inventory of concepts. Furthermore,
with the proper set of descriptive statistics, we
can exploit these metrics to address the third and
fourth typical needs of designers, that of
identifying contributing factors, along with their
tradeoffs, and optimizing them.

This is not to say that comparative judgments
are impossible; rather, it takes some amount of
careful work to make them meaningful. When
research papers describe evaluation studies of
the performance of dialog systems, it is
imperative that they provide a baseline
comparison from which to benchmark their
systems. Even when readers understand the
scale of the metrics being reported, without a
baseline, the numbers convey very little about
the quality of experience users can expect of the
system. For example, suppose a paper reports
that a dialog system received an average



usability score of 9.5/10, a high concept
efficiency rate of 90%, and a low word error rate
of 5%. The numbers sound terrific, but they
could have resulted from low user expectations
resulting from a simplistic interface. Practically
speaking, to make sense of the numbers, readers
either have to experience interacting with the
system themselves, or have a baseline
comparison for the domain task. This is true
even if the paper reports a statistical model for
predicting one or more of the dialog metrics
from the others, which may reveal tradeoffs but
not how well the system performs relative to the
baseline.

To sum up, in considering the purpose a
dialog metric serves, we examined four typical
needs and discussed the kinds of obstacles
designers are likely to face in finding a dialog
metric that satisfies those needs. The obstacles
themselves present distinct challenges: first,
keeping track of user goals and performance
expectations based on the goals, and second,
establishing a baseline from which to benchmark
systems and make comparative judgments.
Assuming that designers equip their system to
handle the first challenge, we now propose
empirical methods that allow them to handle the
second. These methods do not require new
dialog metrics, but instead take advantage of
existing ones through experimental design and a
basic set of descriptive statistics. They also
provide a practical means of optimizing the
system.

3 Empirical methods

If designers want to make comparative
judgments about the performance of a dialog
system relative to another system so that readers
unacquainted with either system can understand
the reported metrics, they need a baseline.
Fortunately, in evaluating dialog between
humans and computers, the “gold standard” is
oftentimes known; namely, human conversation.
The most intuitive and effective way to
substantiate performance claims is to compare a
dialog system on a particular domain task with
how human beings perform on the same task.
Because human performance constitutes an ideal
benchmark, readers can make sense of the
reported metrics by assessing how close the
system approaches the gold standard.
Furthermore, with a benchmark, designers can

Figure 1. Wizard-of-Oz study for the purpose of
establishing a baseline comparison.

optimize their system through component
analysis and cost valuation.

In this section, we outline an experimental
protocol for obtaining human performance data
that can serve as a gold standard. We then
highlight a basic set of descriptive statistics for
substantiating performance claims, as well as for
optimization.

3.1 Experimental protocol

Collecting human performance data for
establishing a gold standard requires conducting
a carefully controlled wizard-of-oz (WOZ)
experiment. The general idea is that users
communicate with a human “wizard” under the
illusion that they are interacting with a
computational system. For spoken dialog
systems, maintaining the illusion usually
involves utilizing a synthetic voice to output
wizard responses, often through voice distortion
or a text-to-speech (TTS) generator.

The typical use of a WOZ study is to record
and analyze user input and wizard output. This
allows designers to know what to expect and
what they should try to support. User input is
especially critical for speech recognition
systems that rely on the collected data for
acoustic training and language modeling. In
iterative WOZ studies, previously collected data
is used to adjust the system so that as the
performance of the system improves, the studies
employ less of the wizard and more of the
system (Glass et al., 2000). In the process,
design constraints in the interface may be
revealed, in which case, further studies are
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conducted until acceptable tradeoffs are found
(Bernsen et al., 1998).

In contrast to the typical use, a WOZ study
for establishing a gold standard prohibits
modifications to the interface or experimental
“curtain.” As shown in Figure 1, all input and
output through the interface must be carefully
controlled. If designers want to use previously
collected performance data as a gold standard,
they need to verify that all input and output have
remained constant. The protocol for establishing
a gold standard is straightforward:

• Select a dialog metric to serve as an
objective function for evaluation and
optimization.

• Vary the component or feature that best
matches the desired performance claim for
the dialog metric.

• Hold all other input and output through
the interface constant so that the only
unknown variable is who does the internal
processing.

• Repeat using different wizards, making
sure that each wizard follows strict
guidelines for interacting with subjects.

To motivate the above protocol, consider
how a WOZ study might be used to evaluate
spoken dialog systems. As almost every
designer has found, the “Achilles’ heel” of
spoken interaction is the fragility of the speech
recognizer. System performance depends highly
on the quality of the recognition. Suppose a
designer is interested in bolstering the
robustness of a dialog system by exploiting
different types of repair strategies. Using task
completion rate as an objective function, the
designer varies the repair strategies utilized by
the system. To make claims about the robustness
of particular types of repair strategies, the
designer must keep all other input and output
constant. In particular, the protocol demands that
the wizard in the experiment must receive
utterances through the same speech recognizer
as the dialog system. The performance of the
wizard on the same quality of input as the dialog
system constitutes the gold standard. The
designer may also wish to keep the set of repair
strategies constant while varying the use or
disuse of the speech recognizer to estimate how
much the recognizer alone degrades task
completion rate.

A deep intuition underlies the experimental
control of the speech recognizer. As researchers
have observed, people with impaired hearing or
non-native language skills still manage to
communicate effectively despite noisy or
uncertain input. Unfortunately, the same cannot
be said of computers with analogous
deficiencies. People overcome their deficiencies
by collaboratively working out the mutual belief
that their utterances have been understood
sufficiently for current purposes, a process
referred to as “grounding” (Clark, 1996). Repair
strategies based on grounding indeed show
promise for improving the robustness of spoken
dialog systems (Paek & Horvitz, 1999; Paek &
Horvitz, 2000).

3.1.1 Precautions

In following the above protocol, we point out
a few precautions. First, WOZ studies for
establishing a gold standard work best with
dialog systems that are highly modular. The
more modular the architecture of the dialog
system, the easier it will be to test components
by replacing a particular module of interest with
the wizard. Without modularity, it will be harder
to guarantee that all other inputs and outputs
have remained constant because component
boundaries are blurred. Ironically, after a certain
point, a high degree of modularity may in fact
preclude the experimental protocol; components
may be so specialized and quickly accessed by a
system that it may not be feasible to replace that
component with a human.

A second precaution deals with the concept
of a gold standard. What allows the performance
of the wizard to be used as a gold standard is not
the wizard, but rather the fact that the
performance constitutes an upper bound. If an
upper bound of performance has already been
identified, then that is the gold standard. For
example, graphical user interfaces (GUI) or
touch-tone systems may represent a better gold
standard for task completion rate if users finish
their interactions with such systems ore often
than with human operators. With spoken dialog
systems, the question of when the use of speech
interaction is truly compelling is often ignored.
If a dialog designer runs the experimental
protocol and observes that even human wizards
cannot perform the domain task very well, that
suggests that perhaps a gold standard may be
found elsewhere.



Figure 2. Comparison of two dialog systems
with respect to the gold standard.

3.2 Descriptive statistics

After collecting data using the experimental
protocol, designers can make comparative
judgments about the performance of their system
relative to other systems with a basic set of
descriptive statistics. The statistics build on the
initial step of fitting a statistical model on the
data fro both wizards and the dialog system. We
discuss precautions later. Plotting the fitted
curves on the same graph sheds light on how
best to substantiate any performance claims. The
graph displays the performance of the dialog
system along a particular dimension of interest
with the wizard data constituting a gold standard
for comparison. Consider how this kind of
“benchmark graph” could benefit the evaluation
of spoken dialog systems.

Referring to previous example, suppose a
designer is interested in evaluating the
robustness of two dialog systems utilizing two
sets of repair strategies. The designer varies
which set is implemented, while holding
constant the use of the speech recognizer. In
general, as speech recognition errors increase,
task completion rate, or dialog success rate,
decreases. Not surprisingly, several researchers
have found an approximately linear relationship
in plotting task completion rate as a function of
word error rate (Lamel et al., 2000; Rudnicky,
2000). Keeping this in mind, Figure 2 displays a
benchmark graph for two dialog systems A and
B, utilizing different repair strategies. The fitted
curve for A is characteristically linear, while the
curve for B is polynomial. Because wizards are
presumably more capable of anticipating and
recovering from speech recognition errors, their

Figure 3. Distance in performance of the two
systems from the gold standard.

performance data comprise the gold standard.
As such, the fitted curve for the gold standard in
Figure 2 stays close to the upper right hand
corner of the graph in a monotonically
decreasing fashion; that is, task completion rate
remains relatively high as word error rate
increases and then gracefully degrades before
the error rate reaches its highest level.

Looking at the benchmark graph, readers
immediately get a handle on substantiating
performance claims about robustness. For
example, by noticing that task completion rate
for the gold standard rapidly drops from around
65% at the 80% mark to about 15% by 100%,
readers know that at 80% word error rate, even
wizards, with human level intelligence, cannot
recover from failures with better than 65% task
completion rate. In short, the task is not trivial.
This means that if A and B report low numbers
for task completion rate beyond the 80% mark
for word error rate, they may be still performing
relatively well compared to the gold standard.
Numbers themselves are deceptive, unless they
are put side by side with a benchmark.

Of course, a designer might not have access
to data all along the word error rate continuum
as in Figure 2. If this presents a problem, it may
be more appropriate to measure task completion
rate as a function of concept error rate. The
choice, as stated in the experimental protocol,
depends on the performance claim a designer is
interested in making. In spoken dialog, however,
where speech recognition errors abound, another
particularly useful benchmark graph is to plot
word or concept error rate against user
frustration. This experiment reveals any inherent
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bias users may have towards speaking with a
computer in the first place.

In making comparative judgments, designers
can also benefit from plotting the absolute
difference in performance from the gold
standard as a function of the same independent
variable as the benchmark graph. Figure 3
displays the difference in task completion rate,
or “gold impurity,” for systems A and B as a
function of word error rate. The closer a system
is to the gold standard, the smaller the “mass” of
the gold impurity on the graph. Anomalies are
easier to see, as they noticeably show up as
bumps or peaks. If a dialog system reports low
numbers but evinces little gold impurity, reader
can be assured that the system is as good as it
can possibly be.

Any crosses in performance can be revealing
as well. For example, in Figure 3, although B
performs worse at lower word error rates than A,
after about the 35% mark, B stays closer to the
gold standard. Hence, the designer in this case
could not categorically prefer one system to the
other. In fact, assuming that the only difference
between A and B is the choice of repair
strategies, the designer should prefer A to B if
the average word error rate for the speech
recognizer is below 35%, and B to A, if the
average error rate is about 40%. Of course, other
cost considerations come into play, as we
describe later.

The final point to make about comparing
dialog systems to a gold standard is that readers
are able to substantiate performance claims
across different domain tasks. They need only to
look at how close each system approaches their
respective gold standard in a benchmark graph,
or how much mass each system puts out in a
gold impurity graph. They can even do this
without having the luxury of experiencing any
of the compared systems.

3.2.1 Complexity

Without a gold standard, making comparative
judgments of dialog systems across different
domain tasks poses a problem for two reasons:
task complexity and interaction complexity.
Tutoring physics is a generally more complex
domain task than retrieving email. On the other
hand, task complexity alone does not explain
what makes one dialog more complex than
another; interaction complexity also plays a
significant role. Tutoring physics can be less

challenging than retrieving email if the system
accepts few inputs, essentially constraining users
to follow a predefined script. Any dialog system
that engages in “mixed initiative” will be more
complex than one that utilizes “system-initiated”
prompts because users have more actions at their
disposal at any point in time.

The way to evaluate complexity in a
benchmark graph is to measure the distance of
the gold standard to the absolute upper bound of
performance. If wizards with human level
intelligence cannot themselves perform
reasonably close to the absolute upper bound,
then either the task is very complex, or the
interaction afforded by the dialog interface is too
restrictive for wizards, or perhaps both. Because
complexity is measured only in connection with
the gold standard ceteris paribus, “benchmark
complexity” can be computed as:

∑
=

−⋅=
n

x

xgUnBC
0

)(

where U is the upper bound value of a
performance metric, n is the upper bound value
for an independent variable X, and g(x) is the
gold standard along that variable.

Designers can use benchmark complexity to
compare systems across different domain tasks
if they are not too concerned about
discriminating between task complexity and
interaction complexity. Otherwise, they can treat
benchmark complexity as an objective function
and vary the interaction complexity of the dialog
interface to scrutinize the effect of task
complexity on wizard performance, or vice
versa. In short, they need to conduct another
experimental study.

3.2.2 Precautions

Before substantiating performance claims with a
benchmark graph, designers must exercise
prudence in model fitting. One precaution is to
beware of insufficient data. Without collecting
enough data, designers cannot be certain that
differences in the performance of a dialog
system from the gold standard cannot be
explained simply by the variance in the fitted
models. To determine when there is enough data
to generate reliable models, designers can
conduct WOZ studies in an iterative fashion.
First, collect some data and fit a statistical



model. Second, plot the least squares distance,

or ∑ −
i

ii xfy 2))(( , where f(x) is the fitted

model, against the iteration. Keep collecting
more data until the plot seems to asymptotically
converge. Designers may need to report R2s for
the curves in their benchmark graphs to inform
readers of the reliability of their models.

Another precaution is to use different
wizards, making sure that each wizard follows
strict guidelines for interacting with subjects.
The experimental protocol included this
precaution because designers need to consider
whether a consistent gold standard is even
possible with a given dialog interface. Indeed,
difference between wizards may uncover serious
design flaws in the interface. Furthermore, using
different wizards compels designers to collect
more data for the gold standard.

As a final precaution, designers need to
watch out for violations of model assumptions
regarding residual errors. These are typically
well covered in most statistics textbooks. For
example, because task completion rate as a
performance metric has an upper bound of
100%, it is unlikely that residual errors will be
equally spread out along the word error rate
continuum. In regression analysis, this is called
“heteroscedasticity.” Another common violation
occurs with the non-normality of the residual
errors. Designers would do well to take
advantage of corrective measures for both.

3.2.3 Component analysis

A gold standard naturally lends itself to
optimization. With a gold standard, designers
can identify which components are contributing
the most to a performance metric by examining
the gold impurity graph of the system with and
without a particular component. This kind of test
is similar to how dissociations are discovered in
neuroscience through “lesion” experiments.
Carrying out stepwise comparisons of the
components, designers can check for tradeoffs,
and even use all or part of the gold impurity as
an optimization metric. For example, suppose a
designer endeavors to improve a dialog system
from its current average task completion rate of
70% to 80%. In Figure 2, suppose B
incorporates a component that A does not.
Looking at the corresponding word error rates in
the gold impurity graph for both systems, the

Figure 4. The cost a designer is willing to incur
for improvements to task completion rate.

mass under the curve for B is slightly greater
than that for A. The designer can optimize the
performance of the system by selecting
components that minimize that mass, in which
case, the component in B would be excluded.
Because components often interact with each
other in terms of their statistical effect on the
performance metric, designers may wish to carry
out a multi-dimensional analysis to weed out
those components with weak main and
interaction effects.

3.2.4 Cost valuation

Another optimization use of a gold standard is to
minimize the amount of “gold” expended in
developing a dialog system. Gold here includes
more than just dollars, but time and effort as
well. Designers can determine where to invest
their research focus by calculating “average
marginal cost.” To do this, they must first elicit
a cost function that conveys what they are
willing to pay, in terms of utility, to achieve
various levels of performance in a dialog metric
(Bell et al., 1988). Figure 4 displays what cost a
designer might be willing to incur for various
rates of task completion. The average marginal
cost can be computed by weighting gold
impurity by the cost function. In other words,
average marginal cost can be computed as:

∑
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where f(x) is the performance of the system on a
particular dialog metric X, g(x) is the gold
standard on that metric, and c(x) is elicited cost
function.

Following the previous example, if the
designer endeavors to improve a system that is
currently operating at an average task
completion rate of 70% to 80%, then the average
marginal cost for that gain is simply the area
under the cost function for that interval
multiplied by the gold impurity for that interval.
In deciding between systems or components,
designers can exploit average marginal cost to
drive down their expenditure.

4 Discussion

Instead of focusing on developing new dialog
metrics that allow for comparative judgments
across different systems and domain tasks, we
proposed empirical methods that accomplish the
same purpose while taking advantage of dialog
metrics that already exist. In particular, we
outlined an experimental protocol for
conducting a WOZ study to collect human
performance data that can serve as a gold
standard. We then described how to substantiate
performance claims using both a benchmark
graph and a gold impurity graph. Finally, we
explained how to optimize a dialog system using
component analysis and value optimization.

Without a doubt, the greatest drawback to the
empirical methods proposed is the tremendous
cost of conducting WOZ studies, both in terms
of time and money. In special circumstances,
such as the Communicator Project, where
participants all work within the same domain
task, DARPA itself might finance WOZ studies
for evaluation on behalf of the participants. Non-
participants may resort to average marginal cost
to optimize their own expenditure.
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