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This paper presents a possibility to extend the fonnalism of linear indexed grammars. The 
extension is based on the use of tuples of pushdowns instead of one pushdown to store indices 
during a derivation. If a restriction on the accessibility of the pushdowns is used, it can be 
shown that the resulting fonnalisms give rise to a hierarchy of languages that is equivalent 
with a hierarchy defined by Weir. For this equivalence, that was already known for a slightly 
different fonnalism, this paper gives a new proof. Since all languages of Weir's hierarchy are 
known to be mildly context sensitive, the proposed extensions of L!Gs become comparable with 
extensions of tree adjoining grammars and head grammars. 

1. Introduction 
lt is weil known that tree adjoining grammars (TAGs), head grammars (HGs) and linear in
dexed grammars (LIGs) are weakly equivalent (Vijay-Shanker & Weir, 1994). Each of these 
formalisms was developed independently for the description of natural languages. For TAGs 
and HGs hierarchies of extensions were defined by increasing the number of auxiliary trees that 
are inserted in one step and by increasing the size of the tuples that are handled, resp. (cf. (Weir, 
1988)). The extensions of TAGs, multi-component TAGs (MCTAGs) (Joshi, 1987), were ar
gued tobe useful for the description of natural languages by Kroch ( 1987) and Kroch and Joshi 
(1987). For LIGs a Iinguistically motivated extension is defined by Rambow (l 994) that is how
ever of a rather different nature than the extensions of HGs and TAGs and does not give rise to 
a hierarchy of formalisms and language classes. Weir (1988; 1992) defines a hierarchy of linear 
controlled grammars that are strongly related to LIGs. lt is however not immediately apparent 
what use these formalisms could have for linguistics. In (Wartena, 1998) recently extensions 
of LIGs, called context-free linear multi-pushdown grammars (CFL-MPD-Gs), were defined 
that use tuples of pushdowns to store indices instead of a single pushdown. The use of tuples 
was motivated by linguistic needs. These extensions form a hierarchy of formalisms with an 
increasing number of pushdowns. lf no pushdown is available the grammars are strongly equiv
alent to context-free grammars. If one pushdown is used we obtain LIGs. The nth element of 
the hierarchy can be shown to be a subclass of the nth class of Weir's hierarchy of controlled 
languages. 
CFL-MPD-Gs seem to fill up an apparent gap in the square formed by TAGs, HGs and LIGs 
on the first axis and their extensions on the other axis. In order to formally justify this square 
we have to show that CFLr-MPD-Gs and MCTAGs1 or the extensions of head grammars are 
equivalent. (The equivalence between the last two was shown by Weir (1988)). We will go 

1There are two variants of MCTAGs, the first ofwhich allows only for simultaneous adjunction in one elemen-
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the following way to show this equivalence. First we will prove the equivalence between the 
hierarchy of CFL-MPD-Gs and Weir's hierarchy of linear controlled grammars. Subsequently 
the equivalence between the latter hierarchy and MCTAGs has to be shown. In this paper we 
will do the first of the two steps. 

2. Grammars with storage 
LIGs store their indices in pushdowns. For the description of non-Iocal dependencies in natural 
languages this organization can be argued to be too restrictive. Thus we might want to define 
formalisms similar to LIGs but with a more liberal Stack structure. We start defining abstract 
storages, that will form the base of the subsequent extensions. 

Definition 1 (storage) A storage is a 6--tuple S = ( C, Co, CF, P, F, m), where C is a set of
configurations, Co ~ C and CF ~ C the sets of initial and final configurations, respectively, P 
is a set of predicate symbols, F a set of instruction symbols. m is the meaning function, which 
associates every p E P with a mapping m(p) : C -+ { true, false} and every .f E F with a 
partial function m(.f) : C -+ C. 

Usually we are interested in properties of classes of storages rather than in properties of indi
vidual ones. Classes of storages are often called storage types. 

Example 1 A trivial storage is defined as Striv = ({c},{c},{c} , 0, {id},m), where c is an 
arbitrary object and m(id)( c) = c. Tue class of all trivial storages is denoted 6tri\'· 

Example 2 A pushdown over some finite alphabet r can be defined as a storage2 Sµd(f) = 
(r-, {€},{t:},P, F ,m) with P = {top(!)l1 Er}, F = {push(i) h Er} U {pop} U {id} and 
for every a E f and ß E r·, 

m(top(i))(aß) = (a = 7) 
m(push(i))(ß) = 1ß 

The class of all pushdowns is denoted 6pd· 

m(pop)(aß) = ß 
m(id)(ß) = ß 

On the base of this. notion of storages we can define context-free linear-S grammars (CF&-S
Gs) as a generalization of LIGs. 

Definition 2 (CF linear S-gramrnar) If S = (C, C0 , CF, P, F, m) is a storage then a context
free linear S-grammar is a five tuple G = (N, I:, R, Ain, c0 ), where N, I; denote the sets of 
nonterminal and terminal symbols, respectively. Ain E N is a distinguished symbol, called 
the start symbol, Co E Co is the initial configuration, and R is a set of production rules of the 
following two forms: 

A -+ if 7r then ( 1 (B, .f)(2 
A ---+ if 7r then w 

where A, BEN, 7r E BE(P)) and (i.(2 E (N U I;)•, f E F, w EI:*. BE(P ) denotes the set 
ofboolean expressions over P. · 

tary tree, the second ooe of which allows for adjuoction of a tuple in a tuple of elementary trees as weil. The first 
variant is equivalcnt to (simple) TAGs, the second ooe gives rise to an hierarchy of languages. In this paper we 
will only consider these more powerful MCTAGs. 

2Throughout the paper the following notational conventions are used. The empty string is denoted by c. For 
each sei V the notatioo V, is used as an abbreviation for V U { c}. 
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A string CT E o· is said to derive a string T E o·. written CT =i? r 1 if either ( 1) or (2). 

(1) u = a(A,c)ß 
A -t if 7r then (1Bf(2 E R 
m(7r)(c) = true3 

m(f) is defined on c 
T = a(f(B,c')Gß 

(2) u = a(A, c)ß 
A -t if 7r then w E R 
m(?r)(c) = true 
T = awß 
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where A, B E N, a, ß E o•, w E E*, c E C, c' = m(f)(c) and Cf , G are obtained from (1
and (2 , respectively, by replacing every nonterminal D by (D, eo). The reflexive and transitive
closure of "i?· denoted by ~·, is defined as usual. The Janguage generated by Gis defined as
L( G) = { w E E* I ( A;n, eo) ~ • w }. If 6 is a storage type and S E 6 then a CFL-S-G is called 
a CFL-6-G as weil. The class of languages generated by CFL-6-Gs is denoted .CcFL(G)· 

The way in which the storage is passed on during a derivation is the same as in LIGs. lt is easy 
to check that CFL-6ix1-Gs are equivalent to LIGs. Now we can easily define extensions of 
LIGs by choosing other storage types. Tue generative capacity of variants that are defined in 
this way crucially depends on the storage type. In order to investigate the typical complexity 
and generative capacity of a storage type we will use storage-automata. 

Definition 3 (S-automaton) lf S = ( C, C0 , CF, P, F, m) is a storage, then an S-automaton 
M is a tuple (Q, E, ö, q0, eo, QF), where Q is a finite set of states, E is the input alphabet, 
q0 E Q the initial state, eo E C0 the initial configuration, QF ~ Q the set offinal states, and ö, 
the transition relation, a finite subset of Q x E, x BE(P) x Q x F. 

The set ID(M) = Q x E* x C is called the set of instantaneous descriptions. For each 
(qi,xw,c1), (q2 ,w,C2) E ID(M) with x E E, we write (qi.xw, ci) f--M (q2,w,c2 ) ifthere 
exists ( q1, x, 7r, q2, f) E ö such that m( 1f )( ci) = true, m(f) is defined on c1 and m(f)( c1) = c2 • 

The transitive and reflexive closure f-M- of 1--M is defined as usual. Sometimes conjunction of 
function symbols is used. For two function symbols fi and f 2 the meaning of the composed 
function symbol fi&h is defined as m(f1&h) = m(h) o m(f1). Tue language accepted 
by M is defined L(M) == {wl(q0,w,eo) f-- M- (q,c,c) for some c E C and q E Qp} if 
Qp f:. 0 and L(M) = {w\(qo,w,eo) 1--u (q„w',c1) f--M „ . (qn, E,cn) for somecn E CF, 
qn E Q, e; E C - Cp and q; E Q with 1 $ i < n} otherwise. In the first case we say 
that M accepts by final state. In the second case M accepts by final configuration. Let 6 
be some storage type. If M is an S-automaton and S E 6 we say as weil that M is an 
6-automaton. Take e.g. 6 = 6pd• then we can say as usual that an automaton M is an 6pd
automaton or a pushdown-automaton without reference to the specific pushdown that is used. 
Finally we set L0 (6) = {L(M) 1 M is an 6-automaton accepting by final configuration} and 
LQ(6 ) = {L(M) 1 M is an 6 - automaton accepting by final state}. For some important Stor
age types (like pushdowns and concatenations of pushdowns) LQ( 6 ) = lc(6). In these cases 
we drop the subscript. In (Wartena, 2000) these storage types are called well-behaved. The 
reader is referred there for details. A subclass of the well-behaved storage types is constituted 
by the concatenating storages types. In a concatenating storage Co = CF and the cardinality of 
Ca is 1. 

3. Concatenation of storages 
lt was argued in (Wartena, 1998) that a tuple of pushdowns would be an adequate storage type 
to describe non-local dependencies in a number of constructions in various languages. The 

3In fact only m( 11') for 7r E P has been defined so far. lt is straightforward to extend the domain of m to BE(P ). 
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motivation there was that we have to distinguish between different types of non-loca! depen
dencies, as proposed in theories like that of relativized minimality (Rizzi, 1990), and that there 
has to be one stack for each type. 

Definition 4 (product of storages) For arbitrary storages 51 = ( C1
, CJ, C}, P 1

, F 1
, m 1 ) and 

52 = ( c 2 , CJ' C'j.., P 2, F 2' m 2) the product of 5 1 and 52 is defined as 5 1 052 = ( C1 
X C2

' CJ X 

CJ, C} x C}, P, F, m) where P = P 1 U {test(p) 1 p E P 2
}, F = F 1 U {do(f) 1 f E F 2

} and 
for every c1 E C 1 and c2 E C 2 

m (p)( ( c1
, c2

)) = m 1 (p )( c1
) if p E P 1 

m(f) ( ( c1
, c2

) ) = (m1(f)(c1
), c2

) if f E F 1 

m(test(p))((c1,c2
)) = m 2 (p)(c2

) if p E P 2 

m( do(f))(( c1
, c2

)) = (c1
, m 2(j)(c2

)) if f E F 2 

The set of semi-final configurations of 5 1 o 5 2 is defined as CsF = ( CJ U C}) x C2• For two 
storage types 6 1 and 6 1 the product is defined straightforwardly as 6 1 o 6 2 = {5 1 o 5 2 1 5 1 E 
6 1 and 5 2 E 6 2}. 

Tupi es or products of pushdowns are from a formal point of view to powerful. Following an idea 
of Breveglieri et al. (1996) we can reduce this power by restricting the Operations that can be 
applied to the components. A similar idea to restrict the power of tuples of stacks was proposed 
by Becker (1994). Here we will define concatenation by means of an explicit restriction on a 
product of two storages. This general definition was suggested by Lothar B udach (p.c.). 

Definition 5 (K-product of storages) For arbitrary storages 51 and 5 2 such that 5 1 o 5 2 = 
( C, C0 , CF, P, F, m) and for a mapping [{ : F 2 -+ { true, false} the K-product of 5 1 and 5 2 is 
defined as 5 1 

OK 5 2 = ( c, c~, Cp, P, F, m') with4 

m'(cp) = m(cp) lcsF if cp = do(cp') and J{(cp' ) = true 
m'( cp) = m( cp) otherwise. 

For two storage types 6i. and 6 2 and any predicate [{ the J( -product is defined as 6 1 oK 6 2 = 
{51 o 52 11\ 5 1 E 6 1 and 52 E 6 2

} . 

Note that m( do(f) )( ( c1 , c2 )) is undefined for f E F 2 if J<(f) is true and c1 is not initial or final. 
The I<- products for two predicates f{ are of special interest. The predicate r determines what 
Operations are considered as reading operations. For any pushdown Jet r(pop) = true and Jet 
r(push) = r (id) = false. The r·-product of two stores corresponds exactly with the concatena
tion with regard to reading defined in (Wartena, 1998). The counterpart of the predicate r is w 
which is defined by w(push) = true and w(pop) = w(id) = false for any (n-turn) pushdown. 
The product ow is the same as concatenation with regard to writing. · 

Example 3 5pd denotes a pushdown storage. Consequently, (5pd o, 5pd) o, 5pd denotes the 
concatenation w.r.t. reading of three pushdowns. Bach component behaves like a pushdown. At 
each point in the computation elements can be pushed on each of the three pushdowns, popping, 
however, is only possible from the first non empty one. 

4For any (partial) function f : A --+ B and any U ~ A the restriction of f ro U, denoted flu, is defined as 
Jlu (u) = f(u) if u E U and undefined olherwise. 
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Using r- and w-products we can recursively define the following hieral"c~i~s of stq
and corresponding classes of languages. The hierarchy established in (Breveglieri llfal.\19'96)
can now be defined as ltll\ = L( S;) for each i ;::: 0 where So = Striv and S; == s;~~ o>$6d,
(<!: is intended as a mnemonic for concatenation, the superscript !n indicating that concatenatidi
w.r.t. reading is meant.) For natural language syntax (Wartena, 1998) argues that concatenati~li
w.r.t. writing is more.appropriate. Thus the hierarchy, that is defined by setting ([2l\ = L( Si)
for each i ;::: 0 where So = Striv and S; = S;_1 ow Spd• is of more interest for us. lt can
however be shown that ([llli ~ ([2Di+l and that ([21Ji ~ <!:!l\+I . Thus both hierarchies are very
similar. An interesting fact is that <!:9\ and <!:!ID2 are the classes of extended left and extended
right linear indexed Janguages (ELLILs and ERLILs), resp. , defined in (Michaelis & Wartena,
1999). ERLILs were proposed as an appropriate restriction of linear indexed Janguages w.r.t. 
the paths along which a stack can be inherited. 

4. Linear controlled grammars 
The hierarchy of Weir can be expressed most easily in terms of linear control. Linear control of 
context-free grammars (CFGs) is defined in (Weir, 1992). 

Definition 6 (linear controlled grammar) A linear distinguished grammar (LDG) is a qua
druple G = (N, I:, R, Ain), where N and I: are finite sets ofnon-terminal and terminal symbols, 
respectively, A;n E N is the start symbol and where R is a finite set of production rules of the 
form: A -t ß1X!ß2 with A E N, X E NU I:, called the distinguished symbol, ß1 ,ß2 E 
( N U I:) •, and ! a special symbol not in ( N U I;). A linear controlled grammar ( LCG) is a pair 
[{ = ( G, H) , where G is an LDG and H is a language over R, called the control language. 

The set of {nonterminal and terminal) objects in J{ is defined as O(J{) = (NU I:) x R*. A 
string o- E 0 ( K)* is said to derive a string T E 0 ( K)", written o- ~ T, if 

a = -y(A,w)ö 
r = A -t ß1X'ß2 E R 

T = -rßHX,wr)ß~ö 

where A E N, X E NU I:, ß i.ß2 E (NU I:)*, -y,Ö E O(I<)*, w E R·, and ß~ and ß~ 
are obtained from ß1 and ß2 , resp. by replacing every symbol Y E N U ~ by (Y, t). In this 
case (X, wr) is called the distinguished child of (A, w ). The reflexive and transitive closure 
of ~. denoted ~·. is defined as usual. The language generated by J{ is defined as L(K) = 
{a1.„anl(S, t) ~· (a1,w1)„.(an,wn)anda; E ~,w; E Hforl Si Sn}. Theclassof 
all LDGs is denoted by ®LD· Furthermore, for any class of grammars ® for which control 
is defined let ©/!;, = {(G, H) \ G E ® and H E !;,} and for any class of grammars ® Jet 
L( ®) = { L( G) 1 G E ®}. The obvious relation between linear controlled grammars and 
CFL--S-grammars was shown in {Wartena, 1998). 

Proposition 7 L(®w/ Lo(S)) = l!cFL(s) 0 

In order to refer to objects in a derivation it is sometimes assumed that the objects have addresses 
in IN" .5 In the following we will use two different address assignments, leftmosr and inside-out 
ad~ress assignment. Suppose a string a = aXß E O(I<t derives a string T rewriting the 
object X with address ( into new objects Yo Y1 ... Y; . . . Yn with Y; the distinguished child of 
X. If the address assignment is Ieftmost then the address of each 1'k is (k with 0 S k S n. 
In the case of inside--0ut assignment the address of Yk is (( i - k) for 0 S k S i and (k for 

5IN denotes the set of all non-negative integers. 
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i < k ::; n. For each object in a and ß the address in a and r is the same. A sequence of 
strings of objects ö = o-0 ..• <1n such that o-; => o-;+1 is called a derivation If in each step the 
nonterminal object with the lexicographic6 smallest address is rewritten then the derivation is 
called Jeftrnost in case the address assignment is leftmost and inside--out in case the address 

. assignment is inside--out. 

5. The hierarchy of Weir 
The classes of Janguages constituting Weir's hierarchy can be defined by setting Wo = .Crcg 

and !Z!J; = L(®w/ !ZVi-i ) for each i > 0. The following proposition was already shown in
(Wartena, 1998). 

Proposition 8 it!Ri ~ !ZV; 0 

The languages of Weir's hierarchy of controlled grarnrnars are accepted by concatenated push
downs as weII. Below we will show that the derivation of an LDG controlled by sorne 6-
automaton can be executed by an ( 6 o, (6pd o, 6pd))-autornaton. The idea is that the automa
ton follows one spine using its finite control to store the element actually being expanded and
using the first component to cornpute the control word. Everything that is generated to the right
of the spine is written on the third pushdown, terminal and nonterminal symbols generated to 
the left of the spine are written on the second pushdown. If the foot of the spine is reached the 
second pushdown contains the left part of the derived sentential form in reversed order. The
automaton now continues expanding the nonterminals on that pushdown, starting with the non
terminal directly to the left of the foot of the spine that just is reached. The automaton can read
that syrnbol, since the first component is empty, just having accepted a control word. Thus the
automaton simulates an inside--0ut derivation. 

Lemma 9 Let S be a concatenating storage. Then the following holds. 

L(®w/ L(6)) ~ L(6 Or (6p<1Or6„d)) 

Proof Let 6 be a concatenating storage type, !et S = (C, C0, CF, P, F, m) E 6 and Jet

J{ = (G, L(M)) be an LCG with G = (N, 2:, R, Ain) an LOG and M = (Q, R, ö, C-O, 0) an S-
automaton. Assume w.l.o.g. that each production of Gis of the form A--+ B 1B2!B3 or A--+ a
with A, B1, B2, B3 E N and a E ~" Construct an (S o, (S11d(f) or Spd(f))-automaton
M' = ( Q x Ne, E, ö', ( qo, Ain), ( C-O, t:, t:), 0) with f = N U .E, by setting 

ö' = {( ( q1, A), t:, 7r, ( q1, B2), f &do(push(B1 )&do( do(push(B2))) 1 (la) 
r=A--+ B1B2!B3 E Rand(q11 r,7r,q2,f) EÖ} 

u { ((q11 A), t: , 7r, ( q2, t:),f &do( do(push( a )) ) 1 (lb) 
r = A --+ a E R and ( q1, r, 7r, q2, f) E c5} 

u {((qi,A),e,7r,(q2,t:), f) 1 (q1,e.,7r,q2,J) E J} (2) 
u {((q,e.),e.,test(top(A)),(q,A),do(pop)) 1 A E N} (3a) 
u { ( ( q, e.), e, test(test(top(A)) ), ( q0, A), do( do(pop) )) 1 A E N} (3b) 
u { ( ( q, e), a, test(test(top( a)) ) , (q, e:), do( do(pop))) 1 a E E} (4) 

lt can be shown by induction on the number of steps in a cornputation and in a derivation,
respectively, that 

((q1 , A), w , (ci, ( t:, t:))) t~ ((q2, B), e, (c2, (oJl ,ß))) 
iff 

(A, t) =a-• wa'(B, w )ß' (inside--0ut) and ( q11 w, ci) t• ( q2, e. , c2) 
6The lexicographic ordering relation <1ex on IN* is defined by: X <1ex xjw and xi,P <1ex xiw if i < j for all

:1;, Y,,w EIN* and i,j E JN. 
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where c/, ß' are obtained from a and ß respectively by replacing every non terminal A E N by 
(.4, c). In case A = Ain and a = ß = B = t: we see that L(M') = L(K). D 

Proposition 10 for each i > 1; !ID; C ~\)t2i-1 

Proof First we show by induction that !ID; ~ ~!ll2;_1 for i ? l. For i = 1 the proposition 

is trivially true, since !ID1 = ~!ll1 = .Ccp, the class of all context-free languages. Suppose 
that the assertion is true for some i E IN. Let 6; denote the concatenation w.r.t. reading of 
i-pushdowns, for some i EIN. thus L(6i) = ![!lt;. For i + 1 we find 

!ID;+l = L( <Bw /filJ;) (by definition) 
:;;; L(<Bw/IL!ll2;-i) (by induction) 
:;;; L( 6; Or ( 6pd Or 6p<1)) (by Lemma 9) 

= ~!Jl2i+I = ~!Jl2(i+ l)-1 (by definition) 

For i > 1 the inclusion is proper since it is known that both ~!lli and filJ; contain the language 
{ a~ ... a2; 1 n E IN} but not the language { a~' ... a2;+1 1 n E IN}. D 

This result combined with Proposition 8 implies that the languages from the multi- pushdown 
hierarchy are the same as those in Weir's hierarchy. 

D 

A similar result was found by Cherubini and San Pietro ( l 999a; l 999b ), using different proofs. 
Finally, Jet us return to the context-free linear 6 - grammars. The extensions of LIGs we are 
interested in are CFL-6-Gs with 6 a concatenation of pushdowns. Calling each storage type 
formed by concatenation of pushdowns a multiple pushdown ( MPD) we can refer to these gram
mars as CFL-MPD-grammars. lt is straightforward to check that the languages generated by 
CFL-MPD-Gs are included in the hierarchy of Weir as weil. Let 6 ; be the Storage that arises 
from concatenation w.r.t. reading from i-pushdowns, for some i E IN. Then we find 

.CcFL(S;) L(<!'Jw/ ~!Jl;) 
:;;; L( ®w / filJ;) 
:;;; fil.1;+1 

(by Proposition 7) 
(by Proposition 8) 

. (by definition) 

Tue inclusion of the classes Weir's hierarchy in the classes of Ianguages generated by CFL
MPD-Gs is even simpler, since it can be shown that .CcFL(S) :J L(6). 

6. Conclusion 
In this paper two hierarchies of storage types were presented that are based on tuples of push
downs with restrictions on the accessibility of the components. These storage types can be used 
to make new and linguistically interesting extensions of LIGs and besides for the construction 
of automata. lt can be shown that automata based on a concatenation of two pushdowns accept 
only a subset of the linear indexed Ianguages (LILs). Automata based on a triple of pushdowns 
accept already Ianguages that cannot be generated by any LIG. A storage type corresponding 
to LIGs, the nested pushdown, was defined by Weir (1994). Though this storage type is rather 
different from ours, in a nested pushdown there are as well various possibilities for writing but 
only one for popping symbols. Becker (1994) defined automata, as well accepting LILs, that 
use two nested stacks with an explicit restriction on popping symbols from the second one, 
similar to the restrictions defined above. Reading from the second nested stack is possible if the 
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top of the first one is a bottom of stack symbol of an embedded stack. Thus reading from the
second component is restricted but not only to situations in which the first component is empty. 
Storage types based on tuples .with restricted possibilities for writing to our knowledge were 
considered in any fonn up to now. 
The main result of this paper is a new proof for the equivalence of the hierarchies of concate~
nated pushdowns and a hierarchy of controlled languages established by Weir (1988; 1992). 
By this equivalence we know that the languages generated by the extensions of LIGs presented 
here are mildly context sensitive and therefore are comparable with extensions of TAGs and 
head grammars. Whether the languages studied in this paper and the languages generated by 
MCTAGs coincide, is a question that remains for future research. 
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