
Workshop TAG+5, Paris, 25-27 May 2000

Practical Experiments in Parsing
using Tree Adjoining Grammars*

Anoop Sarkar

CIS Dept, University of Pennsylvania
200 South 33rd Street,

Philadelphia, PA 19104 USA
anoop@linc.cis.upenn.edu

Abstract
We present an implementation of a chart-based
head-corner parsing algorithm for lexicalized
Tree Adjoining Grammars. We report on some
practical experiments where we parse 2250
sentences f rom the Wall Street Journal usin.g
this parser. In these experiments the parser
is run without any statistical pruning; it pro
duces all valid parses f or each sentence in
the form of a shared derivation forest. The
parser uses a Zarge Treebank Grammar with
6789 tree templates with about 120, 000 lexi
calized trees. The results suggest that the ob
served complexity of parsingfor LTAG is dom
inated by factors other than sentence length.

1. Motivation
The particular experiments that we report on
in this paper were chosen to discover certain
facts about LTAG parsing in a practical setting.
Specifically, we wanted to discover the impor
tance of the worst-case results for LTAG pars
ing in practice. Let us take Schabes' Earley
style TAG parsing algorithm (Schabes, 1994)
which is the usual candidate for a practical
LTAG parser. The parsing time complexity of
this algorithm for various types of grammars
are as follows (for input of length n):

O(n6) - TAGs for inherently ambiguous lan
guages

O(n4) - unambiguous TAGs

'I would like to thank Aravind Joshi, Carlos Prolo
and Fei Xia for their help and suggestions. This work
was partially supported by NSF Grant SBR 8920230.

O(n) - bounded state TAGs e.g. the
usual grarnmar G where L(G) =
{an bn e cn dn 1 n 2:: O} (see (Joshi et al.,
1975))

The grammar iacturs a1c = .:.-v:!.:,;·;:: S:~:!bes'
Earley-style algorithm takes O(IAI IIUAINn6)

worst case time and O(IAU IINn4
) worst case

space, where n is the length of the input, A is
the set of auxiliary trees, I is the set of initial
trees and N is maximum number of nodes in
an elementary tree.
Given these worst case estimates we wish to
explore what the observed times might be for a
TAG parscr. It is not our goai here to compare
different TAG parsing algorithms, rather it is to
discover what kinds of factors can contribute to
parsing time complexity. Of course, a natural
language grarnmar that is !arge and complex
enough to be used for parsing real-world text
is typically neither unambiguous nor bounded
in state size. It is important to note that in this
paper we are not concemed with parsing ac
curacy, rather we want to explore parsing effi
ciency. This is why we do not pursue any prun
ing while parsing using statistical methods. In
stead we produce a shared derivation forest for
each sentence which stores, in compact form,
all derivations for each sentence. This helps
us evaluate our TAG parser for time and space
efficiency. The experiments reported here are
also useful for statistical parsing using TAG
since discovering the source of grarnmar com
plexity in parsing can help in finding the right
figures-of-merit for effective pruning in a sta-

194

tistica1 parser.

2. Treebank Grammar
The grammar we used for our experiments
was a Treebank Grammar which was extracted
from Sections 02-21 of the Wall Street Jour
nal Penn Treebank II corpus (Marcus et al.,
1993). We are grateful to Fei Xia for use
of this grammar which was part of a separate
study (Xia, 1999). The extraction converted
the derived trees of the Treebank into deriva
tion trees which represent the attachments of
lexicalized elementary trees. There are 6789
tree templates in the grammar with 47, 752 tree
nodes. Each word in the corpus selects some
set of tree templates. The total number of lex
icalized trees is 123, 039. The total number of
word types in the lexicon is 44, 215. The aver
age number of trees per word is 2. 78. How
ever, the average gives a misleading overall
picture of the syntactic lexical ambiguity in the
grammar. 1 Figure 1 shows the syntactic lexi
cal ambiguity of the 150 most frequent words
in the corpus. We shall return to this is~„,,. nf
lexical ambiguity when we evaluate our TAG
parser. Finally, some lexicalized trees from the
grammar are shown in Figure 2.

3. The Parser
3.1. Parsing Algorithm

The parser used in this paper implements a
chart-based head-corner algorithm. The use of
head-driven prediction to enchance efficiency
was first suggested by (Kay, 1989) for CF
parsing (see (Sikkel, 1997) for a more de
tailed survey). (Lavelli & Satta, 1991) pro
vided the first head-driven algorithm for LT
AGs which was a chart-based algorithrn but
it Jacked any top-down prediction. (van No
ord, 1994) describes a Prolog irnplementa
tion of a head-corner parser for LTAGs which
includes top-down prediction. Significantly,

1We define the (syntactic) lexical ambiguity for a
lexicalized TAG as the number of trees selected by a
lexical item. Note that in a fuJly lexicalized forrnalism
like LTAG, lexical ambiguity includes (to some extent)
what would be considered to be a purely syntactic am
biguity in othcr forrnalisms.

Anoop Sarkar

'"
"'

1 '"
i
" i „ ·~·! · ·:. r . „

„ : . J : .
„.
"' "' "' WO/ffSf,.qu..cy

Figure 1: Number of trees selected by the 150
most frequent words in the input corpus. (x
axis: Word Frequency; y-axis: Number of
Trees Selected)

(van Noord, 1994) uses a different closure re
lation from (Lavelli & Satta, 1991). The head
comer traversal for auxiliary trees starts frorn
the footnode rather than frorn the anchor.

The parsing algorithm we use is a chart-based
""~;~f"!t of the (van Noord, 1994) algorithm.
We use the same heaa-t:urnca 1..~""'"'" kv f : ;:).
posed there. We do not give a complete de
scription of our parser here since the basic
idea behind the algorithm can be grasped by
reading (van Noord, 1994). Our parser differs
from the algorithm in (van Noord, 1994) in
some important respects: our implementation
is chart-based and explicitly tracks goal and
item states and does not perforrn any implicit
backtracking or selective memoization, we do
not need any additional variables to keep track
of which words are already 'reserved' by an
auxiliary tree (which (van Noord, 1994) needs
to guarantee tennination), and we have an ex
plicit completion step.

3.2. Parser Implementation

The parser is implemented in ANSI C and runs
on SunOS 5.x and Linux 2.x. Apart from
the Treebank Grammar used in this paper, the
parser has been tested with the XTAG English
Grammar and also with a Korean grammar.

The implementation optimizes for space at the
expense of speed, e.g. the recognition chart is

Practical Experiments in Parsing using TAGs

I:
n

NP

L\P
m n

sNP ...NNP@=4_l [Haag] m...NNP@...NP*=2_l [Ms.]

I:
n

/\,
a rg J\

v{?D)P,i.
n arg

sNP ...NNP@=4_1 [Elianti] sS...NPs_ VBZ@.NPs=20_1 [plays]

Figure 2: Example Jexicalized elementary trees from the Treebank Grammar. They are
shown in the usual notation: o = anchor, -1.= substitution node, * = footnode , na =
null-adjunction constraint. These trees can be combined using substitution and adjunction to
parse the sentence Ms. Haag plays Elianti.

implemented as a sparse array thus taking con
siderably less than the worst case n 4 space and
the Jexical database is read dynamically frorn
a disk-based hash table. For each input sen
tence, the parser produces as output a shared
derivation forest which is a compact repre
sentation of all the derivation trees for that
sentence. We use the definition of derivation
forests for TAGs represented as CFGs, taking
O(n4

) space as defined in (Vijay-Shanker &
Weir, 1993; Lang, 1994).

4. Input Data
The data used as input to the parser was a set of
2250 sentences from the WSJ Penn Treebank.
The length of each sentence was 21 words or
Jess. The average sentence Jength was 12.3 and
the total number of tokens was 27, 715. These
sentences were taken from the same sections as
the input Treebank Grammar. This was done to
avoid any processing difficulties which are in
curred for handling unknown words properly.

5. Results
In this section we examine the performance of
the parser on the input data (described in §4).2

2The data was split into 45 equal sized chunks and
parsed in parallel on a Beowulf cluster of Pentium Pro

Figure 3 shows the time taken in seconds by
the parser plotted against sentence length. 3 We
s~e ~ gre:it <leal of variation in timing for the
same sentence length, e:.p~..:inl!y for longer
sentences. This is surprising since all time
complexity analyses reported for parsing al
gorithms assume that the only relevant factor
is the length of the sentence. In this paper,
we will explore whether sentence Jength is the
only relevant factor.4

Figure 4 shows the median of time taken for
each sentence length. This figure sh9ws that
for some sentences the time taken by the parser

200Mhz servers with 5 l 2MB of memory running Linux
2.2.

3From the total input data of 2250 sentences, 315
sentences did not get a parse. This was bccause the
parser was run with the start symbol set to the labe! S.
Of the sentences that did not parse 276 sentences were
rooted at other labels such as FRAG, NP, etc. The
rem aining 39 sentences were rejected because a tok
enization bug did not remove a few punctuation ·symbols
which do not select any trees in the grammar.

4A useful analogy to consider is the run-time analy
sis of quicksort. For lhis particular sorting algorithm, it
was detemined the distribution of the order of the num
bers in the input array to be sorted was an extremely
important factor to guarantee sorting in time El(nfogn).
An array of numbers that is already completely sorted
has time complexity El(n2).

196 Anoop Sarkar

8 0 .
f .

*
0

0 8 0 1 a •
i

1

0

0 1 8 1 1 ~

l
8

1 1 ~ .!< 0 •
I 0 0

1 1

; 0

"' .
1 2 0 • • .

1 • i 1 1 e
2 0 i i i l i i i ~ i 0 0 . 0

0 • 0 0 . 0 0 • 0 0 .
0 • 0 0 0 0 0 • • 0

0 0 0 • 0 0 • •
0

2 10 12 14 16 18 20
Sentsnce longlh

Figure 3: Parse times plotted against sentence Jength. (x-axis: Sentence Jength; y-axis:
log(time) in seconds)

deviates by a !arge magnitude from the median
case for the same sentence length. Next we
considered each set of sentences of the same
Jength to be a sample, and computed the stan
dard deviation for each sample. This number
ignores the outliers and gives us a better esti
mate of parser performance in the most com
mon case. Figure 5 shows the plot of the stan
dard deviation points against parsing time. The
figure also shows that these points can be de
scribed by a linear function.

....
-...

l -
! , ...
i
~ ""

1000

'""

Figure 4: Median running times for the parser.
(x-axis: Sentence Iength; y-axis: Median time
in seconds)

"
"

Figure 5: Least Squares fit over std. devi
ation points for each sentence length. Error
was 9.078% and 13.74% for the slope and
intercept respectively. We ignored sentences
shorter than 8 words due to round-off errors;
cf. Figure 3 (x-axis: Std. deviation points; y
axis: Time in seconds)

Figure 6 shows a plot ofthe number of deriva
tions reported by the parser for each sentence
plotted against sentence length. These deriva
tions were never enumerated by the parser -
the total number of derivations for each sen
tence was computed directly from the shared
derivation forest reported by the parser. The

Praccical Experiments in Parsing using TAGs

„
„

1 • ii i ! 1
;
: 1 10

•
,L,-L.t.-.:~~ ~,.:--~„:--~,~.--:.~,--:,~,--:,:;;--',

$anl:MC•hn~

ported by the parser might be a better predic-
tor of parsing time complexity.6 We tested this
hypothesis by plotting the number of dedva~
tions reported for each sentence plotted against
the time taken to produce them (shown in Fig-
ure 8). The figure shows that the final number
of derivations reported is not a valid predictor
of parsing time complexity.

• . .•• „ • ••• ••
' •. .}\• .I·: i •

Figure 6: Log of number of derivations pro- I
duced by the parser plotted against sentence i
length. (x-axis: Sentence Jength; y-axis: i
log(No. of derivations))

, · .·-; !l JI : • • • • ••
1 • ,.•.1'·~~,, :_ •• • • • • I
• "'/!.!< t•:.i~: : ·.~.·„„, .. „ ...
• ".t";tl •,;, :': J \,·. ~'.;1::~· Jh.'i;i',;:.:': ,. • „ .. „~ l':„r~ · ... 7., :r .: . . .
. ·:(. /! "i „„1!1:/1 ~· •• ~(.,: ~ . •; .„„ i·fil .„ „ . , • ~ : • ,„ ·JJ:i~ I' „.. . .

size of the grammar has a direct relation to
the)arge number of derivations reported by
the parser. However, in this figure just as in
the figure for the parsing rimes while there is
an overall increase in the number of deriva
tions as the sentence Jength increases, there is
also a large variation in this number for iden
tical sentence lengths. We wanted to discover
the relevant variable other than sentence Jength

"'. • : ;:_•,. •4'1-'- '-· • :r .. • · · ·
2 • •• • •• t ~~!l':~g :1:-. • . ·····--··· . , . . -·--.-·--·· . . -····--- ..
' •L~•"--""„-..-,~,~~~~·~„~~~~~w~-;;„--;

log(Hinao4 C•rNtl<-1~tdt

Figure 8: Number of derivations reported for
each sentence plotted against the time taken to
produce them (both axes are in log scale). (x
axis: log(Number of derivations reported); y
axis: log(fime taken) in seconds)

which would be the right predictor of parsing
time complexity.5 As our analysis of the)ex- 6. Conclusion
icon showed us (see Figure 1), there can be In this paper, we described an implementation
a !arge variation in syntactic lexical ambigu- of a chart-based head-comer parser for LTAGs.
ity which might be a relevant factor in pars- We ran some empirical tests by running the
ing time complexity. To draw this out, in Fig- parser on 2250 sentences from the Wall Street
ure 7 we plotted the number of trees selected Journal. We used a Jarge Treebank Grammar to
by a sentence against the time taken to parse parse these sentences. We showed that the ob
that sentence. From this graph we see that served time complexity of the parser on these
the number of trees selected is a better pre- sentences does not increase predictably with
dictor than sentence Jength of increase in pars- Jonger sentence lengths. Looking at the deriva
ing complexity. Based on the comparison of tions produced by the parser, we see a similar
the graph in Figure 7 with Figure 3, we assert variation in the number of derivarions for the
that it is the syntactic lexical ambiguity of the same sentence Jength. We presented evidence
words in the sentence which is the major con- that indicates that the number of trees sdected
tributor to parsing time complexity. One might by the words in the sentence (a measure of the
be tempted to suggest that instead of number syntactic Jexical ambiguity of a sentence) is a
of trees selected, the number of derivations re- better predictor of complexity in LTAG pars-

ing.
5Notc that this variable cannot be the number of ac-

tive or passive edges proposed by the parser since these 60nc of the anonymous reviewcrs of this paper sug-
values can only be computed at run-timc. gested that this might be a uscful indicator.

198
Anoop Sarkar

7

1
~

·' c
~

g
~ c..
"' .S!

2

0
0 200 400 600 800 1000

Total num of trees selected by a 11ntence

Figure 7: Tue impact of syntactic lexical ambiguity on parsing times. Log of the time taken
eo parse a sentence plotted against the total number of trees selected by the sentence. (x-axis:
Total number of trees selected by a sentence; y-axis: log(Time taken) in seconds). Compare
with Figure 3.

References 6th Meeting of the EACL, p. 384-393, Utrecht, Tue

JOSHI A. K. , LEVY L. & TAKAHASH! M. (1975). Netherlands.
Tree Adjunct Grammars. Joumal of Computer and
System Sciences.

KA Y M. (1989). Head driven parsing. In Proc. of
TWPT '89, p. 52--62, Pittsburgh, PA.

LANG B. {1994). Recognition can be harder than
parsing. Computational lntellige11ce, 10 (4).

LAVELLI A . & SAITA G. (1991). Bidirectional
parsing of Lex.icalized Tree Adjoining Grammars.
In Proc. 5th EACL, Berlin, Germany.

MARCUS M„ SANTORIN! B. &
MARC!NKIEWJECZ M. (1993). Building a
!arge annotated corpus of english. Computational
Linguistics, 19 (2), 313-330.

SCHABES Y. (1994). Left to right parsing of lex
icalized tree adjoining grammars. Computational
lntelligence, 10 (4).

SIKKEL K. (1997). Parsing Schemata. EATCS
Series. Springer-Verlag.

VAN NOORD G. (1 994). Head-comer parsing for
TAG. Computational lntelligence, 10 (4).

VJJAY-SHANKER K. & WEIR D.]. (1993). The
use of shared forests in TAG parsing. In Proc of

XIA F. (1999). Extracting tree adjoining grarnmars
from bracketed comora. In ProceedinJ?s of5th Nat
ural La11guage Processing Pacifzc Rim Symposium
(NLPRS-99), Beijing, China.

