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Abstract 
We present an implementation of a chart-based 
head-corner parsing algorithm for lexicalized 
Tree Adjoining Grammars. We report on some 
practical experiments where we parse 2250 
sentences f rom the Wall Street Journal usin.g 
this parser. In these experiments the parser 
is run without any statistical pruning; it pro
duces all valid parses f or each sentence in 
the form of a shared derivation forest. The 
parser uses a Zarge Treebank Grammar with 
6789 tree templates with about 120, 000 lexi
calized trees. The results suggest that the ob
served complexity of parsingfor LTAG is dom
inated by factors other than sentence length. 

1. Motivation 
The particular experiments that we report on 
in this paper were chosen to discover certain 
facts about LTAG parsing in a practical setting. 
Specifically, we wanted to discover the impor
tance of the worst-case results for LTAG pars
ing in practice. Let us take Schabes' Earley
style TAG parsing algorithm (Schabes, 1994) 
which is the usual candidate for a practical 
LTAG parser. The parsing time complexity of 
this algorithm for various types of grammars 
are as follows (for input of length n): 

O(n6) - TAGs for inherently ambiguous lan
guages 

O(n4) - unambiguous TAGs 
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O(n) - bounded state TAGs e.g. the 
usual grarnmar G where L( G) = 
{an bn e cn dn 1 n 2:: O} (see (Joshi et al., 
1975)) 

The grammar iacturs a1c = .:.-v:!.:,;·;:: S:~:!bes' 
Earley-style algorithm takes O(IAI IIUAINn6 ) 

worst case time and O(IAU IINn4
) worst case 

space, where n is the length of the input, A is 
the set of auxiliary trees, I is the set of initial 
trees and N is maximum number of nodes in 
an elementary tree. 
Given these worst case estimates we wish to 
explore what the observed times might be for a 
TAG parscr. It is not our goai here to compare 
different TAG parsing algorithms, rather it is to 
discover what kinds of factors can contribute to 
parsing time complexity. Of course, a natural
language grarnmar that is !arge and complex 
enough to be used for parsing real-world text 
is typically neither unambiguous nor bounded 
in state size. It is important to note that in this 
paper we are not concemed with parsing ac
curacy, rather we want to explore parsing effi
ciency. This is why we do not pursue any prun
ing while parsing using statistical methods. In
stead we produce a shared derivation forest for 
each sentence which stores, in compact form, 
all derivations for each sentence. This helps 
us evaluate our TAG parser for time and space 
efficiency. The experiments reported here are 
also useful for statistical parsing using TAG 
since discovering the source of grarnmar com
plexity in parsing can help in finding the right 
figures-of-merit for effective pruning in a sta-
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tistica1 parser. 

2. Treebank Grammar 
The grammar we used for our experiments 
was a Treebank Grammar which was extracted 
from Sections 02-21 of the Wall Street Jour
nal Penn Treebank II corpus (Marcus et al., 
1993). We are grateful to Fei Xia for use 
of this grammar which was part of a separate 
study (Xia, 1999). The extraction converted 
the derived trees of the Treebank into deriva
tion trees which represent the attachments of 
lexicalized elementary trees. There are 6789 
tree templates in the grammar with 47, 752 tree 
nodes. Each word in the corpus selects some 
set of tree templates. The total number of lex
icalized trees is 123, 039. The total number of 
word types in the lexicon is 44, 215. The aver
age number of trees per word is 2. 78. How
ever, the average gives a misleading overall 
picture of the syntactic lexical ambiguity in the 
grammar. 1 Figure 1 shows the syntactic lexi
cal ambiguity of the 150 most frequent words 
in the corpus. We shall return to this is~„,,. nf 
lexical ambiguity when we evaluate our TAG 
parser. Finally, some lexicalized trees from the 
grammar are shown in Figure 2. 

3. The Parser 
3.1. Parsing Algorithm 

The parser used in this paper implements a 
chart-based head-corner algorithm. The use of 
head-driven prediction to enchance efficiency 
was first suggested by (Kay, 1989) for CF 
parsing (see (Sikkel, 1997) for a more de
tailed survey). (Lavelli & Satta, 1991) pro
vided the first head-driven algorithm for LT
AGs which was a chart-based algorithrn but 
it Jacked any top-down prediction. (van No
ord, 1994) describes a Prolog irnplementa
tion of a head-corner parser for LTAGs which 
includes top-down prediction. Significantly, 

1We define the (syntactic) lexical ambiguity for a 
lexicalized TAG as the number of trees selected by a 
lexical item. Note that in a fuJly lexicalized forrnalism 
like LTAG, lexical ambiguity includes (to some extent) 
what would be considered to be a purely syntactic am
biguity in othcr forrnalisms. 
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Figure 1: Number of trees selected by the 150 
most frequent words in the input corpus. (x
axis: Word Frequency; y-axis: Number of 
Trees Selected) 

(van Noord, 1994) uses a different closure re
lation from (Lavelli & Satta, 1991). The head
comer traversal for auxiliary trees starts frorn 
the footnode rather than frorn the anchor. 

The parsing algorithm we use is a chart-based 
""~;~f"!t of the (van Noord, 1994) algorithm. 
We use the same heaa-t:urnca 1..~""'"'" kv f : ;:). 
posed there. We do not give a complete de
scription of our parser here since the basic 
idea behind the algorithm can be grasped by 
reading (van Noord, 1994). Our parser differs 
from the algorithm in (van Noord, 1994) in 
some important respects: our implementation 
is chart-based and explicitly tracks goal and 
item states and does not perforrn any implicit 
backtracking or selective memoization, we do 
not need any additional variables to keep track 
of which words are already 'reserved' by an 
auxiliary tree (which (van Noord, 1994) needs 
to guarantee tennination), and we have an ex
plicit completion step. 

3.2. Parser Implementation 

The parser is implemented in ANSI C and runs 
on SunOS 5.x and Linux 2.x. Apart from 
the Treebank Grammar used in this paper, the 
parser has been tested with the XTAG English 
Grammar and also with a Korean grammar. 

The implementation optimizes for space at the 
expense of speed, e.g. the recognition chart is 



Practical Experiments in Parsing using TAGs 

I: 
n 

NP 

L\P
m n 

sNP ...NNP@=4_l [Haag] m...NNP@...NP*=2_l [Ms.] 

I: 
n 

/\, 
a rg J\ 

v{?D )P,i. 
n arg 

sNP ...NNP@=4_1 [Elianti] sS...NPs_ VBZ@.NPs=20_1 [plays] 

Figure 2: Example Jexicalized elementary trees from the Treebank Grammar. They are 
shown in the usual notation: o = anchor, -1.= substitution node, * = footnode , na = 
null-adjunction constraint. These trees can be combined using substitution and adjunction to 
parse the sentence Ms. Haag plays Elianti. 

implemented as a sparse array thus taking con
siderably less than the worst case n 4 space and 
the Jexical database is read dynamically frorn 
a disk-based hash table. For each input sen
tence, the parser produces as output a shared 
derivation forest which is a compact repre
sentation of all the derivation trees for that 
sentence. We use the definition of derivation 
forests for TAGs represented as CFGs, taking 
O(n4

) space as defined in (Vijay-Shanker & 
Weir, 1993; Lang, 1994). 

4. Input Data 
The data used as input to the parser was a set of 
2250 sentences from the WSJ Penn Treebank. 
The length of each sentence was 21 words or 
Jess. The average sentence Jength was 12.3 and 
the total number of tokens was 27, 715. These 
sentences were taken from the same sections as 
the input Treebank Grammar. This was done to 
avoid any processing difficulties which are in
curred for handling unknown words properly. 

5. Results 
In this section we examine the performance of 
the parser on the input data (described in §4).2 

2The data was split into 45 equal sized chunks and 
parsed in parallel on a Beowulf cluster of Pentium Pro 

Figure 3 shows the time taken in seconds by 
the parser plotted against sentence length. 3 We 
s~e ~ gre:it <leal of variation in timing for the 
same sentence length, e:.p~..:inl!y for longer 
sentences. This is surprising since all time 
complexity analyses reported for parsing al
gorithms assume that the only relevant factor 
is the length of the sentence. In this paper, 
we will explore whether sentence Jength is the 
only relevant factor.4 

Figure 4 shows the median of time taken for 
each sentence length. This figure sh9ws that 
for some sentences the time taken by the parser 

200Mhz servers with 5 l 2MB of memory running Linux 
2.2. 

3From the total input data of 2250 sentences, 315 
sentences did not get a parse. This was bccause the 
parser was run with the start symbol set to the labe! S. 
Of the sentences that did not parse 276 sentences were 
rooted at other labels such as FRAG, NP, etc. The 
rem aining 39 sentences were rejected because a tok
enization bug did not remove a few punctuation ·symbols 
which do not select any trees in the grammar. 

4A useful analogy to consider is the run-time analy
sis of quicksort. For lhis particular sorting algorithm, it 
was detemined the distribution of the order of the num
bers in the input array to be sorted was an extremely 
important factor to guarantee sorting in time El(nfogn). 
An array of numbers that is already completely sorted 
has time complexity El(n2 ). 
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Figure 3: Parse times plotted against sentence Jength. (x-axis: Sentence Jength; y-axis: 
log(time) in seconds) 

deviates by a !arge magnitude from the median 
case for the same sentence length. Next we 
considered each set of sentences of the same 
Jength to be a sample, and computed the stan
dard deviation for each sample. This number 
ignores the outliers and gives us a better esti
mate of parser performance in the most com
mon case. Figure 5 shows the plot of the stan
dard deviation points against parsing time. The 
figure also shows that these points can be de
scribed by a linear function. 
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Figure 4: Median running times for the parser. 
(x-axis: Sentence Iength; y-axis: Median time 
in seconds) 
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Figure 5: Least Squares fit over std. devi
ation points for each sentence length. Error 
was 9.078% and 13.74% for the slope and 
intercept respectively. We ignored sentences 
shorter than 8 words due to round-off errors; 
cf. Figure 3 (x-axis: Std. deviation points; y
axis: Time in seconds) 

Figure 6 shows a plot ofthe number of deriva
tions reported by the parser for each sentence 
plotted against sentence length. These deriva
tions were never enumerated by the parser -
the total number of derivations for each sen
tence was computed directly from the shared 
derivation forest reported by the parser. The 



Praccical Experiments in Parsing using TAGs 

„ 
„ 

1 • ii i ! 1 
; 
: 1 10 

• 
,L,-L.t.-.:~~ ........... ~,.:--~„:--~,~.--:.~,--:,~,--:,:;;--', 

$anl:MC•hn~ 

ported by the parser might be a better predic-
tor of parsing time complexity.6 We tested this
hypothesis by plotting the number of dedva~
tions reported for each sentence plotted against
the time taken to produce them (shown in Fig-
ure 8). The figure shows that the final number
of derivations reported is not a valid predictor
of parsing time complexity. 
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Figure 6: Log of number of derivations pro- I 
duced by the parser plotted against sentence i 
length. (x-axis: Sentence Jength; y-axis: i 
log(No. of derivations)) 
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size of the grammar has a direct relation to 
the )arge number of derivations reported by 
the parser. However, in this figure just as in 
the figure for the parsing rimes while there is 
an overall increase in the number of deriva
tions as the sentence Jength increases, there is 
also a large variation in this number for iden
tical sentence lengths. We wanted to discover 
the relevant variable other than sentence Jength 
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Figure 8: Number of derivations reported for 
each sentence plotted against the time taken to 
produce them (both axes are in log scale). (x
axis: log(Number of derivations reported); y
axis: log(fime taken) in seconds) 

which would be the right predictor of parsing 
time complexity.5 As our analysis of the )ex- 6. Conclusion 
icon showed us (see Figure 1 ), there can be In this paper, we described an implementation 
a !arge variation in syntactic lexical ambigu- of a chart-based head-comer parser for LTAGs. 
ity which might be a relevant factor in pars- We ran some empirical tests by running the 
ing time complexity. To draw this out, in Fig- parser on 2250 sentences from the Wall Street 
ure 7 we plotted the number of trees selected Journal. We used a Jarge Treebank Grammar to 
by a sentence against the time taken to parse parse these sentences. We showed that the ob
that sentence. From this graph we see that served time complexity of the parser on these 
the number of trees selected is a better pre- sentences does not increase predictably with 
dictor than sentence Jength of increase in pars- Jonger sentence lengths. Looking at the deriva
ing complexity. Based on the comparison of tions produced by the parser, we see a similar 
the graph in Figure 7 with Figure 3, we assert variation in the number of derivarions for the 
that it is the syntactic lexical ambiguity of the same sentence Jength. We presented evidence 
words in the sentence which is the major con- that indicates that the number of trees sdected 
tributor to parsing time complexity. One might by the words in the sentence (a measure of the 
be tempted to suggest that instead of number syntactic Jexical ambiguity of a sentence) is a 
of trees selected, the number of derivations re- better predictor of complexity in LTAG pars-

ing. 
5Notc that this variable cannot be the number of ac-

tive or passive edges proposed by the parser since these 60nc of the anonymous reviewcrs of this paper sug-
values can only be computed at run-timc. gested that this might be a uscful indicator. 
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Figure 7: Tue impact of syntactic lexical ambiguity on parsing times. Log of the time taken 
eo parse a sentence plotted against the total number of trees selected by the sentence. (x-axis: 
Total number of trees selected by a sentence; y-axis: log(Time taken) in seconds). Compare 
with Figure 3. 
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