
SIGPHON 2000

Finite-State Phonology

Proceedings of the Fifth Workshop of the ACL Special Interest
Group in Computational Phonology

Jason Eisner, Lauri Karttunen and Alain Thériault
Editors

6th August 2000

Centre Universitaire

Luxembourg

COLING 2000

© 2000 by the respective authors.

Additional copies of these proceedings may be ordered while stocks last from :

Association for Computation Linguistics (ACL)

75 Paterson Street, Suite 9

New Brunswick, NJ 08901 USA

Tel : +1-732-342-9100

Fax : +1-732-342-9339

Email: acl@aclweb.org

An online version of this proceedings is available at

the SIGPHON web site:

http://www.cogsci.ed.ac.uk/sigphon/

iii

PREFACE

This workshop is the fifth meeting of computational phonologists under the auspices
of SIGPHON. Our goal is to bring together researchers working in different theoretical
frameworks and to advance the understanding of the computational and formal issues of
current approaches to phonology.

Finite-state methods have been used very successfully to model classical phonological
descriptions based on rewrite rules. It was C. Douglas Johnson (1972) who apparently first
realized that phonological derivations could be modeled as a finite-state transduction in which
each rule represents a regular relation between the input and the output languages. This is also
the fundamental insight of Koskenniemi's two-level morphology (1983).

Although the rhetoric of Optimality Theory suggests that OT is fundamentally
different from old-fashioned "serial" approaches to phonological description, there are many
similarities. Ellison (1994) was the first to provide a computational account of OT using
finite-state automata. In later works, it has been widely assumed that GEN is a regular
relation. Many of the constraints that have been proposed in the OT literature can be
formalized as a simple finite-state automaton or as an input-output transducer as in the two-
level model.

However desirable it might be from a computational point of view, it is by no means
evident that OT can be reduced to yet another way of encoding regular relations, except by
limiting the number of violations that need to be counted and by restricting the type of
allowable constraints. The question of what will turn out to be the appropriate way to model
OT computationally is very much open at this point. Three of the papers in this volume
address this very issue.

One of the reasons why OT appears to go beyond the finite-state domain is that much
of the "cutting-edge" OT work in phonology deals with phenomena such as reduplication that
were not considered as central in the earlier times. In this domain the distinction between
phonology and morphology becomes blurred. Two of the papers in this volume address this
topic, from very different points of view.

We thank our dedicated reviewers who enabled us to bring together the papers for
these proceedings. We hope that you enjoy the workshop!

The Program Committee

iv

PROGRAMME

9:00 : Welcome

9:05 : Finite-State Non-Concatenative Morphotactics (invited talk)

Kenneth R. Beesley and Lauri Karttunen

10:05 : Temiar Reduplication in One-Level Prosodic Morphology

Markus Walther

10:35 : Coffee

11:00 : Easy and Hard Constraint Ranking in OT : Algorithms and Complexity

Jason Eisner

11:30 : Multi-Syllable Phonotactic Modelling

Anja Belz

12:00 : Discussion of phonology/morphology papers from main conference

12:30 : Lunch

14:00 : Approximation and Exactness in Finite State Optimality Theory (invited talk)

Dale Gerdemann and Gertjan van Noord

15:00 : Taking Primitive Optimality Theory Beyond the Finite State

Daniel M. Albro

15:30 : Coffee

16:00 : How to Design a Great Workbench Tool for Working Phonologists? (panel)

Lauri Karttunen (moderator), Dan Albro, Ken Beesley, Jason Eisner, Dale

Gerdemann, Arvi Hurskainen

17:00 : General discussion, Final remarks

v

TABLE OF CONTENTS

Preface ...iii

Programme ... iv

Table of contents ... v

Organisers and Programme Committee ... v

Short abstracts .. vi

Workshop Papers

Finite-State Non-Concatenative Morphotactics ... 1

Kenneth R. Beesley and Lauri Karttunen

Temiar Reduplication in One-Level Prosodic Morphology .. 13

Markus Walther

Easy and Hard Constraint Ranking in OT : Algorithms and Complexity 22

Jason Eisner

Approximation and Exactness in Finite State Optimality Theory.................................... 34

Dale Gerdemann and Gertjan van Noord

Multi-Syllable Phonotactic Modelling ... 46

Anja Belz

Taking Primitive Optimality Theory Beyond the Finite State .. 57

Daniel M. Albro

ORGANISERS AND PROGRAMME COMMITTEE

Lauri Karttunen (programme chair) Xerox Research Centre Europe

Markus Walther (local chair) University of Marburg

Jason Eisner (organization) University of Rochester

Alain Thériault (administration) Université de Montréal

Daniel Albro University of California at Los Angeles

Steven Bird University of Pennsylvania

John Coleman University of Oxford

Dan Jurafsky University of Colorado

András Kornai Belmont Research, Cambridge, MA

vi

SHORT ABSTRACTS

Finite-State Non-Concatenative Morphotactics
Kenneth R. Beesley and Lauri Karttunen

A new finite-state technique, "compile-replace", lets a regular expression compiler
reapply and modify its own output, freeing morphotactic description to use any finite-
state operation. This provides an elegant solution for classic examples of non-
concatenative phenomena in Malay and Arabic.

Temiar Reduplication in One-Level Prosodic Morphology
Markus Walther

This paper presents the first computational analysis of a difficult piece of prosodic
morphology, aspectual reduplication in the Malaysian language Temiar, using the
novel finite-state approach of One-Level Prosodic Morphology (Walther 1999b,
2000).

Easy and Hard Constraint Ranking in OT : Algorithms and Complexity
Jason Eisner

A simple version of the automatic constraint ranking problem is easier than previously
known (linear on the number of constraints). But slightly more realistic versions are
as bad as Σ2-complete. Even checking a ranking against data is up to ∆2-complete.

Approximation and Exactness in Finite State Optimality Theory
Dale Gerdemann and Gertjan van Noord

Frank & Satta (1998) showed that OT with gradient constraints generally is not finite-
state. We present an improvement of the approximation of Karttunen (1998). The
new method is exact and compact for the syllabification analysis of Prince and
Smolensky (1993).

Multi-Syllable Phonotactic Modelling
Anja Belz

An approach to describing word-level phonotactics in terms of syllable classes. Such
"multi-syllable" phonotactic models can be expressed in a formalism that facilitates
automatic model construction and generalisation.

Taking Primitive Optimality Theory Beyond the Finite State
Daniel M. Albro

Extends the Primitive Optimality Theory formalism (Eisner 1997) to handle
reduplication. Each candidate set becomes a Multiple Context-Free Language.
Constraints, however, remain finite-state. Efficient candidate filtering is possible via
an extended Earley's algorithm.

Panel Discussion: How to Design a Great Workbench Tool for Working Phonologists?
Moderator : Lauri Karttunen, co-author of the Xerox finite-state compiler

Dan Albro, author of the UCLA OTP tool
Kenneth R. Beesley, co-author of the Xerox finite-state compiler
Jason Eisner, author of the Primitive OT framework
Dale Gerdemann, co-author of the FSA Utilities toolbox
Arvi Hurskainen, author of tools for African languages

Finite-State Non-Concatenative Morphotactics

Kenneth R. Beesley and Lauri Karttunen
beesley@xrce.xerox.com, karttunen@xrce.xerox.com

Abstract

Finite-state morphology in the general tradition
of the Two-Level and Xerox implementations
has proved very successful in the production
of robust morphological analyzer-generators, in-
cluding many large-scale commercial systems.
However, it has long been recognized that
these implementations have serious limitations
in handling non-concatenative phenomena. We
describe a new technique for constructing �nite-
state transducers that involves reapplying the
regular-expression compiler to its own output.
Implemented in an algorithm called compile-
replace, this technique has proved useful for
handling non-concatenative phenomena; and we
demonstrate it on Malay full-stem reduplication
and Arabic stem interdigitation.

1 Introduction

Most natural languages construct words by con-
catenating morphemes together in strict orders.
Such \concatenative morphotactics" can be im-
pressively productive, especially in agglutina-
tive languages like Aymara (Figure 11) or Turk-
ish, and in agglutinative/polysynthetic lan-
guages like Inuktitut (Figure 2)(Mallon, 1999,
2). In such languages a single word may con-
tain as many morphemes as an average-length
English sentence.
Finite-state morphology in the tradition of

the Two-Level (Koskenniemi, 1983) and Xerox
implementations (Karttunen, 1991; Karttunen,
1994; Beesley and Karttunen, 2000) has been
very successful in implementing large-scale,
robust and e�cient morphological analyzer-
generators for concatenative languages, includ-
ing the commercially important European lan-
guages and non-Indo-European examples like

1I wish to thank Stuart Newton for this example.

Finnish, Turkish and Hungarian. However,
Koskenniemi himself understood that his initial
implementation had signi�cant limitations in
handling non-concatenative morphotactic pro-
cesses:

\Only restricted in�xation and redu-
plication can be handled adequately
with the present system. Some exten-
sions or revisions will be necessary for
an adequate description of languages
possessing extensive in�xation or redu-
plication" (Koskenniemi, 1983, 27).

This limitation has of course not escaped the no-
tice of various reviewers, e.g. Sproat(1992). We
shall argue that the morphotactic limitations of
the traditional implementations are the direct
result of relying solely on the concatenation op-
eration in morphotactic description.

We describe a technique, within the Xerox
implementation of �nite-state morphology, that
corrects the limitations at the source, going be-
yond concatenation to allow the full range of
�nite-state operations to be used in morphotac-
tic description. Regular-expression descriptions
are compiled into �nite-state automata or trans-
ducers (collectively called networks) as usual,
and then the compiler is re-applied to its own
output, producing a modi�ed but still �nite-
state network. This technique, implemented
in an algorithm called compile-replace, has
already proved useful for handling Malay full-
stem reduplication and Arabic stem interdigi-
tation, which will be described below. Before
illustrating these applications, we will �rst out-
line our general approach to �nite-state mor-
phology.

1

Lexical: uta+ma+na-ka+p+xa+samacha-i+wa
Surface: uta ma n ka p xa samach i wa

uta = house (root)
+ma = 2nd person possessive
+na = in
-ka = (locative, verbalizer)
+p = plural
+xa = perfect aspect
+samacha = "apparently"
-i = 3rd person
+wa = topic marker

Figure 1: Aymara: utamankapxasamachiwa = "it appears that they are in your house"

Lexical: Paris+mut+nngau+juma+niraq+lauq+sima+nngit+junga
Surface: Pari mu nngau juma nira lauq sima nngit tunga

Paris = (root = Paris)
+mut = terminalis case ending
+nngau = go (verbalizer)
+juma = want
+niraq = declare (that)
+lauq = past
+sima = (added to -lauq- indicates "distant past")
+nngit = negative
+junga = 1st person sing. present indic (nonspecific)

Figure 2: Inuktitut: Parimunngaujumaniralauqsimanngittunga = \I never said I wanted to go to
Paris"

2 Finite-State Morphology

2.1 Analysis and Generation

In the most theory- and implementation-neutral
form, morphological analysis and generation of
written words can be modeled as a relation
between the words themselves and analyses of
those words. Computationally, as shown in Fig-
ure 3, a black-box module maps from words to
analyses to e�ect Analysis, and from analyses
to words to e�ect Generation.

The basic claim or hope of the �nite-state ap-
proach to natural-language morphology is that
relations like that represented in Figure 3 are in
fact regular relations, i.e. relations between two
regular languages. The surface language con-
sists of strings (= words = sequences of sym-
bols) written according to some de�ned orthog-
raphy. In a commercial application for a natural
language, the surface language to be modeled
is usually a given, e.g. the set of valid French
words as written according to standard French

ANALYZER/
GENERATOR

ANALYSES

WORDS

Figure 3: Morphological Analysis/Generation
as a Relation between Analyses and Words

orthography. The lexical language again con-
sists of strings, but strings designed according
to the needs and taste of the linguist, represent-
ing analyses of the surface words. It is some-
times convenient to design these lexical strings
to show all the constituent morphemes in their
morphophonemic form, separated and identi�ed
as in Figures 1 and 2. In other applications,

2

Regular
Expression

Compiler

Analysis Strings

FST

Word Strings

Figure 4: Compilation of a Regular Expression into an fst that Maps between Two Regular
Languages

it may be useful to design the lexical strings
to contain the traditional dictionary citation
form, together with linguist-selected \tag" sym-
bols like +Noun, +Verb, +SG, +PL, that convey
category, person, number, tense, mood, case,
etc. Thus the lexical string representing paie,
the �rst-person singular, present indicative form
of the French verb payer (\to pay"), might be
spelled payer+IndP+SG+P1+Verb. The tag sym-
bols are stored and manipulated just like al-
phabetic symbols, but they have multicharacter
print names.
If the relation is �nite-state, then it can be

de�ned using the metalanguage of regular ex-
pressions; and, with a suitable compiler, the
regular expression source code can be compiled
into a �nite-state transducer (fst), as shown in
Figure 4, that implements the relation compu-
tationally. Following convention, we will often
refer to the upper projection of the fst, repre-
senting analyses, as the lexical language, a set
of lexical strings; and we will refer to the lower
projection as the surface language, consisting
of surface strings. There are compelling advan-
tages to computing with such �nite-state ma-
chines, including mathematical elegance, exi-
bility, and for most natural-language applica-
tions, high e�ciency and data-compaction.
One computes with fsts by applying them,

in either direction, to an input string. When
one such fst that was written for French is ap-
plied in an upward direction to the surface word
maisons (\houses"), it returns the related string
maison+Fem+PL+Noun, consisting of the citation
form and tag symbols chosen by a linguist to
convey that the surface form is a feminine noun
in the plural form. A single surface string can
be related to multiple lexical strings, e.g. ap-

plying this fst in an upward direction to sur-
face string suis produces the four related lexical
strings shown in Figure 5. Such ambiguity of
surface strings is very common.

être+IndP+SG+P1+Verb
suivre+IndP+SG+P2+Verb
suivre+IndP+SG+P1+Verb
suivre+Imp+SG+P2+Verb

Figure 5: Multiple Analyses for suis

Conversely, the very same fst can be applied
in a downward direction to a lexical string like
être+IndP+SG+P1+Verb to return the related
surface string suis ; such transducers are inher-
ently bidirectional. Ambiguity in the downward
direction is also possible, as in the relation of
the lexical string payer+IndP+SG+P1+Verb (\I
pay") to the surface strings paie and paye, which
are in fact valid alternate spellings in standard
French orthography.

2.2 Morphotactics and Alternations

There are two challenges in modeling natural
language morphology:

� Morphotactics

� Phonological/Orthographical Alternations

Finite-state morphology models both using
regular expressions. The source descriptions
may also be written in higher-level notations
(e.g. lexc (Karttunen, 1993), twolc (Kart-
tunen and Beesley, 1992) and Replace Rules
(Karttunen, 1995; Karttunen, 1996; Kempe and
Karttunen, 1996)) that are simply helpful short-
hands for regular expressions and that compile,
using their dedicated compilers, into �nite-state

3

Lexicon
Regular Expression

Rule
Regular Expression

Compiler

Lexicon FST

.o.

Rule FST

Lexical Transducer
(a single FST)

Figure 6: Creation of a Lexical Transducer

networks. In practice, the most commonly sep-
arated modules are a lexicon fst, containing
lexical strings, and a separately written set of
rule fsts that map from the strings in the lex-
icon to properly spelled surface strings. The
lexicon description de�nes the morphotactics of
the language, and the rules de�ne the alterna-
tions. The separately compiled lexicon and rule
fsts can subsequently be composed together as
in Figure 6 to form a single \lexical transducer"
(Karttunen et al., 1992) that could have been
de�ned equivalently, but perhaps less perspicu-
ously and less e�ciently, with a single regular
expression.
In the lexical transducers built at Xerox, the

strings on the lower side of the transducer are
inected surface forms of the language. The
strings on upper side of the transducer con-
tain the citation forms of each morpheme and
any number of tag symbols that indicate the
inections and derivations of the correspond-
ing surface form. For example, the information
that the comparative of the adjective big is big-
ger might be represented in the English lexical
transducer by the path (= sequence of states
and arcs) in Figure 7 where the zeros repre-
sent epsilon symbols.2 The gemination of g and

Lexical side:

b

b

i

i

g

g

g

0

0

+Adj

e

0

r

+Comp

Surface side:

Figure 7: A Path in a Transducer for English

the epenthetical e in the surface form bigger re-
sult from the composition of the original lexicon

2The epsilon symbols and their placement in the
string are not signi�cant. We will ignore them when-
ever it is convenient.

fst with the rule fst representing the regular
morphological alternations in English.

For the sake of clarity, Figure 7 represents the
upper (= lexical) and the lower (= surface) side
of the arc label separately on the opposite sides
of the arc. In the remaining diagrams, we use
a more compact notation: the upper and the
lower symbol are combined into a single label
of the form upper:lower if the symbols are dis-
tinct. A single symbol is used for an identity
pair. In the standard notation, the path in Fig-
ure 7 is labeled as

b i g 0:g +Adj:0 0:e +Comp:r.

Lexical transducers are more e�cient for
analysis and generation than the classical two-
level systems (Koskenniemi, 1983) because the
morphotactics and the morphological alterna-
tions have been precompiled and need not be
consulted at runtime. But it would be possi-
ble in principle, and perhaps advantageous for
some purposes, to view the regular expressions
de�ning the morphology of a language as an un-
compiled \virtual network". All the �nite-state
operations (concatenation, union, intersection,
composition, etc.) can be simulated by an ap-
ply routine at runtime.

Most languages build words by simply string-
ing morphemes (pre�xes, roots and su�xes)
together in strict orders. The morpho-
tactic (word-building) processes of pre�xa-
tion and su�xation can be straightforwardly
modeled in �nite state terms as concatena-
tion. But some natural languages also ex-
hibit non-concatenative morphotactics. Some-
times the languages themselves are called \non-
concatenative languages", but most employ sig-
ni�cant concatenation as well, so the term \not
completely concatenative" (Lavie et al., 1988)
is usually more appropriate.

4

In Arabic, for example, pre�xes and su�xes
attach to stems in the usual concatenative way,
but stems themselves are formed by a process
known informally as interdigitation; while in
Malay, noun plurals are formed by a process
known as full-stem reduplication. Although
Arabic and Malay also include pre�xation and
su�xation that are modeled straightforwardly
by concatenation, a complete lexicon cannot be
obtained without non-concatenative processes.
We will proceed with descriptions of how

Malay reduplication and Semitic stem interdig-
itation are handled in �nite-state morphology
using the new compile-replace algorithm.

3 Compile-Replace

The central idea in our approach to the mod-
eling of non-concatenative processes is to de-
�ne networks using regular expressions, as be-
fore; but we now de�ne the strings of an in-
termediate network so that they contain ap-
propriate substrings that are themselves in the
format of regular expressions. The compile-
replace algorithm then reapplies the regular-
expression compiler to its own output, compil-
ing the regular-expression substrings in the in-
termediate network and replacing them with the
result of the compilation.
To take a simple non-linguistic example, Fig-

ure 8 represents a network that maps the regu-
lar expression a* into ^[a*^]; that is, the same
expression enclosed between two special delim-
iters, ^[and ^], that mark it as a regular-
expression substring.

a *0:^[0:^]

Figure 8: A Network with a Regular-Expression
Substring on the Lower Side

The application of the compile-replace algo-
rithm to the lower side of the network elimi-
nates the markers, compiles the regular expres-
sion a* and maps the upper side of the path
to the language resulting from the compilation.
The network created by the operation is shown
in Figure 9.
When applied in the \upward" direction, the

transducer in Figure 9 maps any string of the
in�nite a* language into the regular expression
from which the language was compiled.
The compile-replace algorithm is essentially

a:0

a

*:0

*:0

0:a
*:a

Figure 9: After the Application of Compile-
Replace

a variant of a simple recursive-descent copying
routine. It expects to �nd delimited regular-
expression substrings on a given side (upper or
lower) of the network. Until an opening delim-
iter ^[is encountered, the algorithm constructs
a copy of the path it is following. If the net-
work contains no regular-expression substrings,
the result will be a copy of the original network.
When a ^[is encountered, the algorithm looks
for a closing ^] and extracts the path between
the delimiters to be handled in a special way:

1. The symbols along the indicated side of the
path are concatenated into a string and
eliminated from the path leaving just the
symbols on the opposite side.

2. A separate network is created that contains
the modi�ed path.

3. The extracted string is compiled into a
second network with the standard regular-
expression compiler.

4. The two networks are combined into a sin-
gle one using the crossproduct operation.

5. The result is spliced between the states rep-
resenting the origin and the destination of
the regular-expression path.

After the special treatment of the regular-
expression path is �nished, normal processing
is resumed in the destination state of the clos-
ing ^] arc. For example, the result shown in
Figure 9 represents the crossproduct of the two
networks shown in Figure 10.

a

a *

Figure 10: Networks Illustrating Steps 2 and 3
of the Compile-Replace Algorithm

5

Lexical: b a g i +Noun +Plural
Surface: ^[{ b a g i } ^ 2 ^]

Lexical: p e l a b u h a n +Noun +Plural
Surface: ^[{ p e l a b u h a n } ^ 2 ^]

Figure 11: Two Paths in the Initial Malay Transducer De�ned via Concatenation

In this simple example, the upper language of
the original network in Figure 8 is identical to
the regular expression that is compiled and re-
placed. In the linguistic applications presented
in the next sections, the two sides of a regular-
expression path contain di�erent strings. The
upper side contains morphological information;
the regular-expression operators appear only on
the lower side and are not present in the �nal
result.

3.1 Reduplication

Traditional Two-Level implementations are al-
ready capable of describing some limited
reduplication and in�xation as in Tagalog
(Antworth, 1990, 156{162). The more chal-
lenging phenomenon is variable-length redupli-
cation, as found in Malay and the closely related
Indonesian language.
An example of variable-length full-stem redu-

plication occurs with the Malay stem bagi,
which means \bag" or \suitcase"; this form is
in fact number-neutral and can translate as the
plural. Its overt plural is phonologically bag-

ibagi,3 formed by repeating the stem twice in a
row. Although this pluralization process may
appear concatenative, it does not involve con-
catenating a predictable pluralizing morpheme,
but rather copying the preceding stem, what-
ever it may be and however long it may be.
Thus the overt plural of pelabuhan (\port"), it-
self a derived form, is phonologically pelabuhan-

pelabuhan.
Productive reduplication cannot be described

by �nite-state or even context-free formalisms.
It is well known that the copy language, fww
j w � Lg, where each word contains two copies
of the same string, is a context-sensitive lan-
guage. However, if the \base" language L is
�nite, we can construct a �nite-state network
that encodes L and the reduplications of all the

3In the standard orthography, such reduplicated
words are written with a hyphen, e.g. bagi-bagi, that
we will ignore for this example.

strings in L. On the assumption that there are
only a �nite number of words subject to redu-
plication (no free compounding), it is possible
to construct a lexical transducer for languages
such as Malay. We will show a simple and el-
egant way to do this with strictly �nite-state
operations.

To understand the general solution to full-
stem reduplication using the compile-replace al-
gorithm requires a bit of background. In the
regular expression calculus there are several op-
erators that involve concatenation. For exam-
ple, if A is a regular expression denoting a lan-
guage or a relation, A* denotes zero or more and
A+ denotes one or more concatenations of A with
itself. There are also operators that express a
�xed number of concatenations. In the Xerox
calculus, expressions of the form A^n, where n is
an integer, denote n concatenations of A. fabcg
denotes the concatenation of symbols a, b, and
c. We also employ ^[and ^] as delimiter sym-
bols around regular-expression substrings.

The reduplication of any string w can then
be notated as {w}^2, and we start by de�ning
a network where the lower-side strings are built
by simple concatenation of a pre�x ^[, a root
enclosed in braces, and an overt-plural su�x ^2
followed by the closing ^]. Figure 11 shows the
paths for two Malay plurals in the initial net-
work.

The compile-replace algorithm, applied to the
lower-side of this network, recognizes each in-
dividual delimited regular-expression substring
like ^[{bagi}^2^], compiles it, and replaces it
with the result of the compilation, here bagi-

bagi. The same process applies to the entire
lower-side language, resulting in a network that
relates pairs of strings such as the ones in Fig-
ure 12. This provides the desired solution, still
�nite-state, for analyzing and generating full-
stem reduplication in Malay.4

4It is well-known (McCarthy and Prince, 1995) that
reduplication can be a more complex phenomenon than

6

Lexical: b a g i +Noun +Plural
Surface: b a g i b a g i

Lexical: p e l a b u h a n +Noun +Plural
Surface: p e l a b u h a n p e l a b u h a n

Figure 12: The Malay fst After the Application of Compile-Replace to the Lower-Side Language

The special delimiters ^[and ^] can be
used to surround any appropriate regular-
expression substring, using any necessary
regular-expression operators, and compile-
replace may be applied to the lower-side and/or
upper-side of the network as desired. There
is nothing to stop the linguist from inserting
delimiters multiple times, including via compo-
sition, and reapplying compile-replace multiple
times (see the Appendix). The technique im-
plemented in compile-replace is a general way
of allowing the regular-expression compiler to
reapply to and modify its own output.

3.2 Semitic Stem Interdigitation

3.2.1 Review of Earlier Work

Much of the work in non-concatenative �nite-
state morphotactics has been dedicated to han-
dling Semitic stem interdigitation. An example
of interdigitation occurs with the Arabic stem
katab, which means \wrote". According to an
inuential autosegmental analysis (McCarthy,
1981), this stem consists of an all-consonant
root ktb whose general meaning has to do with
writing, an abstract consonant-vowel template
CVCVC, and a voweling or vocalization that he
symbolized simply as a, signifying perfect as-
pect and active voice. The root consonants are
associated with the C slots of the template and
the vowel or vowels with the V slots, producing
a complete stem katab. If the root and the vo-
calization are thought of as morphemes, neither
morpheme occurs continuously in the stem. The
same root ktb can combine with the template
CVCVC and a di�erent vocalization ui, signifying
perfect aspect and passive voice, producing the
stem kutib, which means \was written". Simi-
larly, the root ktb can combine with template

it is in Malay. In some languages only a part of the stem
is reduplicated and there may be systematic di�erences
between the reduplicate and the base form. We believe
that our approach to reduplication can account for these
complex phenomena as well but we cannot discuss the
issue here due to lack of space.

CVVCVC and ui to produce kuutib, the root drs
can combine with CVCVC and ui to form duris,
and so forth.
Kay (1987) reformalized the autosegmental

tiers of McCarthy (1981) as projections of a
multi-level transducer and wrote a small Prolog-
based prototype that handled the interdigita-
tion of roots, CV-templates and vocalizations
into abstract Arabic stems; this general ap-
proach, with multi-tape transducers, has been
explored and extended by Kiraz in several pa-
pers (1994a; 1996; 1994b; 2000) with respect to
Syriac and Arabic. The implementation is de-
scribed in Kiraz and Grimley-Evans (1999).
In work more directly related to the current

solution, it was Kataja and Koskenniemi (1988)
who �rst demonstrated that Semitic (Akkadian)
roots and patterns5 could be formalized as reg-
ular languages, and that the non-concatenative
interdigitation of stems could be elegantly for-
malized as the intersection of those regular lan-
guages. Thus Akkadian words were formalized
as consisting of morphemes, some of which were
combined together by intersection and others of
which were combined via concatenation.
This was the key insight: morphotactic de-

scription could employ various �nite-state op-
erations, not just concatenation; and languages
that required only concatenation were just spe-
cial cases. By extension, the widely noticed lim-
itations of early �nite-state implementations in
dealing with non-concatenative morphotactics
could be traced to their dependence on the con-
catenation operation in morphotactic descrip-
tions.
This insight of Kataja and Koskenniemi was

applied by Beesley in a large-scale morphologi-
cal analyzer for Arabic, �rst using an implemen-
tation that simulated the intersection of stems
in code at runtime (Beesley, 1989; Beesley et
al., 1989; Beesley, 1990; Beesley, 1991), and ran

5These patterns combine what McCarthy (1981)
would call templates and vocalizations.

7

rather slowly; and later, using Xerox �nite-state
technology (Beesley, 1996; Beesley, 1998a), a
new implementation that intersected the stems
at compile time and performed well at runtime.
The 1996 algorithm that intersected roots and
patterns into stems, and substituted the original
roots and patterns on just the lower side with
the intersected stem, was admittedly rather ad
hoc and computationally intensive, taking over
two hours to handle about 90,000 stems on a
SUN Ultra workstation. The compile-replace
algorithm is a vast improvement in both gener-
ality and e�ciency, producing the same result
in a few minutes.
Following the lines of Kataja and Kosken-

niemi (1988), we could de�ne intermediate net-
works with regular-expression substrings that
indicate the intersection of suitably encoded
roots, templates, and vocalizations (for a for-
mal description of what such regular-expression
substrings would look like, see Beesley (1998c;
1998b)). However, the general-purpose inter-
section algorithm would be expensive in any
non-trivial application, and the interdigitation
of stems represents a special case of intersection
that we achieve in practice by a much more ef-
�cient �nite-state algorithm called merge.

3.2.2 Merge

The merge algorithm is a pattern-�lling oper-
ation that combines two regular languages, a
template and a �ller, into a single one. The
strings of the �ller language consist of ordinary
symbols such as d, r, s, u, i. The template
expressions may contain special class symbols
such as C (= consonant) or V (= vowel) that
represent a prede�ned set of ordinary symbols.
The objective of the merge operation is to align
the template strings with the �ller strings and
to instantiate the class symbols of the template
as the matching �ller symbols.
Like intersection, the merge algorithm oper-

ates by following two paths, one in the template
network, the other in the �ller network, and it
constructs the corresponding single path in the
result network. Every state in the result corre-
sponds to two original states, one in template,
the other in the �ller. If the original states are
both �nal, the resulting state is also �nal; oth-
erwise it is non-�nal. In other words, in order to
construct a successful path, the algorithm must
reach a �nal state in both of the original net-

works. If the new path terminates in a non-�nal
state, it represents a failure and will eventually
be pruned out.
The operation starts in the initial state of the

original networks. At each point, the algorithm
tries to �nd all the successful matches between
the template arcs and �ller arcs. A match is
successful if the �ller arc symbol is included in
the class designated by the template arc sym-
bol. The main di�erence between merge and
classical intersection is in Conditions 1 and 2
below:

1. If a successful match is found, a new arc is
added to the current result state. The arc
is labeled with the �ller arc symbol; its des-
tination is the result state that corresponds
to the two original destinations.

2. If no successful match is found for a given
template arc, the arc is copied into the cur-
rent result state. Its destination is the re-
sult state that corresponds to the destina-
tion of the template arc and the current
�ller state.

In e�ect, Condition 2 preserves any template
arc that does not �nd a match. In that case,
the path in the template network advances to
a new state while the path in the �ller network
stays at the current state.
We use the networks in Figure 13 to illustrate

the e�ect of the merge algorithm. Figure 13
shows a linear template network and two �ller
networks, one of which is cyclic.

i
u

C V V C V C

d r s

Figure 13: A Template Network and Two Filler
Networks

It is easy to see that the merge of the drs
network with the template network yields the
result shown in Figure 14. The three symbols
of the �ller string are instantiated in the three
consonant slots in the CVVCVC template.

d V V r V s

Figure 14: Intermediate Result.

8

Lexical: k t b =Root C V C V C =Template a + =Voc
Surface: ^[k t b .m>. C V C V C .<m. a + ^]

Lexical: k t b =Root C V C V C =Template u * i =Voc
Surface: ^[k t b .m>. C V C V C .<m. u * i ^]

Lexical: d r s =Root C V V C V C =Template u * i =Voc
Surface: ^[d r s .m>. C V V C V C .<m. u * i ^]

Figure 16: Initial paths

u sd u r i

Figure 15: Final Result

Figure 15 presents the �nal result in which
the second �ller network in Figure 13 is merged
with the intermediate result shown in Figure 14.

In this case, the �ller language contains an in-
�nite set of strings, but only one successful path
can be constructed. Because the �ller string
ends with a single i, the �rst two V symbols
can be instantiated only as u. Note that ordi-
nary symbols in the partially �lled template are
treated like the class symbols that do not �nd a
match. That is, they are copied into the result
in their current position without consuming a
�ller symbol.

To introduce the merge operation into the
Xerox regular expression calculus we need to
choose an operator symbol. Because merge, like
subtraction, is a non-commutative operation,
we also must distinguish between the template
and the �ller. For example, we could choose .m.
as the operator and decide by convention which
of the two operands plays which role in expres-
sions such as [A .m. B]. What we actually have
done, perhaps without a su�ciently good moti-
vation, is to introduce two variants of the merge
operator, .<m. and .m>., that di�er only with
respect to whether the template is to the left
(.<m.) or to the right (.m>.) of the the �ller.
The expression [A .<m. B] represents the same
merge operation as [B .m>. A]. In both cases,
A denotes the template, B denotes the �ller, and
the result is the same. With these new opera-
tors, the network in Figure 15 can be compiled
from an expression such as

d r s .m>. C V V C V C .<m. u* i

As we have de�ned them, .<m. and .m>. are
weakly binding left-associative operators. In

this example, the �rst merge instantiates the
�ller consonants, the second operation �lls the
vowel slots. However, the order in which the
merge operations are performed is irrelevant in
this case because the two �ller languages do not
provide competing instantiations for the same
class symbols.

3.2.3 Merging Roots and Vocalizations
with Templates

Following the tradition, we can represent the
lexical forms of Arabic stems as consisting of
three components, a consonantal root, a CV tem-
plate and a vocalization, possibly preceded and
followed by additional a�xes. In contrast to
McCarthy, Kay, and Kiraz, we combine the
three components into a single projection. In a
sense, McCarthy's three tiers are conated into
a single one with three distinct parts. In our
opinion, there is no substantive di�erence from
a computational point of view.
For example, the initial lexical representation

of the surface forms katab, kutib, and duuris,
may be represented as a concatenation of the
three components shown in Figure 16. We use
the symbols =Root, =Template, and =Voc to
designate the three components of the lexical
form. The corresponding initial surface form is
a regular-expression substring, containing two
merge operators, that will be compiled and re-
placed by the interdigitated surface form.

The application of the compile-replace opera-
tion to the lower side of the initial lexicon yields
a transducer that maps the Arabic interdigi-
tated forms directly into their corresponding tri-
partite analyses and vice versa, as illustrated in
Figure 17.

Alternation rules are subsequently composed
on the lower side of the result to map the in-
terdigitated, but still morphophonemic, strings
into real surface strings.

9

Lexical: k t b =Root C V C V C =Template a + =Voc
Surface: k a t a b

Lexical: k t b =Root C V C V C =Template u * i =Voc
Surface: k u t i b

Lexical: d r s =Root C V V C V C =Template u * i =Voc
Surface: d u u r i s

Figure 17: After Applying Compile-Replace to the Lower Side

Although many Arabic templates are widely
considered to be pure CV-patterns, it has
been argued that certain templates also contain
\hard-wired" speci�c vowels and consonants.6

For example, the so-called \FormVIII" template
is considered, by some linguists, to contain an
embedded t: CtVCVC.
The presence of ordinary symbols in the tem-

plate does not pose any problem for the anal-
ysis adopted here. As we already mentioned
in discussing the intermediate representation in
Figure 14, the merge operation treats ordinary
symbols in a partially �lled template in the
same manner as it treats unmatched class sym-
bols. The merge of a root such as ktb with the
presumed FormVIII template and the a+ vocal-
ism,

k t b .m>. C t V C V C .<m. a+

produces the desired result, ktatab, without
any additional mechanism.

4 Status of the Implementations

4.1 Malay Morphological
Analyzer/Generator

Malay and Indonesian are closely-related lan-
guages characterized by rich derivation and
little or nothing that could be called inec-
tion. The Malay morphological analyzer pro-
totype, written using lexc, Replace Rules, and
compile-replace, implements approximately 50
di�erent derivational processes, including pre-
�xation, su�xation, pre�x-su�x pairs (circum-
�xation), reduplication, some in�xation, and
combinations of these processes. Each root is
marked manually in the source dictionary to in-
dicate the idiosyncratic subset of derivational
processes that it undergoes.
The small prototype dictionary, stored in

6See Beesley (1998c) for a discussion of this contro-
versial issue.

an XML format, contains approximately 1000
roots, with about 1500 derivational subentries
(i.e. an average of 1.5 derivational processes
per root). At compile time, the XML dictio-
nary is parsed and \downtranslated" into the
source format required for the lexc compiler.
The XML dictionary could be expanded by any
competent Malay lexicographer.

4.2 Arabic Morphological
Analyzer/Generator

The current Arabic system has been described
in some detail in previous publications (Beesley,
1996; Beesley, 1998a; Beesley, 1998b) and is
available for testing on the Internet.7 The modi-
�cation of the system to use the compile-replace
algorithm has not changed the size or the behav-
ior of the system in any way, but it has reduced
the compilation time from hours to minutes.

5 Conclusion

The well-founded criticism of traditional imple-
mentations of �nite-state morphology, that they
are limited to handling concatenative morpho-
tactics, is a direct result of their dependence
on the concatenation operation in morphotactic
description. The technique described here, im-
plemented in the compile-replace algorithm, al-
lows the regular-expression compiler to reapply
to and modify its own output, e�ectively freeing
morphotactic description to use any �nite-state
operation. Signi�cant experiments with Malay
and a much larger application in Arabic have
shown the value of this technique in handling
two classic examples of non-concatenative mor-
photactics: full-stem reduplication and Semitic
stem interdigitation. Work remains to be done
in applying the technique to other known vari-
eties of non-concatenative morphotactics.

7http://www.xrce.xerox.com/research/mltt/arabic/

10

The compile-replace algorithm and the merge
operator introduced in this paper are general
techniques not limited to handling the speci�c
morphotactic problems we have discussed. We
expect that they will have many other useful
applications. One illustration is given in the
Appendix.

6 Appendix: Palindrome Extraction

To demonstrate the power of the compile-
replace method, let us show how it can be ap-
plied to solve another \hard" problem: identi-
fying and extracting all the palindromes from a
lexicon. Like reduplication, palindrome identi�-
cation appears at �rst to require more powerful
tools than a �nite-state calculus. But this task
can be accomplished, in fact quite e�ciently, by
using the compile-replace technique.
Let us assume that L is a simple network con-

structed from an English wordlist. We start by
extracting from L all the words with a property
that is necessary but not su�cient for being a
palindrome, namely, the words whose inverse is
also an English word. This step can be accom-
plished by rede�ning L as [L & L.r] where &
represents intersection and .r is the reverse op-
erator. The resulting network contains palin-
dromes such as madam as well non-palindromes
such as dog and god.
The remaining task is to eliminate all the

words like dog that are not identical to their
own inverse. This can be done in three
steps. We �rst apply the technique used for
Malay reduplication. That is, we rede�ne L
as "^[" "[" L XX "]" "^" 2 "^]", and apply
the compile-replace operation. At this point
the lower-side of L contains strings such as
dogXXdogXX and madamXXmadamXX where XX is
a specially introduced symbol to mark the mid-
dle (and the end) of each string.
The next, and somewhat delicate, step is to

replace the XX markers by the desired opera-
tors, intersection and reverse, and to wrap the
special regular expression delimiters ^[and ^]
around the whole lexicon. This can be done by
composing L with one or several replace trans-
ducers to yield a network consisting of expres-
sions such as ^[d o g & [d o g].r ^] and
^[m a d a m & [m a d a m].r ^]

In the third and �nal step, the application
of compile-replace eliminates words like dog

because the intersection of dog with the in-
verted form god is empty. Only the palin-
dromes survive the operation. The extrac-
tion of all the palindromes from the 25K Unix
/usr/dict/words �le by this method takes a cou-
ple of seconds.

References

Evan L. Antworth. 1990. PC-KIMMO: a two-

level processor for morphological analysis.
Number 16 in Occasional publications in aca-
demic computing. Summer Institute of Lin-
guistics, Dallas.

Kenneth R. Beesley and Lauri Karttunen.
2000. Finite-State Morphology: Xerox Tools

and Techniques. Cambridge University Press.
Forthcoming.

Kenneth R. Beesley, Tim Buckwalter, and Stu-
art N. Newton. 1989. Two-level �nite-state
analysis of Arabic morphology. In Proceed-

ings of the Seminar on Bilingual Computing

in Arabic and English, Cambridge, England,
September 6-7. No pagination.

Kenneth R. Beesley. 1989. Computer analysis
of Arabic morphology: A two-level approach
with detours. In Third Annual Symposium on

Arabic Linguistics, Salt Lake City, March 3-
4. University of Utah. Published as Beesley,
1991.

Kenneth R. Beesley. 1990. Finite-state de-
scription of Arabic morphology. In Proceed-

ings of the Second Cambridge Conference on

Bilingual Computing in Arabic and English,
September 5-7. No pagination.

Kenneth R. Beesley. 1991. Computer analy-
sis of Arabic morphology: A two-level ap-
proach with detours. In Bernard Comrie and
Mushira Eid, editors, Perspectives on Arabic

Linguistics III: Papers from the Third An-

nual Symposium on Arabic Linguistics, pages
155{172. John Benjamins, Amsterdam. Read
originally at the Third Annual Symposium on
Arabic Linguistics, University of Utah, Salt
Lake City, Utah, 3-4 March 1989.

Kenneth R. Beesley. 1996. Arabic �nite-state
morphological analysis and generation. In
COLING'96, volume 1, pages 89{94, Copen-
hagen, August 5-9. Center for Sprogteknologi.
The 16th International Conference on Com-
putational Linguistics.

Kenneth R. Beesley. 1998a. Arabic morphologi-

11

cal analysis on the Internet. In ICEMCO{98,
Cambridge, April 17-18. Centre for Middle
Eastern Studies. Proceedings of the 6th Inter-
national Conference and Exhibition on Multi-
lingual Computing. Paper number 3.1.1; no
pagination.

Kenneth R. Beesley. 1998b. Arabic morphology
using only �nite-state operations. In Michael
Rosner, editor, Computational Approaches to
Semitic Languages: Proceedings of the Work-

shop, pages 50{57, Montr�eal, Qu�ebec, Au-
gust 16. Universit�e de Montr�eal.

Kenneth R. Beesley. 1998c. Arabic stem mor-
photactics via �nite-state intersection. Paper
presented at the 12th Symposium on Ara-
bic Linguistics, Arabic Linguistic Society, 6-7
March, 1998, Champaign, IL.

Lauri Karttunen and Kenneth R. Beesley. 1992.
Two-level rule compiler. Technical Report
ISTL-92-2, Xerox Palo Alto Research Center,
Palo Alto, CA, October.

Lauri Karttunen, Ronald M. Kaplan, and Annie
Zaenen. 1992. Two-level morphology with
composition. In COLING'92, pages 141{148,
Nantes, France, August 23-28.

Lauri Karttunen. 1991. Finite-state con-
straints. In Proceedings of the Interna-

tional Conference on Current Issues in Com-

putational Linguistics, Penang, Malaysia,
June 10-14. Universiti Sains Malaysia.

Lauri Karttunen. 1993. Finite-state lexicon
compiler. Technical Report ISTL-NLTT-
1993-04-02, Xerox Palo Alto Research Center,
Palo Alto, CA, April.

Lauri Karttunen. 1994. Constructing lexical
transducers. In COLING'94, Kyoto, Japan.

Lauri Karttunen. 1995. The replace oper-
ator. In ACL'95, Cambridge, MA. cmp-
lg/9504032.

Lauri Karttunen. 1996. Directed replace-
ment. In ACL'96, Santa Cruz, CA. cmp-
lg/9606029.

Laura Kataja and Kimmo Koskenniemi. 1988.
Finite-state description of Semitic morphol-
ogy: A case study of Ancient Akkadian. In
COLING'88, pages 313{315.

Martin Kay. 1987. Nonconcatenative �nite-
state morphology. In Proceedings of the Third
Conference of the European Chapter of the

Association for Computational Linguistics,
pages 2{10.

Andr�e Kempe and Lauri Karttunen. 1996. Par-
allel replacement in �nite-state calculus. In
COLING'96, Copenhagen, August 5{9. cmp-
lg/9607007.

George Anton Kiraz and Edmund Grimley-
Evans. 1999. Multi-tape automata for speech
and language systems: A Prolog implemen-
tation. In Jean-Marc Champarnaud, De-
nis Maurel, and Djelloul Ziadi, editors, Au-
tomata Implementation, volume 1660 of Lec-
ture Notes in Computer Science. Springer
Verlag, Berlin, Germany.

George Anton Kiraz. 1994a. Multi-tape two-
level morphology: a case study in Semitic
non-linear morphology. In COLING'94, vol-
ume 1, pages 180{186.

George Anton Kiraz. 1994b. Multi-tape two-
level morphology: a case study in Semitic
non-linear morphology. In Proceedings of the

15th International Conference on Computa-

tional Linguistics, Kyoto, Japan.
George Anton Kiraz. 1996. Semhe: A gener-
alised two-level system. In Proceedings of the

34th Annual Meeting of the Association of

Computational Linguistics, Santa Cruz, CA.
George Anton Kiraz. 2000. Multi-tiered non-
linear morphology: A case study on Semitic.
Computational Linguistics, 26(1).

Kimmo Koskenniemi. 1983. Two-level mor-
phology: A general computational model for
word-form recognition and production. Pub-
lication 11, University of Helsinki, Depart-
ment of General Linguistics, Helsinki.

Alon Lavie, Alon Itai, Uzzi Ornan, and Mori Ri-
mon. 1988. On the applicability of two level
morphology to the inection of Hebrew verbs.
In Proceedings of ALLC III, pages 246{260.

Mick Mallon. 1999. Inuktitut linguistics
for technocrats. Technical report, Ittuku-
luuk Language Programs, Iqaluit, Nunavut,
Canada.

John J. McCarthy and Alan Prince. 1995.
Faithfulness and reduplicative identity. Oc-
casional papers in Linguistics 18, University
of Massachusetts, Amherst, MA. ROA-60.

John J. McCarthy. 1981. A prosodic theory of
nonconcatenative morphology. Linguistic In-
quiry, 12(3):373{418.

Richard Sproat. 1992. Morphology and Compu-

tation. MIT Press, Cambridge, MA.

12

Temiar Reduplication in One-Level Prosodic Morphology

Markus Walther
University of Marburg

FB09/IGS, Wilhelm-R¨opke-Str. 6A, D-35032 Marburg, Germany
Markus.Walther@mailer.uni-marburg.de

Abstract
Temiar reduplication is a difficult piece of prosodic
morphology. This paper presents the first com-
putational analysis of Temiar reduplication, us-
ing the novel finite-state approach of One-Level
Prosodic Morphology originally developed by
Walther (1999b, 2000). After reviewing both the
data and the basic tenets of One-level Prosodic Mor-
phology, the analysis is laid out in some detail,
using the notation of the FSA Utilities finite-state
toolkit (van Noord 1997). One important discovery
is that in this approach one can easily define a regu-
lar expression operator which ambiguously scans a
string in the left- or rightward direction for a cer-
tain prosodic property. This yields an elegant ac-
count of base-length-dependent triggering of redu-
plication as found in Temiar.

1 Introduction
Temiar is an Austroasiatic language of the Mon-
Khmer group spoken by a variety of tribal people in
West Malaysia (Benjamin, 1976). Its intricate mor-
phological system has received some attention in the
theoretical literature. The main focus has been on
the aspectual morphology of verbs, where an inter-
esting pattern of partial reduplication emerges that
is sensitive to the size of the verbal root. For exam-
ple, in the active continuative,gElg@l ‘to eat’ redu-
plicates both the initial /g/ and the final /l/ of its
monosyllabic baseg@l. In contrast, bisyllabics@luh
‘to shoot’ comes out assEhluh, where only the final
/h/ is copied, this time as an infix.

Temiar reduplication thus appears to be a suitably
rich testing ground for a novel approach to redu-
plication developed by (Walther, 1999b; Walther,
2000) within a finite-state framework. Even though
that approach, One-Level Prosodic Morphology,
was presented from the outset as being generally
applicable, it has been proven time and time again
that only concrete empirical application of a par-

ticular approach to computational morphology and
phonology will fully reveal its inherent virtues and
weaknesses. As an example, (Beesley, 1998) re-
ports that it was actual experimentation with gram-
mars of word-formation in Arabic and Hungarian
which fully revealed the negative effects of mod-
elling long-distance circumfixional dependencies in
purely finite-state terms, subsequently leading to
some suggestions for improvement.

It is perhaps worth emphasizing that (Walther,
1999b)’s solution for reduplication in a finite-state
context is preferrable for cross-linguistic validation
precisely because it is the first that solves the prob-
lem in thegeneralcase. Because reduplication of-
ten involves copying of a strictly bounded amount
of material, the bounded casecould in principle be
modelled as a finite-state process by enumerating all
possible forms of the copy and then making sure
each was matched to the proper stem. To solve this
simplified problem, no new techniques are needed
in theory. In practice however, the brute-force enu-
meration approach apparently has not been pursued
further, apart from isolated examples (see Antworth
(1990), p.157f for a fixed-size case in Tagalog). This
is probably because such an approach is awkward
to specify in actual grammars and because it will
inevitably lead to an explosion of the state space
(Sproat (1992), p.161). Finally and in contrast to
(Walther, 1999b), it would clearly break down for
productivetotal reduplication, which is isomorphic
to the context-sensitive languagefwwjw 2 �+g.

A second motivation for choosing Temiar is that
all prior analyses of its data are heavily under-
formalized and incomplete, irrespective of whether
they are situated in the older rule paradigm (Mc-
Carthy, 1982; Broselow and McCarthy, 1983; Sloan,
1988; Shaw, 1993) or an optimality-theoretic setting
(Gafos, 1995; Gafos, 1996; Gafos, 1998b; Gafos,
1998a). Hence a formalized and computationally
tested analysis that strives to keep a healthy balance

13

with respect to linguistic adequacy would represent
significant progress on its own.

In the rest of the paper I will attempt to provide
just such an analysis, beginning inx2 with a presen-
tation of the relevant data. Next, sectionx3 reviews
the core of One-Level Prosodic Morphology, which
will be used as formal background. Using that back-
ground, the analysis is then fully developed inx4.
The paper concludes with some discussion inx5.

2 Temiar reduplication

All data on Temiar reduplication in this section
come from (Benjamin, 1976), the main source on
the subject.1 According to Benjamin, the charac-
teristic aspectual paradigms of “monosyllabic and
schewa-form verbs” (B:168) are as follows (B:169):

(1) ‘to call’ ‘to lie down/sleep/marry’

‘monosyllabic’ ‘schewa-form’
a
c
t
i
v
e

"kOOw s@."lOg perfective
ka."kOOw sa."lOg simulfactive

kEw."kOOw sEg."lOg continuative
c
a
u
s
a
t.

tEr."kOOw sEr."lOg perfective
t@.ra."kOOw s@.ra."lOg simulfactive

t@.rEw."kOOw s@.rEg."lOg continuative

We have inferred syllabifications in (1) from the
statement that “only two types of syllables occur:
open syllablesof canonical form CV, andclosed syl-
lablesof canonical form CVC” (B:141). Note that
Benjamin abstracts from vowel length here. Word-
level stress, which is “falling regularly on the final
syllable” (B:139), is likewise inferred in (1). Ob-
serve that only monosyllabic roots likekOOw redu-
plicate their initial consonant in the non-perfective
aspectual forms of the active, while longer roots like
s@lOg do not. This contrasts with obligatory redupli-
cation of the root-final consonant in the continua-
tive.

An important further generalization is that all
extra segmental material beyond the bare root is
inserted immediately before the stressed syllable,
leading to prefixation for monosyllabic roots, but in-
fixation in polysyllabic ones (Gafos, 1998b). From
this point of view we can also see a correlation be-
tween the fact that causative forms of monosyllabic
roots – which must be at least bisyllabic – begin

1We will abbreviate further references to this work with
“(B: <page number>)” in the text. Moreover, to highlight
reduplicated parts in the data they will often be printed in bold.

with a fixed /t/2 and the restriction that words must
“always begin and end with a consonant” (B:141).
In triconsonantal roots likes@lOg that restriction is
taken care of by the first root consonant itself, so no
fixed segment needs to appear.

According to Benjamin, prefinal syllables –
which are unstressed – can show alternation of their
vocalic quality: “In prefinal closed syllables the in-
ner vowels /e@ o/ are replaced by the outer vowels /i
E u/ respectively” (B:144). This descriptive general-
ization accounts for the remaining contrasts in (1),
witness e.g.s@.lOg versussEg.lOg.

It is interesting to see that Temiar even exhibits
phonological modifications between base and redu-
plicant, affecting consonants in the continuative:

(2) yaap ! yEm.yaap ‘to cry’ (B:143)
p@t ! pEn.p@t ‘to long for’ (B:146)

s@.lOOk! sEN.lOOk ‘to hunt successfully’ (B:146)

Benjamin explains that medial coda consonants
from the class of oral voiceless stops turn into their
voiced nasal equivalents in Northern Temiar (and to
plain voiced stops in the Southern dialect; B:143).

It is of some importance to clarify a number
of further aspects of the data and their interpreta-
tion. First, theorists have frequently employed the
stronger term ‘minor syllables’ for Benjamin’s pre-
final syllables, reflecting their alleged special status
by means of an impoverished representation (e.g.
empty syllable nuclei in (Gafos, 1998b)) and/or fur-
ther formal mechanisms (e.g. a ban on full vowels
in prefinal position *PREFINAL-V (Gafos, 1998a)).
We do not follow this move here, because empiri-
cally it is neither true that penultimate vowels are
categorically restricted to schwa-like vowels (ha-
lab ‘to go downriver’, sindul ‘to float’, etc.) nor
are there any solid statistics of a presumed tendency
to vowel reduction in unstressed syllables, nor can
the variable quality of prefinal vowels be consis-
tently derived from flanking consonants. Hence,
such penultimative vowels are to be lexically speci-
fied as alternating.

Second, Benjamin’s subclass restriction of (1)
to “monosyllabic and schewa-form verbs” correctly
excludes polysyllabic roots like the already men-
tioned halab and sindul, where prefinal open syl-
lables with vowels outside of /e @ o/ occur. These
roots undergo “very few morphological changes”
(B:170), basically proclitization.

2Or /b/, if the root starts in /c,t/: /caaP/ ‘to eat’ gives
/bEr.caaP/ ‘to feed’ (B:169).

14

Third, paradigms for a given root are hardly
ever complete, with various irregularities and non-
productive patterns also occuring (B:169f). Again, a
good deal of lexicalization would seem necessary to
correctly describe Temiar verbs in a realistic gram-
mar fragment.

Given this descriptive summary, our goals for
the upcoming analysis are, first, to treat thefull
paradigm of (1). As a second goal, we would like
to reflect the emergent formal desiderata in a trans-
parent way, in particular referring to the need to
account for repetition, truncation, infixationand
phonological modification. Thirdly, we will attempt
a compositionalanalysis of the morphological ex-
ponency of aspect.

3 One-Level Prosodic Morphology
In order to provide the necessary background for
the Temiar analysis inx4, this section briefly re-
views the finite-state approach to prosodic morphol-
ogy developed in (Walther, 1999b),

That work itself was presented as an extension
to (Bird and Ellison, 1994)’s One-Level Phonol-
ogy framework, where phonological representa-
tions, morphemes and more abstract generalizations
are all finite-state automata that express surface-true
constraints on word forms, and constraint combina-
tion is by automata intersection.

In a nutshell, the extension comprises three main
components. We (i) represent phonological strings
differently for purposes of modelling prosodic mor-
phology, (ii) implement reduplicative coyping by
automata intersection, and (iii) introduce a resource-
conscious variant of automata.

For (i), operators are provided that construct en-
riched automata from a simple string automaton, in
particular giving it a kind of doubly-linked structure
so that the symbol repetition inherent in redupli-
cation translates into following backwards-pointing
technical transitions. The individual enrichments in-
volve only local computation per state or transition,
so that on-the-fly implementation is easy if desired.
In other words, one does not necessarily have to en-
rich the entire lexicon in advance.

Enriched representations In a bit more de-
tail, the enrichments of (i) are as follows. The
three aspects ofreduplication or symbol repeti-
tion, truncation or symbol skipping andinfixation
or transitive, non-immediate precedence of sym-
bols are reflected in three regular expression op-
erators, add repeats; add skips; add self loops.

Each takes the underlying automatonA of a regular
languageLA as its only argument. Formally, they
can be defined as follows:

(3) Let A = (Q;�; �; q0; F) be the minimal�-
free3 finite-state automaton forLA, with Q a
finite set of states, finite alphabet�, transition
function � : Q � � 7! 2Q, start stateq0 2 Q
and set of final statesF � Q.

a. Assumerepeat 62 �.

add repeats(A)
def
= (Q;�0; �0; q0; F),

where�0 = � [frepeatg,
8x 2 �8q 2 Q: �0(q; x) = �(q; x) and
8p 2 Q:�0(p; repeat) = fqj p 2 �(q; x)g

b. Assumeskip 62 �.

add skips(A)
def
= (Q;�0; �0; q0; F),

where�0 = � [fskipg,
8x 2 �8q 2 Q: �0(q; x) = �(q; x) and
8q 2 Q: �0(q; skip) = �(q; x)

c. add self loops(A)
def
= (Q;�; �0; q0; F),

where
�0 = � [f(q; �; fqg)j q 2 Q; � 2 �g

An example enrichment of Temiars@lOg is shown
in figure 1. One can imagine howskip andrepeat
transitions allow, figuratively speaking, forward and
backward movement within a string, while self
loops will absorb infixal morphemes that are inter-
sected with fig. 1. Finally, so-calledsynchronization
bits :1, :0 were introduced in (Walther, 1999b) to
define the extent of a reduplicative base constituent
in a segment-independent way. Bit value:1 marks
the edges and:0 the interior segments of a base, as
shown in fig. 1 for a hypothetical whole-root redu-
plication pattern. In actual practive, synchronization

0 1 2 3s:1 4

skip skip skip skip

l:0 o:0e:0

repeat repeat repeat repeat

Σ ΣΣΣΣ

repeat

skip

Σ

g:1
5

Figure 1:addrepeats(addskips(addself loops(selog)))

bits are sets of symbols, just like the rest of the al-
phabet. Sets as transition labels improve over tra-
ditional automata in terms of automata compact-
ness, were already proposed for phonology in (Bird

3Minimality prevents non-(co)-accessible transitions from
getting enriched, while lack of� transitions keeps positional
skip=repeat ‘movement’ in lockstep with segmental positions.

15

and Ellison, 1992) and do not increase mathematical
expressivity beyond regular languages.4 Hence, the
segmental part of fig. 1 may be defined in a modular
fashion through the intersection of strings of sym-
bol sets that mention only certain dimensions (here:
phonemes and synchronisation bits), being under-
specified for the unmentioned dimensions. We will
again follow (Walther, 1999b) in conceiving of sets
as types arranged in a type hierarchy that is struc-
tured by set inclusion, and also in allowing arbitrary
boolean combinations of types.

Copying as intersection Given enriched repre-
sentations as in fig. 1, various patterns of redupli-
cation are now easy to define. We can denote a syn-
chronised abstract string by the regular expression

base � seg:1 seg:0� seg:1

whereseg is the type subsuming all phonological
segments. Then hypothetical total reduplication –
unattested in Temiar, but wellknown from Indone-
sian and many other languages – is described by

total � base repeat� base

A variant slightly more akin to Temiar – and actu-
ally attested in the neighbouring language Semai –
thatskips the interior of the base in a prefixed redu-
plicant is just as easy:

semai � seg:1 skip� seg:1 repeat� base

Ignoring self loops for the moment, all we need
now to apply a reduplication pattern to an enriched
base representation is simply tointersectthe former
with the latter: automata intersection has sufficient
formal power to implement reduplicative copying!
Here is an example, using the abbreviationselog �
s:1 e:0 l:0 o:0 g:1 for perspicuous display:

add repeats(selog) \ total � selog repeat5 selog

As pointed out in (Walther, 2000), generaliz-
ing to a set of bases involves nothing more than
enriching each base separately, then forming the
union of the resulting automata. The opposite or-
der would produce unwanted cross-string repetition,
sinceadd repeats does not distribute over union.
However, an unpublished experiment shows that
on-demand implementation of a slightly modified

4Of course, the identity requirement for matching transi-
tions in traditional automata intersection must be replaced by
a non-empty intersection requirement for set-based matching.

add repeats can help to preserve the memory ef-
ficiency of building a minimized base lexicon as the
union of individual base strings first. Due to lack of
space, the details will be reported elsewhere.

Resource consciousnessAs much as we need the
formal means provided by self loops for infixations
like Temiar s-a-lOg, the resulting automata over-
generate massively. What’s missing according to
(Walther, 1999b) is a distinction between explic-
itly contributed, independent information (e.g. the
infix -a- itself) and contextual, dependent informa-
tion that is tolerated but must be provided by other

constraints (e.g. the1
�
! 1 self loop thathoststhe

infix). Therefore, a parallel distinction between two
kinds of symbols – producers and consumers – was
introduced. In that scenario a symbol represents an
information resource that needs to be produced at
least once, then can be consumed arbitrarily often.
To utilize the distinction, an additional P/C bit ac-
companies symbols, with P/C = 1 for producers. All
symbols introduced by the three enrichment oper-
ators are consumers. Furthermore, automata inter-
section is made aware of these resource-conscious
notions by splitting it into two variants: In open
interpretation mode, P/C bits of matching symbols
are combined by logical OR, so that a result transi-
tion will be marked as a producer whenever at least
one argument transition is a producer. In closed in-
terpretation mode, combination is by logical AND
instead, allowing only producer-producer matches.
Grammatical evaluation can then be characterized
as follows:

(Lexicon\open Constraint1 � � � \open ConstraintN) \closed �
�

Here and elsewhere, producers are in bold print.
Note the final intersection with the universal pro-
ducer language, which eliminates unused consumer
transitions, the main source of overgeneration.

4 The analysis
We have assembled enough background now to pro-
ceed to the actual analysis of the Temiar data in (1).
The analysis is implemented using FSA Utilities, a
finite-state toolbox written in Prolog which encour-
ages rapid prototyping (van Noord, 1997). Figure 2
shows a relevant fragment of its syntax (extensions
and modifications in italics).

In displaying the grammar, we will take liberty
in suppressing certain definitions in the interest
of conciseness, relying on the mnemonic value of

16

{} empty language
[E1,E2, : : : ,En] concatenation
{E1,E2, : : : ,En} union

E* Kleene closure
Eˆ optionality

E1 & E2 intersection
A �l�>

�r�>
(B / C) monotonic rules

�S set complement
Head(arg1,: : : , argN) := Body macro def.

Figure 2: Regular expression operators

their names instead. A case in point isproducer(T),

consumer(T) : since the names are self-explanatory,
it suffices to note that the only argumentT con-
tains type formulae that denote the symbol sets, as
explained before. Allowable type-combining opera-
tors are conjunction&, disjunction; and negation�.
The same goes for monotonic rules, which – unlike
rewrite rules – can only specialize their focussed
segmental positionA to B. They exist in two variants,
whereA -r-> B/C notates the case where contextC

is right-adjacent to the focus (A ! B= C), and
vice versa forA -l-> B/C .

Syllabification To define the reduplicant in
prosodic terms later on, we needsyllabification

in the first place. Here a simplified finite-state ver-
sion of a proposal by (Walther, 1999a) is employed.
Its key idea is to allow incremental assignment of
syllable roles to segmental positions via a featural
decomposition of the three traditional roles, using
two binary-valued featuresons andcod :

(4)
Onset ons �cod
Nucleus �ons �cod
Coda �ons cod
CodaOnset ons cod

As a side-effect, one gets the fourth roleCO,
a monosegmental prosodic representation of
true geminates. The subcomponentsbs , for
sonority-based syllabification, itself rests on
the computation of sonority differences be-
tween adjacent segmental positions (not shown),
where sonority may either goup or down. To-
gether with some self-explanatory constraints
obligatory wordinternal onsets and no geminates ,
prosodic surface wellformedness is then wellde-
fined. Only if doubly synced edge then stressed

may seem slightly odd, since it has a purely
technical character: it rules out certain illformed
alternatives in wordforms. Note, however, that the

necesssity of such technical constraints, which are
certainly implicit in informal analyses as well, can
only be reliably detected in computerized analyses
such as the present one, which allow for mechanical
enumeration of a grammar’s denotation.

sbs := [{ [consumer(down&˜ons),
consumer(segment&˜’Nuc’)],

[consumer(up&˜’Nuc’),
consumer(segment&˜cod)

} *, no_final_onset ˆ].

no_initial_coda := consumer(segment&˜cod).
no_final_onset := consumer(segment&˜ons).

syllabification := sonority_differences&
sbs&[no_initial_coda, sbs].

% -- further constraints ---
obligatory_wordinternal_onsets :=

(segment -r-> ons / ’Nuc’). % _ ’N’

no_geminates := consumer(˜’CO’)*.

prosodic_constraints := obligatory_word-
internal_onsets & no_geminates &
if_doubly_synced_edge_then_stressed.

if_doubly_synced_edge_then_stressed :=
[({consumer(˜’:1’),

[consumer(’:1’),consumer(˜’:1’)],
[consumer(’:1’),consumer(’:1’),

consumer(stressed)]
} *), consumer(’:1’) ˆ].

Stress Given the assignment of syllable roles to
segmental positions, we are now ready to define
Temiar word stress . A possibly empty sequence
of prefinal syllables , each of which is constrained
to be of shapeON(C) and unstressed , is fol-
lowed by a final stressed syllable . The macro
ends before last syll makes sure that the dividing
line between the penultimate and ultimate syllable
is drawn correctly.

stress := [prefinal_syllables &
ends_before_last_syll,
syllable].

prefinal_syllables :=
([consumer(’Ons’), consumer(’Nuc’),

(consumer(’Cod’) ˆ)]*) &
consumer(unstressed)*.

ends_before_last_syll:=([consumer(segment)*,
consumer(segment&˜ons)]ˆ).

syllable := [consumer(ons)+,consumer(’Nuc’),
consumer(cod)*] &

(consumer(stressed)*).

17

Stems We proceed towards the definition of astem

by noting that – as described inx2 – both the extent
of a base ’s phonological materialand its stress pat-
tern are necessary prior knowledge for adding as-
pectual morphemes in the appropriate way. Hence,
we impose the respective constraints onto theiso-
lated base stringin stem0 , before wrapping the re-
sult in the usual enrichments. However, the addi-
tion of self loops for infixation this time isa pri-
ori restricted to the position immediately before a
stressed onset, in accordance with the descriptive
generalization stated inx2. Experiments have shown
that using the unrestrictedadd self loops of (3.c)
would cause much unnecessary hassle ina posteri-
ori restriction of the possible infix locations to the
actually attested ones. It thus appears that Temiar
provides a first case for further parametrization of
at least one of the original operators from (Walther,
1999b):

base := [consumer(’:1’),consumer(’:0’)*,
consumer(’:1’)].

stem0(StemMaterial) :=
add_self_loop_before(stressed&’Ons’,

add_repeats(add_skips(StemMaterial &
base & syllabification &
prosodic_constraints & stress))).

stem(Segments) :=
stem0(stringToSegments(Segments)).

Definitions for the actual stem entries ofselog,

koow, yaap are shown below, using the ASCII-IPA
mappingf@ 7! @, E 7! E, O 7! Og. In eval-
uating the first entry, the schwa actually trans-
lates into a producer-type disjunction (@;E) with
the help ofstringToSegments . It thus makes sense
to constrain this free alternation further, which
is the purpose ofhas prefinal syllable . While
the monosyllablekoow needs no extra treatment,
yaap is an example of a stem ending in an
alternating labial , whose definition however is
straightforward (medial, final refer to a positional
classification of the word that is defined later):

selog := stem("s@lOg") &
has_prefinal_syllable.

koow := stem("kOOw").
yaap := stem0([stringToSegments("yaa"),

alternating_labial]).

alternating_labial := {producer(p&final),
producer(m&medial&cod)}.

If we now definehas prefinal syllable itself, we
have completed the components that make up
stem . While the definition really targets the prefinal
vowel, its preceding onset and the stretch of arbi-
trary material after it must also be mentioned. To
tolerate interspersedtechnical symbols , the ignore

operator is used (Kaplan and Kay, 1994).
The purpose ofprefinal V is to control the al-

ternation between ‘outer’ and ‘inner’ vowel, here
parametrized forE�@ only. It does so by referenc-
ing the next syllable role: if it is consistent with
ons , that vowel resides in an open syllable, hence
theclose mid variant (@) will be selected. Two else-
where cases deal with closed syllables and the pos-
sible presence of a technical symbol:

has_prefinal_syllable :=
ignore([consumer(’Ons’),

prefinal_V((’E’;’@’),
’:0’&unstressed),

consumer(anything) *],
technical_symbols).

technical_symbols :=
(consumer((skip;repeat)) *).

prefinal_V(Quality, Common) :=
{ [producer(Quality&close_mid&Common),

consumer(ons)],
[producer(Quality&˜close_mid&Common),

consumer(cod)],
[consumer((skip;repeat))]

}).

Aspectual affixes It is time to concentrate on the
most interesting part, and that is how to define the
affixes. Again the general picture will be to see them
as constraints on word forms which are imposed by
intersection. We begin with thesimulfactive . The
claim here is that its characteristic pattern is the real-
ization of the initial base segment (:1), followed by
the infixed melodic element /a/, and then the entire
string that begins with the stressed onset. Phrasing
the pattern this way already suffices to capture the
difference in reduplication behaviour between"kOOw
ands@"lOg: if we have inserted the-a- after the ini-
tial consonant in the first base, the stressed onset is
to the left of /a/’s position, whereas in the second
base that onset is foundto the right. Thus, repeti-
tion of segments is necessary to avoid ungrammat-
icality due to constraint violation in the first case
(k-a-"kOOw), but not in the second (s-a-"lOg).

This behaviour is most naturally modelled by
defining a new operatorseek(X) , which allows for

18

ambiguous movementeither to the left (repeat) or
to the right (skip) before imposing the restriction
X. This operator is applied to infixal /a/ because
it is precisely the infix which needs to ‘seek’ its
prosodically defined unique insertion point, i.e. self
loop. Finally, to ensure that the other aspectual mor-
phemes can play their part later on, the entire pat-
tern is wrapped inalign to tolerate further material
before (align right) and after it (align left):

simulfactive :=
align([consumer(’:1’),

seek([producer(a&’:0’&unstressed),
consumer(stressed&’Ons’)])]).

seek(X) :=
[{producer(skip)*,producer(repeat)*},X].

align_left(X):=[X,consumer(anything)*].
align_right(X):=[consumer(anything)*,X].
align(X) := align_right(align_left(X)).

Moving on to thecontinuative , we can see that the
relevant formal generalization is a bit more com-
plex. Again we start off with the initial base segment
(:1), but then seek a place to infix the constant /E/,
before weskip to the next synchronised base posi-
tion (:1), which inevitably will be the final one. The
pattern is completed by again seeking the stressed
onset, from which realization of the string proceeds
uninterrupted due to the licensing of extra material
that thealign wrapper provides. This produces a
similar contrast with respect to (non-)reduplication
of the first base position, but makes both the rep-
etition of the last base segment and thetruncation
of its interior material obligatory in both base types
(k-E- oow"kOOw vs. s-E- lo g"lOg):

continuative :=
align([consumer(’:1’),

seek([producer(’E’&’:0’&unstressed)]),
skip_to(consumer(’:1’)),
seek(consumer(stressed&’Ons’))]).

skip_to(X) := [producer(skip)+, X].

What is left now is the proper definition of the
causative . Here we observe from (1) that the
causative morphology always starts word-initial,
hence the use ofalign left . We have a default con-
sonant /t/ whose realization we must somehow force
in the monosyllabic roots. Next comes a vowel,
whose quality –@ or E – is again regulated by the

familiar has prefinal syllable . Finally, the charac-
teristic fixed element /r/ is specified. Upon second
thought, the /t/ is guaranteed to appear in mono-
syllable roots, because prefinal syllables always re-
quire an onset. The default absence of the /t/ – when
not needed on prosodic grounds – is again encoded
by the producer/consumer distinction, which con-
trasts the two disjuncts of the parametrized macro
default :

causative :=
align_left([default(t&unstressed,’:1’),

producer(vowel),
producer(r&’:1’&unstressed)])&

has_prefinal_syllable.

default(Optional, Common) :=
{ producer(Common&Optional),

consumer(Common) }.

Entire words We can put the pieces together now
by first defining theword constraint as the con-
junction of syllabification and related prosodic con-
straints plus a classification of the word’s segmental
positions into initial,medial,final ones. Again,
this is modulo interspersedrepeat or skip sym-
bols. This actually means that base syllabification
and word syllabification must match up, but fortu-
nately this is indeed a property of our Temiar data.

Second,wordform conjoins the previous constraint
with its parameterX – which will contain the con-
junction of stem and aspect morphemes –, before
eliminating leftover consumer symbols with the
help ofclosed interpretation :

word := ignore(syllabification &
prosodic_constraints &
positional_classification,
technical_symbols).

positional_classification :=
[consumer(initial),consumer(medial)*,

consumer(final)].

wordform(X):=closed_interpretation(X&word).

These definitions have removed the last barrier
to evaluating expressions likewordform(selog &

simulfactive & causative) or even suitable dis-
junctive combinations of such expressions which
define entire paradigms. Figure 3 shows an example
automaton for three forms. We refrain from describ-
ing a final automaton operation called Bounded Lo-
cal Optimization in (Walther, 1999b) that was put

19

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24 25

26

27

[s−Ons−up−:1

[‘k−Ons−up−:1

[‘y−Ons−up−:1

 @−Nuc−down−:0

repeat

repeat

r−Ons−up−:1

a−Nuc−down−:0

E−Nuc−down−:0

a−Nuc−down−:0

 ‘k−Ons−up−:1

skip

 ‘l−Ons−up−:0

 ‘O−Nuc−down−:0

skip

 ‘O−Nuc−down−:0

 ‘O−Cod−down−:0

skip

] ‘g−Cod−down−:1

] ‘w−Cod−down−:1

 ‘m−Cod−down−:1

repeat
repeat

repeat
repeat

 ‘y−Ons−up−:1

 ‘a−Nuc−down−:0

 ‘a−Cod−down−:0

] ‘p−Cod−down−:1

Figure 3: Temiar reduplicationss@ralOg, kakOOw, yEmyaap

to use here to filter harmless spurious ambiguities
from the original version of fig. 3. The kind of am-
biguity involved in our Temiar grammar is one of al-
ternative distribution of technical symbols in strings
of the same segmental-content yield. Suffice to say
that a simple parametrization of Bounded Local Op-
timization, which could only look at length-1 transi-
tion paths emerging from any given state, was able
to prune the unwanted alternatives by considering
technical transitions costlier in weight than segmen-
tal transitions.

5 Conclusion
The present paper has provided further support for
(Walther, 1999b)’s finite-state conception of One-
Level Prosodic Morphology by formulating – for
the first time – a fully formalized and computa-
tional analysis of a complicated piece of reduplica-
tive morphology found in the Mon-Khmer language
of Temiar. Compared to the initial proposal, all
three core components of enriched representations,
namely technical transitions for repeating or skip-
ping segmental symbols and the ability to perform
infixation by using self loops, were again found
necessary in the course of this analysis. However,
in Temiar the last enrichment –add self loops –
needed to be parametrized for a prosodic condition
to narrow down the insertion site to a unique posi-
tion per base.

The prosodic condition of ‘stressed onset’ proved
crucial to define that position, and accounted for the
variation between infixing aspectual morphology in
longer bases and descriptively prefixing morphol-
ogy in monosyllabic ones. Temiar thus underscores
the utility of computing with real prosodic informa-
tion in finite-state morphology, a frequently miss-
ing desideratum according to (Sproat, 1992, p.170).
Also, the symmetry of having both forward and

backward-pointing technical transitions in enriched
automata representations was exploited in a novel
regular expression operator calledseek(X) , which
encapsulated an interesting kind of ambiguous di-
rectional movement (or: movement underspecified
for direction) towards a position satisfying property
X. This operator could rather directly be motivated
from the data. In particular, it facilitated an insight-
ful account of the base-length-dependent triggering
of reduplication in the active simulfactive aspect.

Finally, in contrast to even the most recent anal-
yses in the theoretical linguistic literature, the full
paradigm including the causative forms was cap-
tured in this fairly complete analysis, together with
phonological modifications that sometimes occur
between base and reduplicant, as exemplified by
yEmyaap. Apart from an optional filtering step
for some technical spurious ambiguities that could
make use of local optimization, neither global op-
timization nor violable or soft constraints of the
type argued for in Optimality Theory (Prince and
Smolensky, 1993) were found necessary.

For future research, the empirical base of Temiar
should be broadened to include further reduplica-
tion patterns, in particular those found in expres-
sives. Also, the grammar should be amended to al-
low for words containing geminates, which were
initially excluded to simplify the overall analysis at
the cost of what is at best a peripheral aspect of it.
Because the finite-state constraints employed in this
work are all surface-true, the potential of machine-
learning techniques to acquire them automatically
from surface-oriented corpora should be explored.
Finally, it would be very interesting to broaden to
Temiar the ongoing experiments with efficiency-
oriented computational variants of the One-Level
Prosodic Morphology framework that were already
alluded to in the text.

20

References

Evan Antworth. 1990.PC-KIMMO: A Two-Level Pro-
cessor for Morphological Analysis. SIL, Dallas.

Kenneth R. Beesley. 1998. Constraining separated
morphotactic dependencies in finite-state grammars.
In Proceedings of FSMNLP’98, Bilkent University,
Turkey, pages 118–127.

Geoffrey Benjamin. 1976. An outline of Temiar gram-
mar. In Philip Jenner, Lawrence Thompson, and Stan-
ley Starosta, editors,Austroastiatic studies, volume II,
pages 129–187. University Press of Hawaii, Honululu.

Steven Bird and T. Mark Ellison. 1992. One-Level
Phonology: Autosegmental representations and rules
as finite-state automata. Technical report, Cen-
tre for Cognitive Science, University of Edinburgh.
EUCCS/RP-51.

Steven Bird and T. Mark Ellison. 1994. One-Level
Phonology.Computational Linguistics, 20(1):55–90.

Ellen Broselow and John McCarthy. 1983. A theory of
infixing reduplication.The Linguistic Review, 3:25–
98.

Adamantios Gafos. 1995. On the Proper Charac-
terization of ‘Nonconcatenative’ Languages. Ms.,
Department of Cognitive Science, The Johns
Hopkins University, Baltimore. (ROA-106 at
http://ruccs.rutgers.edu/roa.html).

Diamandis Gafos. 1996.The articulatory basis of lo-
cality in phonology. Ph.D. thesis, The Johns Hop-
kins University, Baltimore, Md. [Published by Gar-
land:New York].

Diamandis Gafos. 1998a. A-templatic reduplication.
Linguistic Inquiry, 29(3):515–527.

Diamandis Gafos. 1998b. Eliminating long distance
consonantal spreading.Natural Language and Lin-
guistic Theory, 16(2):223–278.

Ron Kaplan and Martin Kay. 1994. Regular models of
phonological rule systems.Computational Linguis-
tics, 20(3):331–78.

John McCarthy. 1982. Prosodic templates, morphemic
templates, and morphemic tiers. In Harry van der
Hulst and Norval Smith, editors,The structure of
phonological representations, part I, pages 191–224.
Foris, Dordrecht.

Alan Prince and Paul Smolensky. 1993. Optimality
theory. constraint interaction in generative grammar.
Technical Report RuCCS TR-2, Rutgers University
Center for Cognitive Science.

Patricia Shaw. 1993. The prosodic constituency of mi-
nor syllables. InProceedings of the Eleventh West
Coast Conference on Formal Linguistics, pages 117–
132, Stanford, CA. CSLI Publications. [Distributed
by Cambridge University Press].

Kelly Sloan. 1988. Bare-consonant reduplication. In
Proceedings of the Seventh West Coast Conference
on Formal Linguistics, pages 319–330, Stanford, CA.

CSLI Publications. [Distributed by Cambridge Uni-
versity Press].

Richard Sproat. 1992.Morphology and Computation.
MIT Press, Cambridge, Mass.

Gertjan van Noord. 1997. FSA Utilities: A tool-
box to manipulate finite-state automata. In
Darrell Raymond, Derrick Wood, and Sheng
Yu, editors, Automata Implementation, volume
1260 of Lecture Notes in Computer Science,
pages 87–108. Springer Verlag. (Software under
http://grid.let.rug.nl/ �vannoord/Fsa/).

Markus Walther. 1999a.Deklarative prosodische Mor-
phologie: constraint-basierte Analysen und Comput-
ermodelle zum Finnischen und Tigrinya. Niemeyer,
Tübingen.

Markus Walther. 1999b. One-Level Prosodic Morphol-
ogy. Marburger Arbeiten zur Linguistik 1, University
of Marburg. 64 pp.
(http://xxx.lanl.gov/abs/cs.CL/9911011).

Markus Walther. 2000. Finite-state Reduplica-
tion in One-Level Prosodic Morphology. In
Proceedings of NAACL-2000, pages 296–302,
Seattle/WA. North American Association for
Computational Linguistics, Morgan Kaufman.
(http://xxx.lanl.gov/abs/cs.CL/0005025).

21

Easy and Hard Constraint Ranking in Optimality Theory:�

Algorithms and Complexity

Jason Eisner
Dept. of Computer Science / University of Rochester

Rochester, NY 14607-0226 USA / jason@cs.rochester.edu

Abstract

We consider the problem of ranking a set of OT con-
straints in a manner consistent with data. (1) We
speed up Tesar and Smolensky's RCD algorithm to
be linear on the number of constraints. This �nds a
ranking such that each attested form xi beats or ties
a particular competitor yi. (2) We generalize RCD
so each xi beats or ties all possible competitors. (3)
Alas, if the surface form of xi is only partially ob-
served, then an NP-hardness construction suggests
that it is e�ectively necessary to consider all possi-
ble rankings or surface forms. (4) Merely checking
that a single (given) ranking is consistent with data
is coNP-complete if the surface forms are fully ob-
served and �p

2
-complete if not (since OT generation

is OptP-complete).(5) Determining whether any con-
sistent ranking exists is coNP-hard (but in �p

2
) if the

surface forms are fully observed, and �p
2
-complete if

not. (6) Generation (P) and ranking (NP-complete)
in derivational theories are easier than in OT.

1 Introduction

Optimality Theory (OT) is a grammatical
paradigm that was introduced by Prince and
Smolensky (1993) and suggests various compu-
tational questions, including learnability.
Following Gold (1967) we might ask: Is the

language class fL(G) : G is an OT grammarg
learnable in the limit? That is, is there a learn-
ing algorithm that will converge on any OT-
describable language L(G) if presented with an
enumeration of its grammatical forms?
In this paper we consider an orthogonal ques-

tion that has been extensively investigated by
Tesar and Smolensky (1996), henceforth T&S.
Rather than asking whether a learner can even-
tually �nd an OT grammar compatible with an
unbounded set of positive data, we ask: How
e�ciently can it �nd a grammar (if one exists)
compatible with a �nite set of positive data?
We will consider successively more realistic

versions of the problem, as described in the ab-
stract. The easiest version turns out to be eas-

� Many thanks go to Lane and Edith Hemaspaandra
for references to the complexity literature, and to Bruce
Tesar for comments on an earlier draft.

ier than previously known. The harder versions
turn out to be harder than previously known.

2 Formalism

An OT grammar G consists of three elements,
any or all of which may need to be learned:

� a set L of underlying forms produced by
a lexicon or morphology,

� a function Gen that maps any underlying
form to a set of candidates, and

� a vector ~C = hC1; C2; : : : Cni of con-
straints, each of which is a function from
candidates to natural numbers.

Ci is said to rank higher than (or outrank)

Cj in ~C i� i < j. We say x satis�es Ci if
Ci(x) = 0, else x violates Ci.
The grammar G de�nes a relation that

maps each u 2 L to the candidate(s)

x 2 Gen(u) for which the vector ~C(x)
def
=

hC1(x); C2(x); : : : Cn(x)i is lexicographically
minimal. Such candidates are called optimal.
One might then say that the grammatical

forms are the pairs (u; x) of this relation. But
for simplicity of notation and without loss of
generality, we will suppose that the candidates
x are rich enough that u can always be recov-
ered from x.1 Then u is redundant and we may
simply take the candidate x to be the grammat-
ical form. Now the language L(G) is simply the
image of L under G. We will write ux for the
underlying form, if any, such that x 2 Gen(ux).
An attested form of the language is a candi-

date x that the learner knows to be grammatical
(i.e., x 2 L(G)). y is a competitor of x if they
are both in the same candidate set: ux = uy. If

x; y are competitors with ~C(y) < ~C(x), we say
that y beats x (and then x is not optimal).

1This is necessary in any case if the constraints Cj(x)
are to depend on (all of) u. In general, we expect that
each candidate x 2 Gen(u) encodes an alignment of the
underlying form u with some possible surface form s, and
Cj(x) evaluates this pair on some criterion.

22

An ordinary learner does not have access to
attested forms, since observing that x 2 L(G)
would mean observing an utterance's entire
prosodic structure and underlying form, which
ordinarily are not vocalized. An attested set
of the language is a set X such that the learner
knows that some x 2 X is grammatical (but not
necessarily which x). The idea is that a set is at-
tested if it contains all possible candidates that
are consistent with something a learner heard.2

An attested surface set|the case considered
in this paper|is an attested set all of whose el-
ements are competitors; i.e., the learner is sure
of the underlying form but not the surface form.
Some computational treatments of OT place

restrictions on the grammars that will be con-
sidered. The �nite-state assumptions (Elli-
son, 1994; Eisner, 1997a; Frank and Satta, 1998;
Karttunen, 1998; Wareham, 1998) are that

� candidates and underlying forms are repre-
sented as strings over some alphabet;

� Gen is a regular relation;3

� each Cj can be implemented as a
weighted deterministic �nite-state automa-
ton (WDFA) (i.e., Cj(x) is the total weight
of the path accepting x in the WDFA);

� L and any attested sets are regular.

The bounded-violations assumption (Frank
and Satta, 1998; Karttunen, 1998) is that the
value of Cj(x) cannot increase with jxj, but is
bounded above by some k.
In this paper, we do not always impose these

additional restrictions. However, when demon-
strating that problems are hard, we usually
adopt both restrictions to show that the prob-
lems are hard even for the restricted case.

2This is of course a simpli�cation. Attested sets corre-
sponding to laugh and laughed can represent the learner's
uncertainty about the respective underlying forms, but
not the knowledge that the underlying forms are related.
In this case, we can solve the problem by packaging the
entire morphological paradigm of laugh as a single candi-
date, whose attested set is constrained by the two surface
observations and by the requirement of a shared under-
lying stem. (A k-member paradigm may be encoded in
a form suitable to a �nite-state system by interleaving
symbols from 2k aligned tapes that describe the k under-
lying and k surface forms.) Alas, this scheme only works
within disjoint �nite paradigms: while it captures the
shared underlying stem of laugh and laughed, it ignores
the shared underlying su�x of laughed and frowned.

3Ellison (1994) makes only the weaker assumption
that Gen(u) is a regular set for each u.

Throughout this paper, we follow T&S in
supposing that the learner already knows the
correct set of constraints C = fC1; C2; : : : Cng,

but must learn their order ~C = hC1; C2; : : : Cni,
known as a ranking of C. The assumption fol-
lows from the OT philosophy that C is univer-
sal across languages, and only the order of con-
straints di�ers. The algorithms for learning a
ranking, however, are designed to be general for
any C, so they take C as an input.4

3 RCD as Topological Sort

T&S investigate the problem of ranking a
constraint set C given a set of attested
forms x1; : : : xm and corresponding competitors
y1; : : : ym. The problem is to determine a rank-

ing ~C such that for each i, ~C(xi) � ~C(yi) lexi-
cographically. Otherwise xi would be ungram-
matical, as witnessed by yi.
In this section we give a concise presentation

and analysis of T&S's Recursive Constraint
Demotion (RCD) algorithm for this problem.
Our presentation exposes RCD's connection to
topological sort, from which we borrow a simple
bookkeeping trick that speeds it up.

3.1 Compiling into Boolean Formulas

The �rst half of the RCD algorithm extracts
the relevant information from the fxig and
fyig, producing what T&S call mark-data pairs.
We use a variant notation. For each con-
straint C 2 C, we construct a negation-free,
conjunctive-normal form (CNF) Boolean for-
mula �(C) whose literals are other constraints:

�(C) =
^

i:C(xi)>C(yi)

_

C0:C0(xi)<C0(yi)

C 0

4Again this is an oversimpli�cation. Given the vari-
ety of constraints already proposed in the phonological
literature, n = jCj would have to be extremely large for
C to include all possible cross-linguistic constraints. The
methods here are probably impractical for such large n,
since they are designed to work on arbitrary C and there-
fore spend some time on each constraint separately, if
only to read it from the input. An alternative would be
to tailor an algorithm to a particular constraint set C,
making it possible to exploit that set's internal struc-
ture. Consider e.g. Eisner's proposal (1997b; 1997a)
that C is the union of two simple parametric constraint
families. Note that such an algorithm would not have
time to output a total ranking of C by enumeration; it
might output a concise representation of the ranking, or
a short pre�x C1; : : : Ck that is su�cient to determine
which forms (or which attested forms) are grammatical.

23

The interpretation of the literal C 0 in �(C) is
that C 0 is ranked before C. It is not hard to
see that a constraint ranking is a valid solution
i� it satis�es �(C) for every C. For example, if
�(d) = (a _ b _ c) ^ (b _ e _ f), this means that
d must be outranked by either a; b or c (else x1
is ungrammatical) and also by either b; e or f
(else x2 is ungrammatical).
How expensive is this compilation step? Ob-

serve that the inner term
W
C0:C0(xi)<C0(yi) C

0 is
independent of C, so it only needs to be com-
puted and stored once. Call this term Di. We
�rst construct all m of the disjunctive clauses
Di, requiring time and storage O(mn). Then
we construct each of the n formulas �(C) =V
i:C(xi)>C(yi)Di as a list of pointers to up to m

clauses, again taking time and storage O(mn).
The computation time is O(mn) for the steps

we have already considered, but we must add
O(mnE), where E is the cost of precomputing
each C(xi) or C(yi) and may depend on prop-
erties of the constraints and input forms.
We write M(= O(mn)) for the exact stor-

age cost of the formulas, i.e., M =
P
i jDij +P

C j�(C)j where j�(C)j counts only the num-
ber of conjuncts.

3.2 Finding a Constraint Ranking

The problem is now to �nd a constraint ranking
that satis�es �(C) for every C 2 C. Consider
the special case where each �(C) is a simple
conjunction of literals|that is, (8i)jDij = 1.
This is precisely the problem of topologically
sorting a directed graph with n vertices andP
C j�(C)j = M=2 edges. The vertex set is C,

and �(C) lists the parents of vertex C, which
must all be enumerated before C.
Topological sort has two well-known O(M +

n) algorithms (Cormen et al., 1990). One is
based on depth-�rst search. Here we will focus
on the other, which is: Repeatedly �nd a vertex
with no parents, enumerate it, and remove it
and its outgoing edges from the graph.
The second half of T&S's RCD algorithm is

simply the obvious generalization of this topo-
logical sort method (to directed hypergraphs,
in fact, formally speaking). We describe it as a

function Rcd(C; �) that returns a ranking ~C:

1. If C = ;, return hi. Otherwise:

2. Identify a C1 2 C such that �(C1) is empty.
(C1 is surface-true, or \undominated.")

3. If there is no such constraint, then fail: no
ranking can be consistent with the data.

4. Else, for each C 2 C, destructively remove
from �(C) any disjunctive clause Di that
mentions C1.

5. Now recursively compute and return ~C =
hC1;Rcd(C � fC1g; �)i.

Correctness of Rcd(C; �) is straightforward,
by induction on n = jCj. The base case n =
0 is trivial. For n > 0: �(C1) is empty and
therefore satis�ed. �(C) is also satis�ed for all
other C: any clauses containing C1 are satis�ed
because C1 outranks C, and any other clauses
are preserved in the recursive call and therefore
satis�ed by the inductive hypothesis.
We must also show completeness of

Rcd(C; �): if there exists at least one cor-

rect answer ~B, then the function must not fail.
Again we use induction on n. The base case
n = 0 is trivial. For n > 0: Observe that �(B1)

is satis�ed in ~B, by correctness of ~B. Since B1

is not outranked by anything, this implies that
�(B1) is empty, so Rcd has at least one choice

for C1 and does not fail. It is easy to see that ~B
with C1 removed would be a correct answer for
the recursive call, so the inductive hypothesis
guarantees that that call does not fail either.

3.3 More E�cient Bookkeeping

T&S (p. 61) analyze the Rcd function as tak-
ing time O(mn2); in fact their analysis shows
more precisely O(Mn). We now point out that
careful bookkeeping can make it operate in time
O(M + n), which is at worst O(mn) provided
n > 0. This means that the whole RCD al-
gorithm can be implemented in time O(mnE),
i.e., it is bounded by the cost of applying all the
constraints to all the forms.
First consider the special case discussed

above, topological sort. In linear-time topolog-
ical sort, each vertex maintains a list of its chil-
dren and a count of its parents, and the program
maintains a list of vertices whose parent count
has become 0. The algorithm then requires only
O(1) time to �nd and remove each vertex, and
O(1) time to remove each edge, for a total time
of O(M + n) plus O(M + n) for initialization.
We can organize RCD similarly. We change

our representations (not a�ecting the compi-
lation time in x3.1). Constraint C need not

24

store �(C). Rather, C should maintain a list
of pointers to clauses Di in which it appears as
a disjunct (cf. \a list of its children") as well as
the integer j�(C)j (cf. \a count of its parents").
The program should maintain a list of \undomi-
nated" constraints for which j�(C)j has become
0. Finally, each clause Di should maintain a list
of constraints C such that Di appears in �(C).
Step 2 of the algorithm is now trivial: remove

the head C1 of the list of undominated con-
straints. For step 4, iterate over the stored list
of clauses Di that mention C1. Eliminate each
such Di as follows: iterate over the stored list
of constraints C whose �(C) includes Di (and
then reset that list to empty), and for each such
C, decrement j�(C)j, adding C to the undomi-
nated list if j�(C)j becomes 0.
The storage cost is still O(M+n). In particu-

lar, �(C) is now implicitly stored as j�(C)j back-
pointers from its clauses Di, and Di is now im-
plicitly stored as jDij backpointers from its dis-
juncts (e.g., C1). Since Rcd removes each con-
straint and considers each backpointer exactly
once, in O(1) time, its runtime is O(M + n).
In short, this simple bookkeeping trick elim-

inates RCD's quadratic dependence on n, the
number of constraints to rank. As already
mentioned, the total runtime is now domi-
nated by O(mnE), the preprocessing cost of
applying all the constraints to all the input
forms. Under the �nite-state assumption, this
can be be more tightly bounded as O(n �
total size of input forms) = O(n �

P
i jxij+ jyij),

since the cost of running a form through a
WDFA is proportional to the former's length.

3.4 Alternative Algorithms

T&S also propose an alternative to RCD called
Constraint Demotion (CD), which is perhaps
better-known. (They focus primarily on it, and
the textbook of (Kager, 1999) devotes a chapter
to it.) A disjunctive clause Di (compiled as in
x3.1) is processed roughly as follows: for each
C such that Di is an unsatis�ed clause of �(C),
greedily satisfy it by demoting C as little as pos-
sible. CD repeatedly processes D1; : : : Dm until
all clauses in all formulas are satis�ed.
CD can be e�ciently implemented so that

each pass through all clauses takes time propor-
tional toM . But it is easy to construct datasets
that require n + 1 passes. So the ranking step
can take time
(Mn), which contrasts unfavor-

ably with the O(M + n) time for Rcd.
CD does have the nice property (unlike RCD)

that it maintains a constraint ranking at all
times. An \online" (memoryless) version of CD
is simply to generate, process, and discard each
clause Di upon arrival of the new data pair
xi; yi; this converges, given su�cient data. But
suppose one wishes to maintain a ranking that is
consistent with all data seen so far. In this case,
CD is slower than RCD. Modifying a previously
correct ranking to remain correct given the new
clause Di requires at least one pass through all
clauses D1; : : : Di (as slow as RCD) and up to
n+1 passes (as slow as running CD on all clauses
from scratch, ignoring the previous ranking).

4 Considering All Competitors

The algorithms of the previous section only en-
sure that each attested form xi is at least as har-
monic as a given competitor yi: ~C(xi) � ~C(yi).
But for xi to be grammatical, it must be at least
as harmonic as all competitors. We would like
a method that ensures this. Such a method will
rank a constraint set C given only a set of at-
tested forms fx1; : : : xmg.
Like T&S, whose algorithm for this case is

discussed in x4.2, we will assume that we have
an e�cient computation of the OT generation

function Opt(~C; u). (See e.g. (Ellison, 1994;
Tesar, 1996; Eisner, 1997a).) This returns the

subset of Gen(u) on which ~C(�) is lexicographi-
cally minimal, i.e., the set of grammatical out-
puts for u. For purposes of analysis, we let P be
a bound on the runtime of our Opt algorithm.
We will discuss this runtime further in x6.

4.1 Generalizing RCD

We propose to solve this problem by running
something like our earlier RCD algorithm, but
considering all competitors at once.
First, as a false start, let us try to construct

the requirements �(C) in this case. Consider
the contribution of a single xi to a particular
�(C). xi demands that for any competitor y
such that C(xi) > C(y), C must be outranked
by some C 0 such that C 0(xi) < C 0(y). One set
of competitors y might all add the same clause
(a _ b _ c) to �(C); another set might add a
di�erent clause (b _ d _ e).
The trouble here is that �(C) may become

intractably large. This will happen if the con-

25

straints are roughly orthogonal to one another.
For example, suppose the candidates are bit
strings of length n, and for each k, there ex-
ists a constraint Offk preferring the kth bit to
be zero.5 If xi = 1000 � � � 0, then �(Off1) con-
tains all 2n�1 possible clauses: for example, it
contains (Off2_Off4_Off5) by virtue of the
competitor y = 0101100000 � � �. Of course, the
conjunction of all these clauses can be drasti-
cally simpli�ed in this case, but not in general.
Therefore, we will skip the step of construct-

ing formulas �(C). Rather, we will run some-
thing like Rcd directly: greedily select a con-
straint C1 that does not eliminate any of the
attested forms xi (but that may eliminate some
of its competitors), similarly select C2, etc.

In our new function RcdAll(C; ~B; fxig), the

input includes a partial hierarchy ~B listing the
constraints chosen at previous steps in the re-

cursion. (On a non-recursive call, ~B = hi.)

1. If C = ;, return hi. Otherwise:

2. By trying all constraints, �nd a constraint

C1 such that (8i)xi 2 Opt(h ~B;C1i; uxi)

3. If there is no such constraint, then fail: no
ranking can be consistent with the data.

4. Else recursively compute and return ~C =

hC1;RcdAll(C � fC1g; h ~B;C1i; fxig)i

It is easy to see by induction on jCj that
RcdAll is correct: if it does not fail, it al-

ways returns a ranking ~C such that each xi is

grammatical under the ranking h ~B; ~Ci. It is
also complete, by the same argument we used
for Rcd: if there exists a correct ranking, then
there is a choice of C1 for this call and there
exists a correct ranking on the recursive call.
The time complexity ofRcdAll isO(mn2P).

Preprocessing and compilation are no longer
necessary (that work is handled by Opt). We
note that if Opt is implemented by succes-
sive winnowing of an appropriately represented
candidate set, as is common in �nite-state ap-
proaches, then it is desirable to cache the sets
returned by Opt at each call, for use on the

recursive call. Then Opt(h ~B;C1i; uxi) need not
be computed from scratch: it is simply the sub-
set of Opt(~B; uxi) on which C1(�) is minimal.

5
Offk(x) simply extracts the kth bit of x. We will

later denote it as C:vk .

4.2 Alternative Algorithms

T&S provide a di�erent, rather attractive so-
lution to this problem, which they call Error-
Driven Constraint Demotion (EDCD). This is
identical to the \online" CD algorithm of x3.4,
except that for each attested form x that is
presented to the learner, EDCD automatically

chooses a competitor y 2 Opt(~C; ux), where ~C
is the ranking at the time.
If the supply of attested forms x1; : : : xm is

limited, as assumed in this paper, one may it-

erate over them repeatedly, modifying ~C, until
they are all optimal. When an attested form x is
suboptimal, the algorithm takes time O(nE) to
compile x; y into a disjunctive clause and time
O(n) to process that clause using CD.6

T&S show that the learner converges af-
ter seeing at most O(n2) suboptimal attested
forms, and hence after at most O(n2) passes
through x1; : : : xm. Hence the total time is
O(n3E +mn2P), where P is the time required
by Opt. This is super�cially worse than our
RcdAll, which takes time O(mn2P), but re-
ally the same since P dominates (see x6).
Nonetheless, x7 will discuss a genuine sense

in which RcdAll is more e�cient than EDCD
(and MRCD), thanks to the more limited infor-
mation it gets from Opt.
Algorithms that adjust constraint rankings

or weights along a continuous scale include the
Gradual Learning Algorithm (Boersma, 1997),
which resembles simulated annealing, and max-
imum likelihood estimation (Johnson, 2000).
These methods have the considerable advantage
that they can deal with noise and free variation
in the attested data. Both algorithms repeat
until convergence, which makes it di�cult to
judge their e�ciency except by experiment.

5 Incompletely Observed Forms

We now add a further wrinkle. Suppose the
input to the learner speci�es only C together
with attested surface sets fXig, as de�ned in
x2, rather than attested forms. This version of
the problem captures the learner's uncertainty

6Instead of using CD on the new clause only, one may
use RCD to �nd a ranking consistent with all clauses
generated so far. This step takes worst-case time O(n2)
rather than O(n) even with our improved algorithm, but
may allow faster convergence. Tesar (1997) calls this
version Multi-Recursive Constraint Demotion (MRCD).

26

about the full description of the surface mate-
rial. As before, the goal is to rank C in a manner
consistent with the input.
With this wrinkle, even determining whether

such a ranking exists turns out to be surpris-
ingly harder. In x7 we will see that it is actually
�p2-complete. Here we only show it NP-hard,
using a construction that suggests that the NP-
hardness stems from the need to consider expo-
nentially many rankings or surface forms.

5.1 NP-Hardness Construction

Given n, we will be considering �nite-state OT
grammars of the following form:

� L = f�g.

� Gen(�) = �n, the set of all length-n strings
over the alphabet � = f1; 2; : : : ng. (This
set can be represented with a straight-line
DFA of n+ 1 states and n2 arcs.)

� C = fEarlyj : 1 � j � ng, where for any
x 2 ��, the constraint Earlyj(x) counts
the number of digits in x before the �rst
occurrence of digit j, if any. For example,
Early3(2188353) = Early3(2188) = 4.
(Each such constraint can be implemented
by a WDFA of 2 states and 2n arcs.)

Earlyj favors candidates in which j ap-
pears early. The ranking hEarly5;Early8;
Early1; : : :i favors candidates of the form
581 � � �; no other candidate can be grammatical.
Given a directed graph G with n vertices

identi�ed by the digits 1; 2; : : : n. A path in
G is a string of digits j1j2j3 � � � jk such that G
has edges from j1 to j2, j2 to j3, . . . and jk�1 to
jk. Such a string is called a Hamilton path
if it contains each digit exactly once. It is an
NP-complete problem to determine whether an
arbitrary graph G has a Hamilton path.
Suppose we let the attested surface set X1 be

the set of length-n paths of G. This is a reg-
ular set that can be represented in space pro-
portional to njGj, by intersecting the DFA for
Gen(�) with a DFA that accepts all paths of G.7

Now (C; fX1g) is an instance of the ranking
problem whose size is O(njGj). We observe that
any correct ranking algorithm succeeds i� G has

7The latter DFA is isomorphic to G plus a start state.
The states are 0; 1; : : : n; there is an arc from j to j0

(labeled with j0) i� j = 0 or G has an edge from j to j0.

a Hamilton path. Why? A ranking is a vector
~C = hEarlyj1 ; : : :Earlyjni, where j1; : : : jn is
a permutation of 1; : : : n. The optimal form un-
der this ranking is in fact the string j1 � � � jn.
A string is consistent with X1 if it is a path

of G, so the ranking ~C is consistent with X1

i� j1 : : : jn is a Hamilton path of G. If such a
ranking exists, the algorithm is bound to �nd it,
and otherwise to return a failure code. Hence
the ranking problem of this section is NP-hard.

5.2 Discussion

The NP-hardness e�ectively means that (un-
less P = NP) no general algorithm can always
do better than checking each ranking or each
possible surface form individually. This is not
quite obvious, since in general, NP-hardness or
coNP-hardness can also arise from the di�culty
of checking whether a particular one of the
surface forms is compatible with a particular
one of the constraint rankings (see x6). How-
ever, that is not the case here, since the con-
straints Earlyj used in our construction inter-
act in a simple and tractable way. (In particu-
lar, the winnowed candidate set after the �rst k
constraints, Opt(hEarlyj1 ; : : :Earlyjki; �), is
simply j1 � � � jk�

n�k, a regular set that may be
represented as a DFA of size O(n2).)

Note that our construction shows NP-
hardness for even a restricted version of the
ranking problem: �nite-state grammars and �-
nite attested surface sets. The result holds up
even if we also make the bounded-violations as-
sumption (see x2): the violation count can stop
at n, since Earlyj need only work correctly on
strings of length n. We revise the construction,
modifying the automaton for each Earlyj by
intersection (more or less) with the straight-line
automaton for �n. This enlarges the input to
the ranking algorithm by a factor of O(n).

By way of mitigating this stronger result, we
note that the construction in the previous para-
graph bounds jXij by n! and the number of vio-
lations by n. These bounds (as well as jCj = n)
increase with the order n of the input graph. If
the bounds were imposed by universal grammar,
the construction would not be possible and NP-
hardness might not hold. Unfortunately, any
universal bounds on jXij or jCj would hardly be
small enough to protect the ranking algorithm
from having to solve huge instances of Hamilton

27

path.8 As for bounded violations, the only real
reason for imposing this restriction is to ensure
that the OT grammar de�nes a regular rela-
tion (Frank and Satta, 1998; Karttunen, 1998).
In recent work, Eisner (2000) argues that the
restriction is too severe for linguistic descrip-
tion, and proposes a more general class of \di-
rectional constraints" under which OT gram-
mars remain regular.9 If this relaxed restric-
tion is substituted for a universal bound on vio-
lations, the ranking problem remains NP-hard,
since each Earlyj is a directional constraint.
A more promising \way out" would be to uni-

versally restrict the size or structure of the au-
tomaton that describes the attested set. The
set used in our construction was quite arti�cial.
However, in x7 we will answer all these ob-

jections: we will show the problem to be �p2-
complete, using a natural attested set and
binary-valued �nite-state constraints (which,
however, will not interact as simply).

5.3 Available Algorithms

The NP-hardness results above suggests that ex-
isting algorithms designed for this ranking prob-
lem are either incorrect or intractable on certain
cases. Again, this does not rule out e�cient al-
gorithms for variants of the problem|see e.g.
footnote 4|nor does it rule out algorithms that
tend to perform well in the average case or on
small inputs or on real data.
T&S proposed an algorithm for this problem,

RIP/CD, but left its e�ciency and correctness
for future research (p. 39); Tesar and Smolen-
sky (2000) show that it is not guaranteed to
succeed. Tesar (1997) gives a related algorithm
based on MRCD (see x4.2), but which some-
times requires iterating over all the candidates
in an attested surface set; this might easily be
intractable even when the set is �nite.

6 Complexity of OT Generation

The ranking algorithms in xx4.1{4.2 relied on
the existence of an algorithm to compute the in-
dependently interesting \language production"

8We expect attested sets Xi to be very large|
especially in the more general case where they reect un-
certainty about the underlying form. That is why we de-
scribe them compactly by DFAs. A universal constraint
set C would also have to be very large (footnote 4).

9Allowing directional constraints would not change
any of the classi�cations in this paper.

function Opt(~C; u), which maps underlying u
to the set of optimal candidates in Gen(u).
In this section, we consider the computational

complexity of some functions related to Opt:10

� OptVal(~C; u): returns min
x2Gen(u)

~C(x).

This is the violation vector shared by all

the optimal candidates x 2 Opt(~C; u).

� OptValZ(~C; u): returns \yes" i� the last

component of the vector OptVal(~C; u) is
zero. This decision problem is interesting
only because if it cannot be computed e�-
ciently then neither can OptVal.

� Beatable(~C; u; hk1; : : : kni): returns \yes"

i� OptVal(~C; u) < hk1; : : : kni.

� Best(~C; u; hk1; : : : kni): returns \yes" i�

OptVal(~C; u) = hk1; : : : kni.

� Check(~C; x): returns \yes" i� x 2

Opt(~C; ux). This checks whether an at-

tested form is consistent with ~C.

� CheckSSet(~C;X): returns \yes" i�

Check(~C; x) for some x 2 X. This checks
whether an attested surface set (namelyX)

is consistent with ~C.

These problems place a lower bound on the di�-
culty of OT generation, since an algorithm that

found a reasonable representation of Opt(~C; u)
(e.g., a DFA) could solve them immediately,
and an algorithm that found an exemplar x 2
Opt(~C; u) could solve all but CheckSSet im-
mediately. x7 will relate them to OT learning.

6.1 Past Results

Under �nite-state assumptions, Ellison (1994)

showed that for any �xed ~C, a representa-

tion of Opt(~C; u) could be generated in time
O(juj log juj), making all the above problems
tractable. However, Eisner (1997a) showed gen-

eration to be intractable when ~C was not �xed,
but rather considered to be part of the input|
as is the case in an algorithm like RcdAll that
learns rankings. Speci�cally, Eisner showed
thatOptValZ is NP-hard. Similarly, Wareham
(1998, theorem 4.6.4) showed that a version of

10All these functions take an additional argument Gen,
which we suppress for readability.

28

Beatable is NP-hard.11 (We will obtain more
precise classi�cations below.)
To put this another way, the worst-case com-

plexity of generation problems is something like

O(juj log juj) times a term exponential in j ~Cj.
Thus there are some grammars for which gen-

eration is very di�cult by any algorithm. So
when testing exponentially many rankings (x5),
a learner may need to spend exponential time
testing an individual ranking.
We o�er an intuition as to why generation can

be so hard. In successive-winnowing algorithms
like that of (Eisner, 1997a), the candidate set
begins as a large simple set such as ��, and is
�ltered through successive constraints to end up
(typically) as a small simple set such as the sin-
gleton fx1g. Both these sets can be represented
and manipulated as small DFAs. The trouble is
that intermediate candidate sets may be com-
plex and require exponentially large DFAs to
represent. (Recall that the intersection of DFAs
can grow as the product of their sizes.)
For example, Eisner's (1997a) NP-hardness

construction (see x6.1) led to such an
intermediate candidate set, consisting of
all permutations of n digits. Such a
set arises simply from a hierarchy such
as hProject1; : : :Projectn;Shorti, where
Projectj(x) = 0 provided that j appears (at
least once) in x, and Short(x) = jxj. (Adding
a lower-ranked constraint that prefers x to en-
code a path in a graph G forces Opt to search
for a Hamilton path in G, which demonstrates
NP-hardness of OptValZ.)

6.2 Relevant Complexity Classes

The reader may recall that P � NP \ coNP �
NP [coNP � Dp � �p

2 = PNP � �p2 = NPNP.
We will review these classes as they arise. They
are classes of decision problems, i.e., func-
tions taking values in fyes,nog. Hardness and
completness for such classes are de�ned via
many-one (Karp) reductions: g is at least as
hard as f i� (8x)f(x) = g(T (x)) for some func-
tion T (x) computable in polynomial time.
OptP is a class of integer -valued functions, in-

troduced and discussed by Krentel (1988). Re-
call that NP is the class of decision problems
that can be solved in polytime by a nondeter-

11Wareham also gave hardness results for versions of
Beatable where some parameters are bounded or �xed.

ministic Turing machine (NDTM): each control
branch of the machine checks a di�erent possi-
bility and gives a yes/no answer, and the ma-
chine returns the disjunction of the answers. For
coNP, the machine returns the conjunction of
the answers. For OptP, each branch writes a bi-
nary number, and the machine returns the min-

imum (or maximum) of these answers.
A canonical example (analogous to OptVal)

is the Traveling Salesperson problem|�nding
the minimum cost TspVal(G) of all tours of an
integer-weighted graph G. It is OptP-complete
in the sense that all functions f in OptP can
be metrically reduced to it (Krentel, 1988,
p. 493). A metric reduction solves an instance
of f by transforming it to an instance of g and
then appropriately transforming the integer re-
sult of g: (8x)f(x) = T2(x; g(T1(x))) for some
polytime-computable functions T1 : �� ! ��

and T2 : �
� �N! N.

Krentel showed that OptP-complete problems
yield complete problems for other classes under
broad conditions. The question TspVal(G) �
k is of course the classical TSP decision prob-
lem, which is NP-complete. (It is analo-
gous to Beatable.) The reverse question
TspVal(G) � k (which is related to Check) is
coNP-complete. The question TspVal(G) = k
(analogous to Best) is therefore in the class
Dp = fL1 \ L2 : L1 2 NP and L2 2 coNPg
(Papadimitriou and Yannakakis, 1982), and it
is complete for that class. Finally, suppose
we wish to ask whether the optimal tour is
unique (like OptValZ and CheckSSet, this
asks about a complex property of the optimum).
Papadimitriou (1984) �rst showed this question

to be complete for �p
2 = PNP, the class of

languages decidable in polytime by determin-
istic Turing machines that have unlimited ac-
cess to an oracle that can answer NP questions
in unit time. (Such a machine can certainly
decide uniqueness: It can compute the integer
TspVal(G) by binary search, asking the oracle
for various k whether or not TspVal(G) � k,
and then ask it a �nal NP question: do there
exist two distinct tours with cost TspVal(G)?)

6.3 New Complexity Results

It is quite easy to show analogous results for
OT generation. Our main tool will be one of
Krentel's (1988) OptP-complete problems: Min-
imum Satisfying Assignment. If � is a CNF

29

boolean formula on n variables, then Msa(�)
returns the lexicographically minimal bitstring
b1b2 � � � bn that represents a satisfying assign-
ment for �, or 1n if no such bitstring exists.12

We consider only problems where we can
compute Cj(x), or determine whether x 2
Gen(u), in polytime. We further assume that
Gen produces only candidates of length polyno-
mial in the size of the problem input|or more
weakly, that our functions need not produce cor-
rect answers unless at least one optimal candi-
date is so bounded.
Our hardness results (except as noted) apply

even to OT grammars with the �nite-state and
bounded-violations assumptions (x2). In fact,
we will assume without further loss of general-
ity (Ellison, 1994; Frank and Satta, 1998; Kart-
tunen, 1998) that constraints are f0; 1g-valued.
Notation: We may assume that all formu-

las � use variables from the set fv1; v2; : : :g.
Let `(�) be the maximum i such that vi ap-
pears in �. We de�ne the constraint C� to map
strings of at least `(�) bits to f0; 1g, de�ning
C�(b1 � � � bn) = 0 i� � is true when the variables
vi are instantiated to the respective values bi.
So C� prefers bitstrings that satisfy �.
If we do not make the �nite-state assump-

tions, then any C� can be represented trivially
in size j�j. Under the �nite-state assumptions,
however, we must represent C� as a WDFA.
While this is always possible (^;_;: correspond
to intersection, union, and complementation of
regular sets), we necessarily take care in this
case to use only C� whose WDFAs are polyno-
mial in j�j. In particular, if � is a disjunction of
(possibly negated) literals, such as b2_ b3_:b7,
then the WDFA needs only `(�) + 2 states.

We begin by showing that OptVal(~C; u) is
OptP-complete. It is obvious under our restric-
tions that it is in the class OptP|indeed it is a
perfect example. Each nondeterministic branch
of the machine considers some string x of length

� p(juj), simply writing the bitstring ~C(x) if
x 2 Gen(u) and 1n otherwise.
To show OptP-hardness, we metrically reduce

Msa(�) to OptVal, where � =
Vm
i=1Di is in

12Krentel's presentation is actually in terms of Maxi-
mum Satisfying Assignment, which merely reverses the
roles of 0 and 1. Also, Krentel does not mention that
� can be restricted to (3)CNF, but his proof of OptP-
hardness makes this important fact clear.

CNF. Let n = `(�), and put L = f�g and
Gen(�) = f0; 1gn. Then Msa(�) = the last
n bits of min(0m1n; OptVal(hCD1 ; : : : CDm ;
C:v1 ; : : : C:vni; �)).

13

BecauseOptVal is OptP-complete, Krentel's
theorem 3.1 says it is complete for FPNP, the
set of functions computable in polynomial time
using an oracle for NP. This is the function class
corresponding to the decision class PNP = �p

2.

Next we show that Beatable(~C; u;~k) is
NP-complete. It is obviously in NP. For
NP-hardness, observe that CNF-Sat(�) =
Beatable(hCD1 ; : : : CDmi; �; h0; 0; : : : 0; 1i),
where again � =

Vm
i=1Di, n = `(�), and

Gen(�) = f0; 1gn.

Next consider Check(~C; x). This is sim-

ply :Beatable(~C; ux; ~C(x)). Even when re-
stricted to calls of this form, Beatable remains
NP-complete. To show this, we tweak the above

construction so we can write ~C(x) (for some x)
in place of h0; 0; : : : 0; 1i. Add the new element
� to Gen(�), and extend the constraint de�ni-
tions by putting CDi(�) = 0 i� i < m. Then

CNF-Sat(�) = Beatable(~C; �; ~C(�)). There-
fore Check is coNP-complete.

Next we consider Best(~C; u;~k). This prob-
lem is in Dp for the same simple reason that
the question TspVal(G) = k is (see above).
If we do not make the �nite-state assump-
tions, it is also Dp-hard by reduction from the
Dp-complete language Sat-Unsat = f�# :
� 2 Sat; 62 Satg (Papadimitriou and Yan-
nakakis, 1982), as follows: Sat-Unsat(�#) =
Best(hC�; C i; �; h0; 1i), renaming variables as
necessary so that � uses only v1; : : : vr and
uses only vr+1; : : : vs, and Gen(�) = f0; 1gr+s.
It is not clear whether Best remainsDp-hard

under the �nite-state assumptions. But con-

sider a more exible variantRange(~C; u; ~k1; ~k2)

that asks whether OptVal(~C; u) is between
~k1 and ~k2 inclusive. This is also in Dp,
and is Dp-hard because Sat-Unsat(�#) =
Range(hCD1 ; : : : CDm ; CD0

1
; : : : CD0

m0
i, �, h0; : : :

0; 0; : : : 1i; h0; : : : 0; 1; : : : 1i, where �, , Gen are

as before and � =
Vm
i=1Di, =

Vm0

i=1D
0

i.

Finally, we show that the decision prob-

13Without the �nite-state assumptions, we could
more simply writeMsa(�) = OptVal(hC 1 ; : : : C ni; �),
where j = � ^ :vj .

30

lem CheckSSet(~C;X) is �p
2-complete. It

is in �p
2 by an algorithm similar to the

one used for TSP uniqueness above: since
Beatable can be determined by an NP oracle,

we can �nd OptVal(~C; u) by binary search.14

An additional call to an NP oracle decides
CheckSSet(~C;X) by asking whether there is

any x 2 X such that ~C(x) = OptVal(~C; u).
The reduction to show �p

2-hardness is from
a �p

2-complete problem exhibited by Krentel
(1988, theorem 3.4): Msalsb accepts � i� the
�nal (least signi�cant) bit of Msa(�) is 0.
Given �, we use the same grammar as when
we reduced Msa to OptVal. Msalsb accepts
i� OptVal found a satisfying assignment and

the last bit of this optimal assignment was 0:
i.e., Msalsb(�) = CheckSSet(hCD1 ; : : : CDm ;
C:v1 ; : : : C:vni; 0

mf0; 1gn�10).15

Note that we did not have to use an unrea-
sonable attested surface set as in x5.1. The
set 0mf0; 1gn�10 means that the learner has
observed only certain bits of the utterance|
exactly the kind of partial observation that we
expect. So even some restriction to \reason-
able" attested sets is unlikely to help.

7 Complexity of OT Ranking

We now consider two ranking problems. These
ask whether C can be ranked in a manner con-
sistent with attested forms or attested sets:

� Rankable(C; fx1; : : : xmg): returns \yes"

i� there is a ranking ~C of C such that

Check(~C; xi) for all i.

� RankableSSet(C; fXi; : : : Xmg): returns

\yes" i� there is a ranking ~C of C such that
CheckSSet(~C;Xi) for all i.

We do not have an exact classi�cation of
Rankable at this time. Interestingly, the spe-
cial case where m = 1 and the constraints take
values in f0; 1g (which has su�ced to show most
of our hardness results) is coNP-complete|the
same as Check, which only veri�es a solution.

14This takes polynomially many steps provided that
the integer Ci(x) is bounded by 2q(jxj) for some polyno-
mial q (as it is under the �nite-state assumptions). We
have already assumed above that jxj itself is polynomial
on the input size, at least for optimal x.

15We can similarly show that OptValZ is not merely
NP-hard (Eisner, 1997a) but �p

2-complete, at least if
we drop the �nite-state assumptions: Msalsb(�) =
OptValZ(hC�; C:v1 ; : : : C:vn�1 ; C�^:vni; �).

Here Rankable need only ask whether there
exists any y 2 Gen(ux1) that satis�es a proper
superset of the constraints that x1 satis�es. For
if so, x1 cannot be optimal under any rank-
ing, and if not, then we can simply rank the
constraints that x1 satis�es above the others.
This immediately implies that the special case
is in coNP. It also implies it is coNP-hard: us-
ing the grammar from our proof that Check
is coNP-hard (x6.3), we write CNF-Sat(�) =
:Rankable(C; f�g).
As an upper bound on the complexity of

Rankable, we saw in x4.1 that the RcdAll
algorithm of x4 can decide Rankable with
O(n2m) calls to Opt (where n = jCj). In
fact, it su�ces to call Check rather than
Opt (since RcdAll only tests whether xi 2
Opt(� � �)). Since Check 2 coNP, it follows

that Rankable is in PcoNP = PNP = �p
2.

Notice that while Tesar's EDCD and MRCD
algorithms (x4.2) can also decide Rankable
with polynomially many calls to Opt|or, bet-
ter, to OptVal, since they do not use y ex-

cept to compute ~C(y). But they cannot get by
with calls to Check as RcdAll does. OptVal
is \harder" than Check (FPNP-complete vs.
coNP-complete). This is a reason to prefer
RcdAll to EDCD and MRCD.
RankableSSet is certainly in �p2, since it

may be phrased in 98 form as (9 ~C; fxi 2 Xig)

(8i; yi 2 Gen(uxi))
~C(xi) � ~C(yi). We saw in x5

that it is NP-hard even when the constraints in-
teract simply. One suspects it is �p

2-hard, since
merely verifying a solution (i.e., CheckSSet)
is �p

2-complete (x6.3). We now show that is ac-
tually �p2-hard and therefore �p2-complete.
The proof is by reduction from the canonical

�p2-complete problem QSat2(�; r), where � =Vm
i=1Di is a CNF formula with `(�) � r � 0.

This returns \yes" i�

9b1; : : : br:9br+1; : : : bs�(b1; : : : bs);

where s
def
= `(�) and �(b1; : : : bs) denotes the

truth value of � when the variables v1; : : : vs are
bound to the respective binary values b1 : : : bs.
Given an instance of QSat2 as above, put

L = f�g and Gen(�) = f0; 1gr+s [X where
X = f0; 1gr2. Let C = fCD1 ; : : : CDm ,
Cv1 ; : : : Cvr , C:v1 ; : : : C:vr ; �Xg, where all con-
straints have range f0; 1g, we extend CDi over
X by de�ning it to be satis�ed (i.e., take value

31

0) on all candidates in X, and we de�ne �X
to be satis�ed on exactly those candidates not
in X. As before, Cvi and C:vi are satis�ed on
a candidate i� its ith bit is 1 or 0 respectively,
regardless of whether the candidate is in X.
We now claim that QSat2(�; r) =

RankableSSet(C; fXg). The following
terminology will be useful in proving this:

Given a bit sequence ~b = b1; : : : br, de�ne a
~b-satis�er to be a bit string b1 � � � brbr+1 : : : bs
such that �(b1; : : : bs). For 1 � i � r, let Bi; �Bi
denote the constraints Cvi ; C:vi respectively if
bi = 1, or vice-versa if bi = 0. We then say

that a ranking ~C of C is ~b-compatible if Bi
precedes �Bi in ~C for every 1 � i � r.

Observe that a candidate y 2 Gen(�) is a ~b-
satis�er i� it satis�es the constraints B1; : : : Br
and CD1 ; : : : CDm and �X. From this it is not

di�cult to see that if ~C is a ~b-compatible rank-

ing, then y beats x (i.e., ~C(y) < ~C(x)) for any
~b-satis�er y and any x 2 X.16

Suppose RankableSSet(C; fXg). Then

choose x 2 X and ~C a ranking of C such that

x is optimal (i.e., Check(~C; x)). For each 1 �
i � r, let bi = 1 if Cvi is ranked before C:vi in
~C, otherwise bi = 0. Then ~C is a ~b-compatible
ranking. Since x 2 X is optimal, there must be

no ~b-satis�ers y, i.e., QSat2(�; r).
Conversely, suppose QSat2(�; r). This

means we can choose b1; : : : br such that there

are no ~b-satis�ers. Let ~C = hCD1 ; : : : CDm ,
B1; : : : Br, �B1; : : : �Br; �Xi. Observe that x =
b1 � � � br2 2 X satis�es the �rst m + r of the
constraints; this is optimal (i.e., Check(~C; x)),
since any better candidate would have to be a
~b-satis�er.17 Hence there is a ranking ~C consis-
tent with X, i.e., RankableSSet(C; fXg).

8 Optimization vs. Derivation

The above results mean that OT generation and
ranking are hard. We will now see that they are
harder than the corresponding problems in de-
terministic derivational theories, assuming that
the complexity classes discussed are distinct.

16 ~C(y) = ~C(x) is impossible: only x violates �X. And
~C(y) > ~C(x) is impossible, for if x satis�es any con-
straint that y violates, namely some �Bi, then it violates
a higher-ranked constraint that y satis�es, namely Bi.

17Since it would have to satisfy the �rst m + r con-
straints plus a later constraint, which could only be �X.

A derivational grammar consists of the fol-
lowing elements (cf. x2):

� an alphabet �;

� a set L � �� of underlying forms;

� a vector ~R = hR1; : : : Rni of rules, each of
which is a function from �� to ��.

The grammar maps each x 2 L to ~R(x)
def
=

Rn�� � ��R2�R1(x). If all the rules are polytime-
computable (i.e., in the function class FP), then

so is ~R. (By contrast, the OT analogue Opt

is complete for the function class FPNP.) It fol-
lows that the derivational analogues of the de-
cision problems given at the start of x6 are in
P18 (whereas we have seen that the OT versions
range from NP-complete to �p

2-complete).
How about learning? The rule ordering

problemOrderableSSet takes as input a set
R of possible rules, a unary integer n, and a set
of pairs f(u1;X1); : : : (um;Xm)g where ui 2 ��

andXi � ��. It returns \yes" i� there is a a rule

sequence ~R 2 Rn such that (8i)~R(ui) 2 Xi. It
is clear that this problem is in NP. This makes
it easier than its OT analogue RankableSSet
and possibly easier than Rankable.
For interest, we show that OrderableSSet

and its restricted version Orderable (where
the attested sets Xi are replaced by attested
forms xi) are NP-complete. As usual, our result
holds even with �nite-state restrictions: we
require the rules in R to be regular relations
(Johnson, 1972). The hardness proof is by
reduction from Hamilton Path (de�ned in
x5.1). Given a directed graph G with vertices
1; 2; : : : n, put � = f#; 0; 1; 2; : : : ng. Each
string we consider will be either � or a permuta-
tion of �. De�neMovej to be a rule that maps
�j�#i to ��#ij for any i; j 2 �, �; �; 2 ��

such that i = 0 or else G has an edge from i
to j, and acts as the identity function on other
strings. Also de�ne Accept to be a rule that
maps #� to � for any � 2 ��, and acts as
the identity function on other strings. Now
Orderable(fMove1; : : :Moven;Acceptg; n+
1; f(12 � � � n#0; �)g) decides whether G has a
Hamilton path.

18However, Wareham (1998) analyzes a more power-
ful derivational approach where the rules are nondeter-
ministic: each Ri is a relation rather than a function.
Wareham shows that generation in this case is NP-hard
(Theorem 4.3.3.1). He does not consider learning.

32

9 Conclusions

The reader is encouraged to see the abstract for
a summary of our most important results. Our
main conclusion is a warning that OT may carry
huge computational burdens. When formulat-
ing the OT learning problem, even small nods
in the direction of realism quickly drive the com-
plexity from linear-time up through coNP (for
multiple competitors) into the higher complex-
ity classes (for multiple possible surface forms).
Intuitively, an OT learner must both pick a

constraint ranking (9) and check that an at-
tested form beats all competitors under that
ranking (8). By contrast, a derivational learner
need only pick a rule ordering (9).
One constraint ranking problem we consider,

RankableSSet, is in fact a rare \natural" ex-
ample of a problem that is complete for the
higher complexity class �p2 (98). Some other
learning problems were already known to be �p2-
complete (Ko and Tzeng, 1991), but ours is dif-
ferent in that it uses only positive evidence.
This paper leaves some theoretical questions

open. Most important is the exact classi�cation
of Rankable. Second, we are interested in any
cases where problem variants (e.g., accepting vs.
rejecting the �nite-state assumptions) di�er in
complexity. Third, in the same spirit, param-
eterized complexity analyses (Wareham, 1998)
may help identify sources of hardness.
We are also interested in more realistic ver-

sions of the phonology learning problem. We
are especially interested in the possibility that
C has internal structure, as discussed in footnote
4, and in the problem of learning from general
attested sets, not just attested surface sets.
Finally, in light of our demonstrations that

e�cient algorithms are highly unlikely for the
problems we have considered, we ask: Are there
restrictions, reformulations, or randomized or
approximate methods that could provably make
OT learning tractable in some sense?

References

Paul Boersma. 1997. How we learn variation, op-
tionality, and probability. In Proc. of the Institute
of Phonetic Sciences 21, U. of Amsterdam, 43{58.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
1990. Introduction to Algorithms. MIT Press.

Jason Eisner. 1997a. E�cient generation in prim-
itive Optimality Theory. In Proceedings of
ACL/EACL, 313{320, Madrid, July.

Jason Eisner. 1997b. What constraints should OT
allow? Talk handout, Linguistic Society of Amer-
ica. Rutgers Optimality Archive ROA-204.

Jason Eisner. 2000. Directional constraint evalu-
ation in Optimality Theory. In Proceedings of
COLING, Saarbr�ucken, Germany, August.

T. Mark Ellison. 1994. Phonological derivation in
Optimality Theory. Proceedings of COLING.

Robert Frank and Giorgio Satta. 1998. Optimal-
ity Theory and the generative complexity of
constraint violability. Computational Linguistics,
24(2):307{315.

E. M. Gold. 1967. Language identi�cation in the
limit. Information and Control, 10:447{474.

C. Douglas Johnson. 1972. Formal Aspects of
Phonological Description. Mouton.

Mark Johnson. 2000. Context-sensitivity and
stochastic \uni�cation-based" grammars. Talk
presented at the CLSP Seminar Series, Johns
Hopkins University, February.

Ren�e Kager. 1999. Optimality Theory. Cambridge
University Press.

Lauri Karttunen. 1998. The proper treatment of op-
timality in computational phonology. In Proceed-
ings of International Workshop on Finite-State
Methods in NLP, 1{12, Bilkent University.

Ker-I Ko and Wen-Guey Tzeng. 1991. Three �p
2
-

complete problems in computational learning the-
ory. Computational Complexity, 1:269{310.

Mark W. Krentel. 1988. The complexity of op-
timization problems. Journal of Computer and
System Sciences, 36(3):490{509.

C. H. Papadimitriou and M. Yannakakis. 1982. The
complexity of facets (and some facets of complex-
ity). In Proc. of the 14th Annual Symposium on
Theory of Computing, 255{260, New York. ACM.

Christos H. Papadimitriou. 1984. On the complex-
ity of unique solutions. JACM, 31(2):392{400.

A. Prince and P. Smolensky. 1993. Optimality The-
ory: Constraint interaction in generative gram-
mar. Ms., Rutgers U. and U. Colorado (Boulder).

Bruce Tesar and Paul Smolensky. 1996. Learnabil-
ity in Optimality Theory (long version). Techni-
cal Report JHU-CogSci-96-3, Johns Hopkins Uni-
versity, October. Shortened version appears in
Linguistic Inquiry 29:229{268, 1998.

Bruce Tesar and Paul Smolensky. 2000. Learnability
in Optimality Theory. MIT Press, Cambridge.

Bruce Tesar. 1996. Computing optimal descriptions
for Optimality Theory grammars with context-
free position structures. In Proceedings of ACL.

Bruce Tesar. 1997. Multi-recursive constraint de-
motion. Rutgers Optimality Archive ROA-197.

Harold Todd Wareham. 1998. Systematic Param-
eterized Complexity Analysis in Computational
Phonology. Ph.D. thesis, University of Victoria.

33

Approximation and Exactness in Finite State Optimality Theory

Dale Gerdemann
University of T�ubingen

dg@sfs.nphil.uni-tuebingen.de

Gertjan van Noord
University of Groningen
vannoord@let.rug.nl

Abstract

Previous work (Frank and Satta, 1998; Kart-
tunen, 1998) has shown that Optimality Theory
with gradient constraints generally is not �nite
state. A new �nite-state treatment of gradient
constraints is presented which improves upon
the approximation of Karttunen (1998). The
method turns out to be exact, and very com-
pact, for the syllabi�cation analysis of Prince
and Smolensky (1993).

1 Introduction

Finite state methods have proven quite success-
ful for encoding rule-based generative phonol-
ogy (Johnson, 1972; Kaplan and Kay, 1994).
Recently, however, Optimality Theory (Prince
and Smolensky, 1993) has emphasized phono-
logical accounts with default constraints on sur-
face forms. While Optimality Theory (OT)
has been successful in explaining certain phono-
logical phenomena such as conspiracies (Kisse-
berth, 1970), it has been less successful for com-
putation. The negative result of Frank and
Satta (1998) has shown that in the general case
the method of counting constraint violations
takes OT beyond the power of regular relations.
To handle such constraints, Karttunen (1998)
has proposed a �nite-state approximation that
counts constraint violations up to a predeter-
mined bound. Unlike previous approaches (El-
lison, 1994; Walther, 1996), Karttunen's ap-
proach is encoded entirely in the �nite state
calculus, with no extra-logical procedures for
counting constraint violations.
In this paper, we will present a new ap-

proach that seeks to minimize constraint viola-
tions without counting. Rather than counting,
our approach employs a �lter based on matching
constraint violations against violations in alter-
natively derivable strings. As in Karttunen's

counting approach, our approach uses purely �-
nite state methods without extra-logical proce-
dures. We show that our matching approach is
superior to the counting approach for both size
of resulting automata and closeness of approxi-
mation. The matching approach can in fact ex-
actly model many OT analyses where the count-
ing approach yields only an approximation; yet,
the size of the resulting automaton is typically
much smaller.
In this paper we will illustrate the matching

approach and compare it with the counting ap-
proach on the basis of the Prince & Smolensky
syllable structure example (Prince and Smolen-
sky, 1993; Ellison, 1994; Tesar, 1995), for each
of the di�erent constraint orderings identi�ed in
Prince & Smolensky.

2 Finite State Phonology

2.1 Finite State Calculus

Finite state approaches have proven to be very
successful for eÆcient encoding of phonological
rules. In particular, the work of Kaplan and
Kay (1994) has provided a compiler from classi-
cal generative phonology rewriting rules to �nite
state transducers. This work has clearly shown
how apparently procedural rules can be recast
in a declarative, reversible framework.
In the process of developing their rule com-

piler, Kaplan & Kay also developed a high-level
�nite state calculus. They argue convincingly
that this calculus provides an appropriate high-
level approach for expressing regular languages
and relations. The alternative conception in
term of states and transitions can become un-
wieldy for all but the simplest cases.1

1Although in some cases such a direct implementation
can be much more eÆcient (Mohri and Sproat, 1996; van
Noord and Gerdemann, 1999).

34

[] empty string
[E1,E2,...,En] concatenation of E1...En

{} empty language
{E1,E2,...,En} union of E1...En

(E) grouping for op. precedence
E* Kleene closure
E+ Kleene plus
E^ optionality

E1 - E2 di�erence
~E complement
$ E containment

E1 & E2 intersection
? any symbol

E1 x E2 cross-product
A o B composition

domain(E) domain of a transduction
range(E) range of a transduction

identity(E) identity transduction2

inverse(E) inverse transduction

Table 1: Regular expression operators.

Kaplan & Kay's �nite state calculus now ex-
ists in multiple implementations, the most well-
known of which is that of Karttunen et al.
(1996). In this paper, however, we will use
the alternative implementation provided by the
FSA Utilities (van Noord, 1997; van Noord,
1999; van Noord and Gerdemann, 1999). The
FSA Utilities allows the programmer to intro-
duce new regular expression operators of arbi-
trary complexity. This higher-level interface al-
lows us to express our algorithm more easily.
The syntax of the FSA Utilities calculus is sum-
marized in Table 1.

The �nite state calculus has proven to be a
very useful tool for the development of higher-
level �nite state operators (Karttunen, 1995;
Kempe and Karttunen, 1996; Karttunen, 1996;
Gerdemann and van Noord, 1999). An inter-
esting feature of most such operators is that
they are implemented using a generate-and-test
paradigm. Karttunen (1996), for example, in-
troduces an algorithm for a leftmost-longest re-
placement operator. Somewhat simpli�ed, we
may view this algorithm as having two steps.
First, the generator freely marks up possible
replacement sites. Then the tester, which is
an identity transducer, �lters out those cases
not conforming to the leftmost-longest strategy.

2If an expression for a recognizer occurs in a context
where a transducer is required, the identity operation
will be used implicitly for coercion.

Since the generator and tester are both imple-
mented as transducers, they can be composed
into a single transducer, which eliminates the
ineÆciency normally associated with generate-
and-test algorithms.

2.2 Finite State Optimality Theory

The generate-and-test paradigm initially ap-
pears to be appropriate for optimality theory.
If, as claimed in Ellison (1994), Gen is a regu-
lar relation and if each constraint can be imple-
mented as an identity transducer, then optimal-
ity theory analyses could be implemented as in
�g. 1.

Gen
o

Constraint1
o

...
o

ConstraintN

Figure 1: Optimality Theory as Generate and
Test

The problem with this simple approach is
that in OT, a constraint is allowed to be vio-
lated if none of the candidates satisfy that con-
straint. Karttunen (1998) treats this problem
by providing a new operator for lenient compo-
sition, which is de�ned in terms of the auxiliary
operation of priority union. In the FSA Utilities
calculus, these operations can be de�ned as:3

macro(priority_union(Q,R),
{Q, ~domain(Q) o R}).

macro(lenient_composition(S,C),

priority_union(S o C, S)).

The e�ect here is that the lenient composition
of S and C is the composition of S and C, except
for those elements in the domain of S that are
not mapped to anything by S o C. For these
elements not in the domain of S o C, the e�ect
is the same as the e�ect of S alone. We use the

3The notation macro(Expr1,Expr2) is used to indi-
cate that the regular expression Expr1 is an abbreviation
for the expression Expr2. Because Prolog variables are
allowed in both expressions this turns out to be an intu-
itive and powerful notation (van Noord and Gerdemann,
1999).

35

notation S lc C as a succinct notation for the
lenient composition of S and C. Using lenient
composition an OT analysis can be written as
in �g. 2.

Gen
lc

Constraint1
lc
...

lc
ConstraintN

Figure 2: Optimality Theory as Generate and
Test with Lenient Composition

The use of lenient composition, however, is
not suÆcient for implementing optimality the-
ory. In general, a candidate string can violate
a constraint multiple times and candidates that
violate the constraint the least number of times
need to be preferred. Lenient composition is
suÆcient to prefer a candidate that violates the
constraint 0 times over a candidate that violates
the constraint at least once. However, lenient
composition cannot distinguish two candidates
if the �rst contains one violation, and the sec-
ond contains at least two violations.
The problem of implementing optimality the-

ory becomes considerably harder when con-
straint violations need to be counted. As Frank
and Satta (1998) have shown, an OT describes a
regular relation under the assumptions that Gen
is a regular relation, and each of the constraints
is a regular relation which maps a candidate
string to a natural number (indicating the num-
ber of constraint violations in that candidate),
where the range of each constraint is �nite. If
constraints are de�ned in such a way that there
is no bound to the number of constraint viola-
tions that can occur in a given string, then the
resulting OT may describe a relation that is not
regular. A simple example of such an OT (at-
tributed to Markus Hiller) is the OT in which
the inputs of interest are of the form [a*,b*],
Gen is de�ned as a transducer which maps all
a's to b's and all b's to a's, or alternatively, it
performs the identity map on each a and b:

{[(a x b)*,(b x a)*],
[(a x a)*,(b x b)*]}

This OT contains only a single constraint, �A:
a string should not contain a. As can eas-
ily be veri�ed, this OT de�nes the relation
f(anbm; anbm)jn � mg[f(anbm; bnam)jm � ng,
which can easily be shown to be non-regular.
Although the OT described above is highly

unrealistic for natural language, one might nev-
ertheless expect that a constraint on syllable
structure in the analysis of Prince & Smolensky
would require an unbounded amount of count-
ing (since words are of unbounded length), and
that therefore such analyses would not be de-
scribable as regular relations. An important
conclusion of this paper is that, contrary to this
potential expectation, such cases in fact can be
shown to be regular.

2.3 Syllabi�cation in Finite State OT

In order to illustrate our approach, we will start
with a �nite state implementation of the syllab-
i�cation analysis as presented in chapter 6 of
Prince and Smolensky (1993). This section is
heavily based on Karttunen (1998), which the
reader should consult for more explanation and
examples.
The inputs to the syllabi�cation OT are se-

quences of consonants and vowels. The input
will be marked up with onset, nucleus, coda and
unparsed brackets; where a syllable is a sequence
of an optional onset, followed by a nucleus, fol-
lowed by an optional coda. The input will be
marked up as a sequence of such syllables, where
at arbitrary places unparsed material can in-
tervene. The assumption is that an unparsed
vowel or consonant is not spelled out phoneti-
cally. Onsets, nuclei and codas are also allowed
to be empty; the phonetic interpretation of such
constituents is epenthesis.
First we give a number of simple abbrevia-

tions:

macro(cons,

{b,c,d,f,g,h,j,k,l,m,n,
p,q,r,s,t,v,w,x,y,z}).

macro(vowel, {a,e,o,u,i}).

macro(o_br, 'O['). % onset

macro(n_br, 'N['). % nucleus
macro(d_br, 'D['). % coda
macro(x_br, 'X['). % unparsed

macro(r_br, ']').
macro(bracket,

{o_br,n_br,d_br,x_br,r_br}).

36

macro(onset, [o_br,cons^ ,r_br]).
macro(nucleus, [n_br,vowel^ ,r_br]).
macro(coda, [d_br,cons^ ,r_br]).
macro(unparsed,[x_br,letter ,r_br]).

Following Karttunen, Gen is formalized as in
�g. 3. Here, parse introduces onset, coda or
unparsed brackets around each consonant, and
nucleus or unparsed brackets around each vowel.
The replace(T,Left,Right) transducer ap-
plies transducer T obligatory within the con-
texts speci�ed by Left and Right (Gerdemann
and van Noord, 1999). The replace(T) trans-
ducer is an abbreviation for replace(T,[],[]),
i.e. T is applied everywhere. The overparse
transducer introduces optional `empty' con-
stituents in the input, using the intro each pos
operator.4

In the de�nitions for the constraints, we will
deviate somewhat from Karttunen. In his for-
malization, a constraint simply describes the set
of strings which do not violate that constraint.
It turns out to be easier for our extension of
Karttunen's formalization below, as well as for
our alternative approach, if we return to the
concept of a constraint as introduced by Prince
and Smolensky where a constraint adds marks
in the candidate string at the position where
the string violates the constraint. Here we use
the symbol @ to indicate a constraint violation.
After checking each constraint the markers will
be removed, so that markers for one constraint
will not be confused with markers for the next.

macro(mark_violation(parse),
replace(([] x @),x_br,[]).

macro(mark_violation(no_coda),

replace(([] x @),d_br,[]).

macro(mark_violation(fill_nuc),

replace(([] x @),[n_br,r_br],[])).

4An alternative would be to de�ne overparse with
a Kleene star in place of the option operator. This
would introduce unbounded sequences of empty seg-
ments. Even though it can be shown that, with the con-
straints assumed here, no optimal candidate ever con-
tains two empty segments in a row (proposition 4 of
Prince and Smolensky (1993)) it is perhaps interesting
to note that de�ning Gen in this alternative way causes
cases of in�nite ambiguity for the counting approach but
is unproblematic for the matching approach.

macro(mark_violation(fill_ons),
replace(([] x @),[o_br,r_br],[])).

macro(mark_violation(have_ons),
replace(([] x @),[],n_br)

o
replace((@ x []),onset,[])).

The parse constraint simply states that a
candidate must not contain an unparsed con-
stituent. Thus, we add a mark after each un-
parsed bracket. The no coda constraint is sim-
ilar: each coda bracket will be marked. The
�ll nuc constraint is only slightly more compli-
cated: each sequence of a nucleus bracket imme-
diately followed by a closing bracket is marked.
The �ll ons constraint treats empty onsets in
the same way. Finally, the have ons constraint
is somewhat more complex. The constraint re-
quires that each nucleus is preceded by an onset.
This is achieved by marking all nuclei �rst, and
then removing those marks where in fact an on-
set is present.
This completes the building blocks we need

for an implementation of Prince and Smolen-
sky's analysis of syllabi�cation. In the follow-
ing sections, we present two alternative imple-
mentations which employ these building blocks.
First, we discuss the approach of Karttunen
(1998), based on the lenient composition oper-
ator. This approach uses a counting approach
for multiple constraint violations. We will then
present an alternative approach in which con-
straints eliminate candidates using matching.

3 The Counting Approach

In the approach of Karttunen (1998), a candi-
date set is leniently composed with the set of
strings which satisfy a given constraint. Since
we have de�ned a constraint as a transducer
which marks candidate strings, we need to al-
ter the de�nitions somewhat, but the result-
ing transducers are equivalent to the transduc-
ers produced by Karttunen (1998). We use the
(left-associative) optimality operator oo for ap-
plying an OT constraint to a given set of can-
didates:5

5The operators `o' and `lc' are assumed to be left as-
sociative and have equal precedence.

37

macro(gen, {cons,vowel}*
o

overparse
o

parse
o

syllable_structure).

macro(parse, replace([[] x {o_br,d_br,x_br},cons, [] x r_br])
o

replace([[] x {n_br,x_br}, vowel,[] x r_br])).

macro(overparse,intro_each_pos([{o_br,d_br,n_br},r_br]^)).

macro(intro_each_pos(E), [[[] x E, ?]*,[] x E]).

macro(syllable_structure,ignore([onset^,nucleus,coda^],unparsed)*).

Figure 3: The de�nition of Gen

macro(Cands oo Constraint,

Cands
o

mark_violation(Constraint)
lc

~ ($ @)

o
{ @ x [], ? - @}*).

Here, the set of candidates is �rst composed
with the transducer which marks constraint vi-
olations. We then leniently compose the re-
sulting transducer with ~($ @)6, which encodes
the requirement that no such marks should be
contained in the string. Finally, the remaining
marks (if any) are removed from the set of sur-
viving candidates. Using the optimality opera-
tor, we can then combine Gen and the various
constraints as in the following example (equiv-
alent to �gure 14 of Karttunen (1998)):

macro(syllabify, gen
oo

have_ons
oo

no_coda
oo

fill_nuc
oo

6As explained in footnote 2, this will be coerced into
an identity transducer.

parse

oo
fill_ons).

As mentioned above, a candidate string can
violate a constraint multiple times and candi-
dates that violate the constraint the least num-
ber of times need to be preferred. Lenient com-
position cannot distinguish two candidates if
the �rst contains one violation, and the sec-
ond contains at least two violations. For exam-
ple, the above syllabify transducer will assign
three outputs to the input bebop:

O[b]N[e]X[b]X[o]X[p]
O[b]N[e]O[b]N[o]X[p]
X[b]X[e]O[b]N[o]X[p]

In this case, the second output should have been
preferred over the other two, because the sec-
ond output violates `Parse' only once, whereas
the other outputs violate `Parse' three times.
Karttunen recognizes this problem and pro-
poses to have a sequence of constraints Parse0,
Parse1, Parse2 . . . ParseN, where each ParseX
constraint requires that candidates not contain
more than X unparsed constituents.7 In this
case, the resulting transducer only approximates

7This construction is similar to the construction in
Frank and Satta (1998), who used a suggestion in Ellison
(1994).

38

the OT analysis, because it turns out that for
any X there are candidate strings that this
transducer fails to handle correctly (assuming
that there is no bound on the length of candi-
date strings).

Our notation is somewhat di�erent, but
equivalent to the notation used by Karttunen.
Instead of a sequence of constraints Cons0
. . . ConsX, we will write Cands oo Prec ::
Cons, which is read as: apply constraint Cons
to the candidate set Cands with precision Prec,
where \precision" means the predetermined
bound on counting. For example, a variant of
the syllabify constraint can be de�ned as:

macro(syllabify, gen
oo

have_ons
oo

no_coda

oo
1 :: fill_nuc

oo
8 :: parse

oo
fill_ons).

Using techniques described in x5, this variant
can be shown to be exact for all strings of length
� 10. Note that if no precision is speci�ed, then
a precision of 0 is assumed.

This construct can be de�ned as follows (in
the actual implementation the regular expres-
sion is computed dynamically based on the
value of Prec):

macro(Cands oo 3 :: Constraint,
Cands

o
mark_violation(Constraint)

lc

~ ([($ @),($ @),($ @),($ @)])
lc

~ ([($ @),($ @),($ @)])
lc

~ ([($ @),($ @)])

lc
~ ($ @)

o
{ @ : [], ? - @}*).

4 The Matching Approach

4.1 Introduction

In order to illustrate the alternative approach,
based on matching we return to the bebop ex-
ample given earlier, repeated here:

c1: O[b] N[e] X[b] X[o] X[p]
c2: O[b] N[e] O[b] N[o] X[p]
c3: X[b] X[e] O[b] N[o] X[p]

Here an instance of 'X[' is a constraint viola-
tion, so c2 is the best candidate. By counting,
one can see that c2 has one violation, while c1
and c3 each have 3. By matching, one can see
that all candidates have a violation in position
13, but c1 and c3 also have violations in posi-
tions not corresponding to violations in c2. As
long the positions of violations line up in this
manner, it is possible to construct a �nite state
�lter to rule out candidates with a non-minimal
number of violations. The �lter will take the
set of candidates, and subtract from that set all
strings that are similar, except that they con-
tain additional constraint violations.
Given the approach of marking up constraint

violations introduced earlier, it is possible to
construct such a matching �lter. Consider
again the `bebop' example. If the violations are
marked, the candidates of interest are:

O[b] N[e] X[@ b] X[@ o] X[@ p]
O[b] N[e] O[b] N[o] X[@ p]
X[@ b] X[@ e] O[b] N[o] X[@ p]

For the �lter, we want to compare alterna-
tive mark-ups for the same input string. Any
other di�erences between the candidates can be
ignored. So the �rst step in constructing the �l-
ter is to eliminate everything except the markers
and the original input. For the syllable struc-
ture example, �nding the original input is easy
since it never gets changed. For the \bebop"
example, the �lter �rst constructs:

b e @ b @ o @ p
b e b o @ p

@ b @ e b o @ p

Since we want to rule out candidates with at
least one more constraint violation than nec-
essary, we apply a transducer to this set which
inserts at least one more marker. This will yield
an in�nite set of bad candidates each of which

39

has at least two markers and with one of the
markers coming directly before the �nal `p'.
In order to use this set of bad candidates as a

�lter, brackets have to be reinserted. But since
the �lter does not care about positions of brack-
ets, these can be inserted randomly. The result
is the set of all strings with at least two mark-
ers, one of the markers coming directly before
the �nal `p', and arbitrary brackets anywhere.
This set includes the two candidates c1 and c3
above. Therefore, after applying this �lter only
the optimal candidate survives. The three steps
of deleting brackets, adding extra markers and
randomly reinserting brackets are encoded in
the add violation macro given in �g. 4.
The application of an OT constraint can now

be de�ned as follows, using an alternative de�-
nition of the optimality operator:

macro(Cands oo Constraint,

Cands

o
mark_violation(Constraint)

o
~ range(Cands

o

mark_violation(Constraint)
o

add_violation)

o
{(@ x []),(? - @)}*).

Note that this simple approach only works in
cases where constraint violations line up neatly.
It turns out that for the syllabi�cation example
discussed earlier that this is the case. Using the
syllabify macro given above with this match-
ing implementation of the optimality operator
produces a transducer of only 22 states, and can
be shown to be exact for all inputs!

4.2 Permutation

In the general case, however, constraint viola-
tions need not line up. For example, if the order
of constraints is somewhat rearranged as in:

parse oo fill_ons oo have_ons
oo fill_nuc oo no_coda

the matching approach is not exact: it will pro-
duce wrong results for an input such as `arts':

N[a]D[r]O[t]N[]D[s] %cf: art@s
N[a]O[r]N[]D[t]O[s]N[] %cf: ar@ts@

Here, the second output should not be produced
because it contains one more violation of the
fill nuc constraint. In such cases, a limited
amount of permutation can be used in the �l-
ter to make the marker symbols line up. The
add violation �lter of �g. 4 can be extended
with the following transducer which permutes
marker symbols:

macro(permute_marker,
[{[? *,(@ x []),? *,([] x @)],
[? *,([] x @),? *,(@ x [])]}*,? *]).

Greater degrees of permutation can be achieved
by composing permute marker several times.
For example:8

macro(add_violation(3),
{(bracket x []), (? - bracket)}*

o
[[? *,([] x @)]+, ? *]

o

permute_marker
o

permute_marker
o

permute_marker

o
{([] x bracket), (? - bracket)}*).

So we can incorporate a notion of `precision' in
the de�nition of the optimality operator for the
matching approach as well, by de�ning:

macro(Cands oo Prec :: Constraint),
Cands
o

mark_violation(Constraint)

o
~ range(Cands

o
mark_violation(Constraint)

o

add_violation(Prec))
o

{ (@ x []),(? - @)}*).

8An alternative approach would be to compose
the permute marker transducers before inserting extra
markers. Our tests, however, show this alternative to be
somewhat less eÆcient.

40

macro(add_violation,
{(bracket x []), ? - bracket}* % delete brackets

o
[[? *,([] x @)]+, ? *] % add at least one @

o
{([] x bracket), ? - bracket}* % reinsert brackets

).

Figure 4: Macro to introduce additional constraint violation marks.

The use of permutation is most e�ective when
constraint violations in alternative candidates
tend to occur in corresponding positions. In
the worst case, none of the violations may line
up. Suppose that for some constraint, the input
\bebop" is marked up as:

c1: @ b @ e b o p
c2: b e @ b @ o @ p

In this case, the precision needs to be two in
order for the markers in c1 to line up with
markers in c2. Similarly, the counting approach
also needs a precision of two in order to count
the two markers in c1 and prefer this over
the greater than two markers in c2. The gen-
eral pattern is that any constraint that can be
treated exactly with counting precision N, can
also be handled by matching with precision less
than or equal to N. In the other direction, how-
ever, there are constraints, such as those in the
Prince and Smolensky syllabi�cation problem,
that can only be exactly implemented by the
matching approach.

For each of the constraint orderings discussed
by Prince and Smolensky, it turns out that at
most a single step of permutation (i.e. a pre-
cision of 1) is required for an exact implemen-
tation. We conclude that this OT analysis of
syllabi�cation is regular. This improves upon
the result of Karttunen (1998). Moreover, the
resulting transducers are typically much smaller
too. In x5 we present a number of experiments
which provide evidence for this observation.

4.3 Discussion

Containment. It might be objected that the
Prince and Smolensky syllable structure exam-
ple is a particularly simple containment theory
analysis and that other varieties of OT such as
correspondence theory (McCarthy and Prince,

1995) are beyond the scope of matching.9 In-
deed we have relied on the fact that Gen only
adds brackets and does not add or delete any-
thing from the set of input symbols. The �lter
that we construct needs to compare candidates
with alternative candidates generated from the
same input.
If Gen is allowed to change the input then a

way must be found to remember the original in-
put. Correspondence theory is beyond the scope
of this paper, however a simple example of an
OT whereGen modi�es the input is provided by
the problem described in x2.2 (from Frank and
Satta (1998)). Suppose we modify Gen here so
that its output includes a representation of the
original input. One way to do this would be
to adopt the convention that input symbols are
marked with a following 0 and output symbols
are marked with a following 1. With this con-
vention Gen becomes:

macro(gen,
{[(a x [a,0,b,1])*,(b x [b,0,a,1])*],
[(a x [a,0,a,1])*,(b x [b,0,b,1])*]})

Then the constraint against the symbol a
needs to be recast as a constraint against
[a,1].10 And, whereas above add violation
was previously written to ignore brackets, for
this case it will need to ignore output symbols

9Kager (1999) compares containment theory and cor-
respondence theory for the syllable structure example.

10OT makes a fundamental distinction between
markedness constraints (referring only to the surface)
and faithfulness constraints (referring to both surface
and underlying form). With this mark-up convention,
faithfulness constraints might be allowed to refer to both
symbols marked with 0 and symbols marked with 1. But
note that the Fill and Parse constraints in syllabi�ca-
tion are also considered to be faithfulness constraints
since they correspond to epenthesis and deletion respec-
tively.

41

(marked with a 1). This approach is easily im-
plementable and with suÆcient use of permuta-
tion, an approximation can be achieved for any
predetermined bound on input length.

Locality. In discussing the impact of their re-
sult, Frank and Satta (1998) suggest that the
OT formal system is too rich in generative ca-
pacity. They suggest a shift in the type of op-
timization carried out in OT, from global op-
timization over arbitrarily large representations
to local optimization over structural domains of
bounded complexity. The approach of matching
constraint violations proposed here is based on
the assumption that constraint violations can
indeed be compared locally.
However, if locality is crucial then one might

wonder why we extended the local matching
approach with global permutation steps. Our
motivation for the use of global permutation is
the observation that it ensures the matching ap-
proach is strictly more powerful than the count-
ing approach. A weaker, and perhaps more in-
teresting, treatment is obtained if locality is en-
forced in these permutation steps as well. For
example, such a weaker variant is obtained if the
following de�nition of permute marker is used:

macro(permute_marker, % local variant

{? ,[([] x @),?,(@ x [])],

[(@ x []),?,([] x @)]}*).

This is a weaker notion of permutation than the
de�nition given earlier. Interestingly, using this
de�nition resulted in equivalent transducers for
all of the syllabi�cation examples given in this
paper. In the general case, however, matching
with local permutation is less powerful.
Consider the following arti�cial example. In

this example, inputs of interest are strings over
the alphabet fb; cg. Gen introduces an a before
a sequence of b's, or two a's after a sequence
of b's. Gen is given as an automaton in �g. 5.
There is only a single constraint, which forbids
a. It can easily be veri�ed that a matching ap-
proach with global permutation using a preci-
sion of 1 exactly implements this OT. In con-
trast, both the counting approach as well as a
matching approach based on local permutation
can only approximate this OT.11

11Matching with local permutation is not strictly more
powerful than counting. For an example, change Gen in

0

c

3

[]:a

4
b

1

c
b

2

c

b

b

5
[]:a

[]:a

Figure 5: Gen for an example for which local
permutation is not suÆcient.

5 Comparison

In this section we compare the two alternative
approaches with respect to accuracy and the
number of states of the resulting transducers.
We distinguish between exact and approximat-
ing implementations. An implementation is ex-
act if it produces the right result for all possible
inputs.
Assume we have a transducer T which cor-

rectly implements an OT analysis, except that
it perhaps fails to distinguish between di�erent
numbers of constraint violations for one or more
relevant constraints. We can decide whether
this T is exact as follows. T is exact if and
only if T is exact with respect to each of the
relevant constraints, i.e., for each constraint, T
distinguishes between di�erent numbers of con-
straint violations. In order to check whether T
is exact in this sense for constraint C we create
the transducer is exact(T,C):

macro(is_exact(T,C),

T
o

mark_violation(C)

o
{(? - @) x [], @}*).

If there are inputs for which this transducer
produces multiple outputs, then we know that
T is not exact for C; otherwise T is exact for
C. This reduces to the question of whether
is exact(T,C) is ambiguous. The question

this example to: f[([] x a),fb,cg*],[fb,cg*,([] x
[a,a])]g. This can be exactly implemented by counting
with a precision of one. Matching with local permuta-
tion, however, cannot exactly implement this case, since
markers would need to be permuted across unbounded
sequences.

42

of whether a given transducer is ambiguous is
shown to be decidable in (Blattner and Head,
1977); and an eÆcient algorithm is proposed in
(Roche and Schabes, 1997).12 Therefore, in or-
der to check a given transducer T for exactness,
it must be the case that for each of the con-
straints C, is exact(T,C) is nonambiguous.
If a transducer T is not exact, we characterize

the quality of the approximation by considering
the maximum length of input strings for which
T is exact. For example, even though T fails the
exactness check, it might be the case that

[? ^,? ^,? ^,? ^,? ^]
o
T

in fact is exact, indicating that T produces the
correct result for all inputs of length � 5.
Suppose we are given the sequence of con-

straints:

have_ons >> fill_ons >> parse

>> fill_nuc >> no_coda

and suppose furthermore that we require that
the implementation, using the counting ap-
proach, must be exact for all strings of length
� 10. How can we determine the level of pre-
cision for each of the constraints? A simple
algorithm (which does not necessarily produce
the smallest transducer) proceeds as follows.
Firstly, we determine the precision of the �rst,
most important, constraint by checking exact-
ness for the transducer

gen oo P :: have_ons

for increasing values for P. As soon as we �nd
the minimal P for which the exactness check suc-
ceeds (in this case for P=0), we continue by
determining the precision required for the next
constraint by �nding the minimal value of P in:

gen oo 0 :: have_ons oo P :: fill_ons

We continue in this way until we have deter-
mined precision values for each of the con-
straints. In this case we obtain a transducer
with 8269 states implementing:

12We have adapted the algorithm proposed in (Roche
and Schabes, 1997) since it fails to treat certain types of
transducer correctly; we intend to provide details some-
where else.

gen oo 0 :: have_ons
oo 1 :: fill_ons
oo 8 :: parse
oo 5 :: fill_nuc

oo 4 :: no_coda

In contrast, using matching an exact implemen-
tation is obtained using a precision of 1 for the
fill nuc constraint; all other constraints have
a precision of 0. This transducer contains only
28 states.
The assumption in OT is that each of the

constraints is universal, whereas the constraint
order di�ers from language to language. Prince
and Smolensky identify nine interestingly dif-
ferent constraint orderings. These nine \lan-
guages" are presented in table 2.
In table 3 we compare the size of the resulting

automata for the matching approach, as well
as for the counting approach, for three di�erent
variants which are created in order to guarantee
exactness for strings of length � 5, � 10 and
� 15 respectively.
Finally, the construction of the transducer us-

ing the matching approach is typically much
faster as well. In table 4 some comparisons are
summarized.

6 Conclusion

We have presented a new approach for im-
plementing OT which is based on matching
rather than the counting approach of Karttunen
(1998). The matching approach shares the ad-
vantages of the counting approach in that it uses
the �nite state calculus and avoids o�-line sort-
ing and counting of constraint violations. We
have shown that the matching approach is su-
perior in that analyses that can only be approx-
imated by counting can be exactly implemented
by matching. Moreover, the size of the resulting
transducers is signi�cantly smaller.
We have shown that the matching approach

along with global permutation provides a pow-
erful technique technique for minimizing con-
straint violations. Although we have only ap-
plied this approach to permutations of the
Prince & Smolensky syllabi�cation analysis, we
speculate that the approach (even with local
permutation) will also yield exact implementa-
tions for most other OT phonological analyses.
Further investigation is needed here, particu-
larly with recent versions of OT such as cor-

43

id constraint order
1 have ons � fill ons � no coda � fill nuc � parse
2 have ons � no coda � fill nuc � parse � fill ons
3 no coda � fill nuc � parse � fill ons � have ons
4 have ons � fill ons � no coda � parse � fill nuc
5 have ons � no coda � parse � fill nuc � fill ons
6 no coda � parse � fill nuc � fill ons � have ons
7 have ons � fill ons � parse � fill nuc � no coda
8 have ons � parse � fill ons � fill nuc � no coda

9 parse � fill ons � have ons � fill nuc � no coda

Table 2: Nine di�erent constraint orderings for syllabi�cation, as given in Prince and Smolensky,
chapter 6.

Method Exactness Constraint order
1 2 3 4 5 6 7 8 9

matching exact 29 22 20 17 10 8 28 23 20
counting � 5 95 220 422 167 10 240 1169 2900 4567
counting � 10 280 470 1667 342 10 420 8269 13247 16777
counting � 15 465 720 3812 517 10 600 22634 43820 50502

Table 3: Comparison of the matching approach and the counting approach for various levels of
exactness. The numbers indicate the number of states of the resulting transducer.

respondence theory. Another line of further re-
search will be the proper integration of �nite
state OT with non-OT phonological rules as dis-
cussed, for example, in papers collected in Her-
mans and van Oostendorp (1999) .

Finally, we intend also to investigate the ap-
plication of our approach to syntax. Karttunen
(1998) suggests that the Constraint Grammar
approach of Karlsson et al. (1995) could be
implemented using lenient composition. If this
is the case, it could most probably be imple-
mented more precisely using the matching ap-
proach. Recently, Oazer (1999) has presented
an implementation of Dependency syntax which
also uses lenient composition with the counting
approach. The alternative of using a matching
approach here should be investigated.

References

Meera Blattner and Tom Head. 1977. Single-
valued a-transducers. Journal of Computer
and System Sciences, 15(3):328{353.

Mark T. Ellison. 1994. Phonological deriva-
tion in optimality theory. In Proceedings of
the 15th International Conference on Compu-

tational Linguistics (COLING), pages 1007{
1013, Kyoto.

Robert Frank and Giorgio Satta. 1998. Opti-
mality theory and the computational com-
plexity of constraint violability. Computa-
tional Linguistics, 24:307{315.

Dale Gerdemann and Gertjan van Noord. 1999.
Transducers from rewrite rules with backref-
erences. In Ninth Conference of the European
Chapter of the Association for Computational
Linguistics, Bergen Norway.

Ben Hermans and Marc van Oostendorp, ed-
itors. 1999. The Derivational Residue in
Phonological Optimality Theory, volume 28
of Linguistik Aktuell/Linguistics Today. John
Benjamins, Amsterdam/Philadelphia.

C. Douglas Johnson. 1972. Formal Aspects
of Phonological Descriptions. Mouton, The
Hague.

Ren�e Kager. 1999. Optimality Theory. Cam-
bridge UP, Cambridge, UK.

Ronald Kaplan and Martin Kay. 1994. Regular
models of phonological rule systems. Compu-
tational Linguistics, 20(3):331{379.

Fred Karlsson, Atro Voutilainen, Juha Heikkil�a,
and Arto Anttila. 1995. Constraint Gram-

44

Method Exactness Constraint order
1 2 3 4 5 6 7 8 9

matching exact 1.0 0.9 0.9 0.9 0.8 0.7 1.5 1.3 1.1
counting � 5 0.9 1.7 4.8 1.6 0.5 1.9 10.6 18.0 30.8
counting � 10 2.8 4.7 28.6 4.0 0.5 4.2 83.2 112.7 160.7
counting � 15 6.8 10.1 99.9 8.6 0.5 8.2 336.1 569.1 757.2

Table 4: Comparison of the matching approach and the counting approach for various levels of
exactness. The numbers indicate the CPU-time in seconds required to construct the transducer.

mar: A Language-Independent Framework
for Parsing Unrestricted Text. Mouton de
Gruyter, Berlin/New York.

Lauri Karttunen, Jean-Pierre Chanod, Gregory
Grefenstette, and Anne Schiller. 1996. Regu-
lar expressions for language engineering. Nat-
ural Language Engineering, 2(4):305{238.

Lauri Karttunen. 1995. The replace operator.
In 33th Annual Meeting of the Association
for Computational Linguistics, M.I.T. Cam-
bridge Mass.

Lauri Karttunen. 1996. Directed replacement.
In 34th Annual Meeting of the Association for
Computational Linguistics, Santa Cruz.

Lauri Karttunen. 1998. The proper treatment
of optimality theory in computational phonol-
ogy. In Finite-state Methods in Natural Lan-
guage Processing, pages 1{12, Ankara.

Andr�e Kempe and Lauri Karttunen. 1996. Par-
allel replacement in the �nite-state calculus.
In Proceedings of the 16th International Con-
ference on Computational Linguistics (COL-
ING), Copenhagen, Denmark.

Charles Kisseberth. 1970. On the functional
unity of phonological rules. Linguistic In-
quiry, 1:291{306.

John McCarthy and Alan Prince. 1995. Faith-
fulness and reduplicative identity. In Jill
Beckman, Laura Walsh Dickey, and Suzanne
Urbanczyk, editors, Papers in Optimality
Theory, pages 249{384. Graduate Linguistic
Student Association, Amherst, Mass. Uni-
versity of Massachusetts Occasional Papers in
Linguistics 18.

Mehryar Mohri and Richard Sproat. 1996. An
eÆcient compiler for weighted rewrite rules.
In 34th Annual Meeting of the Association for
Computational Linguistics, Santa Cruz.

Kemal Oazer. 1999. Dependency parsing with
an extended �nite state approach. In 37th

Annual Meeting of the Association for Com-
putational Linguistics, pages 254{260.

Alan Prince and Paul Smolensky. 1993. Opti-
mality theory: Constraint interaction in gen-
erative grammar. Technical Report TR-2,
Rutgers University Cognitive Science Center,
New Brunswick, NJ. MIT Press, To Appear.

Emmanuel Roche and Yves Schabes. 1997. In-
troduction. In Emmanuel Roche and Yves
Schabes, editors, Finite-State Language Pro-
cessing. MIT Press, Cambridge, Mass.

Bruce Tesar. 1995. Computational Optimality
Theory. Ph.D. thesis, University of Colorado,
Boulder.

Gertjan van Noord and Dale Gerdemann. 1999.
An extendible regular expression compiler for
�nite-state approaches in natural language
processing. In O. Boldt, H. Juergensen, and
L. Robbins, editors,Workshop on Implement-
ing Automata; WIA99 Pre-Proceedings, Pots-
dam, Germany.

Gertjan van Noord. 1997. FSA Utilities: A
toolbox to manipulate �nite-state automata.
In Darrell Raymond, Derick Wood, and
Sheng Yu, editors, Automata Implementa-
tion, pages 87{108. Springer Verlag. Lecture
Notes in Computer Science 1260.

Gertjan van Noord. 1999. FSA6 refer-
ence manual. The FSA Utilities tool-
box is available free of charge un-
der Gnu General Public License at
http://www.let.rug.nl/~vannoord/Fsa/.

Markus Walther. 1996. OT simple { a
construction-kit approach to optimality the-
ory implementation. ROA-152-1096.

45

Multi-Syllable Phonotactic Modelling

Anja Belz
CCSRC, SRI International
23 Millers Yard, Mill Lane
Cambridge CB2 1RQ, UK

anjab@cam.sri.com

Abstract

This paper describes a novel approach to construct-
ing phonotactic models. The underlying theoretical
approach to phonological description is the multi-
syllable approach in which multiple syllable classes
are de�ned that re�ect phonotactically idiosyncratic
syllable subcategories. A new �nite-state formalism,
ofs Modelling, is used as a tool for encoding, au-
tomatically constructing and generalising phonotac-
tic descriptions. Language-independent prototype
models are constructed which are instantiated on the
basis of data sets of phonological strings, and gener-
alised with a clustering algorithm. The resulting ap-
proach enables the automatic construction of phono-
tactic models that encode arbitrarily close approxi-
mations of a language's set of attested phonological
forms. The approach is applied to the construction
of multi-syllable word-level phonotactic models for
German, English and Dutch.

1 Introduction

Finite-state models of phonotactics have been
used in automatic language identi�cation (Zissman,
1995; Belz, 2000), in speech recognition (Carson-
Berndsen, 1992; Jusek et al., 1994; Jusek et al.,
1996; Carson-Berndsen, 2000), and optical character
recognition, among other applications. While statis-
tical models (n-gram or Markov models) are derived
automatically from data, their symbolic equivalents
are usually constructed in a painstaking manual
process, and � because based on standard single-
syllable phonological analyses � tend to overgen-
eralise greatly over a language's set of wellformed
phonological strings. This paper describes methods
that enable the automatic construction of symbolic
phonotactic models that are more accurate represen-
tations of phonological grammars.
The underlying theoretical approach to phonolog-

ical description is theMulti-Syllable Approach (Belz,
1998; Belz, 2000). Syllable phonotactics vary consid-
erably not only in correlation with a syllable's posi-
tion within a word, but also with other factors such
as position relative to word stress. Analyses based
on multiple syllable classes de�ned to re�ect such

factors can more accurately account for the phonolo-
gies of natural languages than analyses based on a
single syllable class.
Object-Based Finite State Modelling (previously

described in Belz, 2000) is used as an encoding,
construction and generalisation tool, and facili-
tates Language-Independent Prototyping , where in-
completely speci�ed generic models are constructed
for groups of languages and subsequently instanti-
ated and generalised automatically to fully spec-
i�ed, language-speci�c models using data sets of
phoneme strings from individual languages. The
theory-driven (manual) component in this construc-
tion method is restricted to specifying the maxi-
mum possible ways in which syllable phonotactics
may di�er in a family of languages, without hard-
wiring the di�erences into the �nal models. The ac-
tual construction of models for individual languages
is a data-driven process and is done automatically.
Sets of German, English and Dutch syllables were

used extensively in the research described in this
paper, both as a source of evidence in support of
the multi-syllable approach (Section 2) and as data
in automatic phonotactic model construction (Sec-
tion 4). All syllable sets were derived from sets of
fully syllabi�ed, phonetically transcribed forms col-
lected from the lexical database celex (Baayen et
al., 1995). celex contains compounds and phrases
as well as single words. Phonological words were de-
�ned as any phonetic sequence with a single primary
stress marker, and all other entries were disregarded.

2 Multi-Syllable Phonotactics

The multi-syllable approach works on the assump-
tion that single-syllable approaches cannot ade-
quately capture the phonological grammars of nat-
ural languages, because they fail to account for the
signi�cant syllable-based phonotactic variation re-
sulting from a range of factors that is evident in
natural languages, and consequently overgeneralise
greatly.

Single-syllable analyses. The traditional view
is that all syllables in a language share the same
structure and compositional constraints which can

46

German English Dutch
all unique (%) all unique (%) all unique (%)

Initial 3,806 624 (16.4%) 6,177 2,657 (43.01%) 5,476 947 (17.29%)
Medial 3,832 358 (9.34%) 3,149 344 (10.92%) 5,446 723 (13.28%)
Final 7,040 2,133 (30.3%) 6,750 2,132 (31.59%) 7,279 1,786 (24.54%)
Monosyllables 5,114 855 (16.72%) 7,265 2,963 (40.78%) 5,641 718 (12.73%)
TOTAL 10,606 3,970 (37.43%) 14,333 8,096 (56.49%) 11,448 4,174 (36.46%)

Table 1: Syllable set sizes and number of syllables unique to each set (position).

be captured by a single analysis. In many languages,
however, the sets of word-initial and/or word-�nal
consonant clusters di�er signi�cantly from other
consonantal clusters (Goldsmith, 1990, p. 107�, lists
several examples from di�erent languages). Such id-
iosyncratic clusters have been treated as `termina-
tions', `appendices', or as `extrasyllabic' (Goldsmith,
1990), and integrated along with syllables at the
word-level. Similar, apparently irregular phenom-
ena occur in correlation with tone and stress, and
the �rst and last vocalic segments in phonological
words are often analysed as `extratonal' and `extra-
metrical'. However, such apparent irregularities are
not restricted to the beginnings and ends of phono-
logical words, and the phonotactics of syllables are
a�ected by a range of factors other than position,
which are di�cult if not impossible to account for
by the notion of extrasyllabicity.
Three problematic issues arise in single-syllable

analyses. Firstly, if a phonotactic model assumes
a single syllable class for a language, and if the
language has idiosyncratic word-initial and word-
�nal phonotactics, then the set of possible phono-
logical words that the model encodes is necessar-
ily too large, and includes words that form system-
atic (rather than accidental) gaps in the languages.
Secondly, if extrasyllabicity is used to account for
phonotactic idiosyncracies, then the resulting the-
ory of syllable structure fails to account for ev-
erything that it is intended to account for, and is
forced to integrate constituents that are not sylla-
bles (the extrasyllabic material) at the word level.
Thirdly, the notion of extrasyllabicity only works
for cases where phonemic material can be segmented
o� adjacent syllables (most easily done at the begin-
nings and ends of words), and cannot be used to
account for syllable-internal variation. The alterna-
tive o�ered by multi-syllable analyses is to make the
universal assumption that position, stress and tone
(among other factors) will result in variation in syl-
lable phonotactics that are not necessarily restricted
to any particular part of words, and to account for
such variation systematically by the use of di�erent
syllable classes.

Related approaches. The idea to discriminate
between di�erent syllable types, classi�ed by word

position and position with respect to the stressed
syllable has been explored and utilised in previous
research, for example in fsa-based phonotactic mod-
els, typed formalisms, and in stochastic production
rule grammars. Carson-Berndsen (1992) uses two
separate fsas to encode the phonotactics of full and
reduced syllables, and Jusek et al. (1994) distin-
guish between stressed and unstressed syllables. In
a typed feature system of morpho-phonology, Mas-
troianni and Carpenter (1994) de�ne subtypes of the
general type syllable.
The most closely related existing research is that

presented by Coleman and Pierrehumbert (1997).
The paper examines di�erent possibilities for using
a probabilistic grammar for English words to model
native speakers' acceptability judgments. The pro-
duction rule grammar encodes the phonotactics of
English monosyllabic and bisyllabic words. Di�er-
ent probability distributions over paths in derivation
trees are investigated which model likelihood of ac-
ceptability to native speakers, rather than likelihood
of occurrence. To build a grammar that accounts
for interactions among onsets and rhymes, location
with respect to the word edge and word stress pat-
terns, six syllable types are distinguished which re-
�ect possible combinations of the features strong,
weak, initial and �nal. The subsyllabic constituents
onset and rhyme are similarly marked for stress and
position.
The present research extends existing work on syl-

lable subclasses by applying the multi-syllable ap-
proach systematically to model the entire phono-
tactics of languages, and by using it for language-
independent prototyping (see Section 3.3 below).

Position-correlated phonotactic variation.
Table 1 shows statistics for sets of monosyllabic
words and initial, medial and �nal syllables in
celex. For each language and each syllable set, the
table shows the size of the set (e.g. there are 3; 806
di�erent initial German syllables in celex), and
the size of its subset of syllables that do not occur in
any other set (e.g. 624 out of 3; 806 initial German
syllables, or 16.4%, only occur word-initially). For
all three languages, the �gures show signi�cant
di�erences between the sets of syllables that can
occur in the four di�erent positions and their unique

47

Medial Final Mono
Initial 2,619 (0.52) 1,466 (0.16) 1,392 (0.18)

German: Medial 1,928 (0.22) 1,185 (0.15)
Final 3,873 (0.47)
Initial 1,860 (0.25) 1,920 (0.17) 2,266 (0.20)

English: Medial 1,787 (0.22) 1,008 (0.11)
Final 3,576 (0.34)
Initial 3,594 (0.49) 2,764 (0.28) 3,003 (0.37)

Dutch: Medial 3,279 (0.35) 2,428 (0.28)
Final 4,320 (0.50)

Table 2: Intersections and set similarities for German, English and Dutch syllables (position).

German English Dutch
all unique (%) all unique (%) all unique (%)

Stressed 8,919 2,977 (33.37%) 9,399 5,280 (56.18%) 9,934 3,484 (35.07%)
Pretonic 989 30 (3.03%) 3,201 1,362 (42.55%) 1,780 71 (3.99%)
Posttonic 5,897 388 (6.58%) 4,754 670 (14.09%) 5,960 517 (8.67%)
Plain 6,819 229 (3.36%) 6,020 944 (15.68%) 6,662 176 (2.64%)
TOTAL 10,598 3,624 (34.20%) 14,333 8,256 (57.60%) 11,443 4,248 (37.12%)

Table 3: Syllable set sizes and number of syllables unique to each set (stress).

subsets. In German and Dutch, �nal syllables are
particularly idiosyncratic, with 30:3% and 24:54%,
respectively, not occurring in any other position. In
English, all syllable sets except the medial syllables
display a high degree of idiosyncracy. Table 2
shows the size of the intersections between the
syllable sets, and the more objective measure of
set similarity in brackets1. In German and Dutch,
the similarity between initial and medial syllables,
and between �nal and monosyllables is particularly
high. The similarity between the least similar of
syllable sets is much greater in Dutch than in either
English or German. In English, only the �nal and
monosyllables display any signi�cant similarity.
Average set similarity is highest in Dutch (0.37),
followed by German (0.28), and English (0.21).

Stress-correlated phonotactic variation. Ta-
ble 3 shows analogous statistics for phonotactic vari-
ation correlated with word stress. Set sizes and
unique subset sizes are shown for the set of sylla-
bles that carry primary stress (stressed), those im-
mediately preceding stress (pretonic), those imme-
diately following stress (posttonic), and all others
(plain). In all three languages, the set of stressed
syllables has least in common with other sets. In
English, this is closely followed by the pretonic syl-
lables. The average percentage of syllables unique
to a set is highest in English, followed by Dutch and
then German.

1Set similarity here is the standard measure of the size of
the intersection over the size of the union of two sets S1 and
S2, or jS1 \ S2j=jS1 [S2 j (not de�ned for S1 = S2 = ;).

These statistics show not only that there is signi�-
cant syllable-level variation in the phonotactics of all
three languages, but also that the simple strategy of
subdividing the set of all syllables on the basis of po-
sition and stress succeeds in capturing at least some
of this variation. If a high percentage of syllables
in one subcategory do not occur in any other, then
distinguishing this syllable subcategory in a phono-
tactic model will help reduce overgeneralisation.

3 Encoding, Construction and
Generalisation of Phonotactic
Models

3.1 Object-Based Finite-State Modelling

The ofs Modelling formalismwas used as a tool for
encoding, constructing and generalising phonotactic
models in the research described in Section 4. ofs

Modelling consists of three main components, (i) a
representation formalism, (ii) a mechanism for auto-
matic model construction, and (iii) mechanisms for
model generalisation. Brief summaries of the com-
ponents that were used in the research described in
this paper are given here (for full details see Belz,
2000).
Underlying ofs Modelling is a set of assump-

tions about linguistic description that shares many
of the fundamental tenets of declarative phonol-
ogy (Bird, 1991, for example). This set of as-
sumptions includes a strictly non-derivational, non-
transformational and constraint-based approach to
linguistic description, and the principle of constraint
inviolability.

48

The ofs formalism is a declarative, monostratal
�nite-state representation formalism that is intu-
itively readable, facilitates the automatic data-
driven construction of models, and permits the in-
tegration of available prior, theoretical knowledge.
The derivations (trees or brackettings) de�ned by
ofs models correspond to context-free derivations
with a limited tree depth or degree of nesting of
brackets. This means that in ofs models (unlike
in other normal forms for regular grammars), rules
(hence expansions or brackets) can, if appropriately
de�ned, systematically correspond to standard lin-
guistic objects, the reason why the formalism is
called object-based .

ofs Model O = (N; T; P; n+ 1)
n: On

0) !n0

n-1: On�1
0) !n�10

On�1
1) !n�11

� � �
On�1
m) !n�1m

: : :
1: O1

0) !10

O1
1) !11

� � �
O1
l) !1l

0: O0
0) !00

O0
1) !01

� � �
O0
p) !0p

Figure 1: Notational convention for ofs models.

OFS Models. The ofs representation formalism
is essentially a normal form for regular sets. ofs

models can be interpreted in the same way as stan-
dard production rule grammars, but are subject to
a set of additional constraints. An ofs model O is
denoted (N; T; P; n + 1), where N is a �nite set of
non-terminal objects Oi

j, 0 � i � n, and T is a �-
nite set of terminals. P is an ordered �nite set of
n sets of productions Oi

j) !ij, where O
i
j 2 N , and

for i > 0, !ij is a regular expression2 over symbols

Og

h 2 N; i > g, whereas for i = 0, !ij is a set of

strings3 from T �. An ofs model O has n levels, or
sets of production rules, and each rule Oi

j) !ij is

2In the regular expressions in this paper, r� denotes any
number of repetitions of r, r+ denotes at least one repetition
of r, and r + e denotes the disjunction of r and e.

3The string sets in level 0 rhss are actually implemented
more e�ciently as �nite automata.

uniquely associated with one of the levels. The nth
set of production rules is a singleton set fOn

0) !n0 g,
and On

0 is interpreted as the start symbol. The nota-
tional convention adopted for ofsmodels is as shown
in Figure 1.

De�nition 1 OFS Model

An ofs model O is a 4-tuple (N;T;P; n + 1),
where N is a �nite set of nonterminals Oi

j, 0 �
i � n, On

0 2 N is the start symbol, T is a �nite

set of terminals, n + 1 denotes the number of

levels in the model, and P =
�
fOn

0) !n0 g;

fOn�1
0

)!n�10
; On�1

1
)!n�11

; : : :On�1
m)!n�1m g;

: : :

fO1
0) !10 ; O

1
1) !11; : : :O

1
l) !1l g;

fO0
0) !00 ; O

0
1) !01; : : :O

0
p) !0p g

	
,

where each rule Oi
j) !ij is uniquely associated

with one of the levels, !0j is a set of strings

from T �, !ij; i > 0, is a regular expression over

objects O
g

h 2 N; i > g.

Each rule O) ! in an ofs model corresponds to
a set of strings which will be referred to as an object
set or class, where O is the name of the object. The
production rules in ofs models will also be referred
to as object rules.
ofs models thus di�er from standard production

rule grammars in three ways. Firstly, rhss of rules
above level 0 are arbitrary regular expressions4. Sec-
ondly, terminals from T are restricted to appear-
ing in the rhss of rules at level 0 (mostly to fa-
cilitate automatic model construction, see below).
Thirdly, ofs models are limited in their representa-
tional power to the �nite-state domain by the con-
straints that the rhss of rules in rule sets at level
i > 0 are regular expressions over non-terminals that
appear only in the lhss of rules in rule sets at lev-
els g < i. That this limits representational power
to the regular languages can be seen from the fact
that all non-terminals Oi

j in the rhs of the single
top-level rule can be substituted iteratively with the
rhss of the corresponding rules Oi

j) !ij. This it-
eration terminates after a �nite time because there
is a �nite number of levels in the model, and at this
point the rhs of the top-level rule contains only non-
terminals, i.e. is a regular expression, hence repre-
sents a regular language.
Unlike other normal forms for regular production-

rule grammars (such as left-linear and right-linear

4Other formalisms for linguistic analysis have permitted
full regular expressions in the rhss of rules. For instance,
in syntactic grammars, the recursive nature of some types of
coordination has been modelled with right-recursive regular
expressions (e.g. in gpsg).

49

sets of production rules), ofs models enable the de�-
nition of production rules and hence derivations that
can, if appropriately de�ned, correspond to standard
linguistic objects and constituents (not possible in
linear grammars). Through the association of rules
with a �nite number of levels, ofsmodels permit the
de�nition of grammars that encode sets of context-
free derivations up to a maximumdepth equal to the
number of levels in the model.
The fact that non-terminal strings are in ofsmod-

els restricted to the lowest level, facilitates the com-
bined theory and data driven construction of models.
Uninstantiated models can be de�ned, that encode
what is known in advance about the structural regu-
larities of the object to be modelled in levels above 0,
and have under-speci�ed level 0 rhss that are sub-
sequently instantiated on the basis of data sets of
examples of the object to be modelled. ofs Mod-
elling also has a generalisation procedure which can
be used to generalise fully instantiated ofs models.
Each of these mechanisms is described in turn over
the following paragraphs.

Uninstantiated OFS Models. In fully speci�ed
ofs models (as de�ned in the preceding section),
the right-hand sides (rhss) of production rules at
level i are regular expressions for i > 0, and string
sets for i = 0. This separation makes it simple to
construct incompletely speci�ed models, or proto-
type OFS models, where the rhss of level 0 rules are
pattern descriptions rather than strings sets. Level 0
rhss in prototype models have the form O0

i) Si,
where O0

i is the name of the object, and Si is a set
former fx : vxw 2 D;P1; P2; : : :Png, where v;w are
concatenations of variables, D refers to any given �-
nite data set of strings, and Pi; 1 � i � n are prop-
erties of the variables in v and w.

Instantiation of Prototype OFS Models. The
ofs instantiation procedure takes a prototype ofs

model M for some linguistic object and a data set
D of example members of the corresponding object
class and proceeds as follows. For each level 0 rule
O0
i) Si in M , and for each element x of D, all

substrings of x that match Si are collected. The
resulting set of substrings becomes the new rhs of
rule O0

i . After instantiation, level 0 rules whose rhs
is the empty set are removed, as are rules at higher
levels whose rhss contain non-terminals that can no
longer be expanded by any of the production rules
in M .

Object-Set Generalisation. Instantiated ofs

models can be generalised by object-set (os) gen-
eralisation, where pairs of level 0 object sets are
compared on the basis of a standard set similar-
ity measure sim for two �nite sets D1 and D2

(not de�ned for D1 = D2 = ;): sim(D1; D2) =
jD1 \ D2j=jD1 [D2j. The os-generalisation pro-

cedure takes a fully speci�ed ofs model M and a
given similarity threshold � , and, applying a sim-
ple clustering algorithm, merges all object sets that
have a similarity value sim matching or exceeding
� . That is, the os-generalisation procedure mea-
sures the similarity between all pairs of level 0 sets,
and all pairs that match or exceed the threshold
end up in the same cluster. Finally, the old object
names (non-terminals) in the rhss of object rules
at levels above 0 are replaced with the lhss of the
corresponding new merged object rule, while all ob-
ject rules that now have identical rhss are in turn
merged. In this way, generalisation `percolates' up-
wards through the levels of the model.

Determining an appropriate value for the simi-
larity threshold � is not unproblematic. It could
be set in relation to the average similarity value in
an instantiated model (individually for each proto-
type instantiation), but this approach would obscure
the similarities that object-set generalisation (in par-
ticular in conjunction with lip) is intended to ex-
ploit. The whole point of object-set generalisation
for language-independent prototypes is that it will
merge a di�erent number of level 0 object classes in
di�erent prototype instantiations, creating di�erent
�nal, language-speci�c ofs models. If � is set in
proportion to the average similarity between level 0
classes, then this di�erence is reduced, and the re-
sulting models will tend to retain the same number
of level 0 object classes from the prototype. For ex-
ample, if the above prototype modelWord is instan-
tiated to a data set from a language that has phono-
tactics which di�er only between stressed and un-
stressed syllables, then all similarity values between
stressed syllable classes regardless of their position
within a word, and between all posttonic, pretonic
and plain syllables classes (again, regardless of posi-
tion), will be very high. The average similarity value
will therefore also be high. If � is set in relation to
this high average, not all unstressed and all stressed
syllable classes, respectively, will be merged, because
not all syllable classes can exceed average similarity.

Average similarity is a language-speci�c property,
and so is the number of syllable classes similar
enough to be merged for a given � value. For di�er-
ent generalised instantiations of the same prototype
model to be comparable, object-set generalisation
must have been carried out for each of them with
the same � value.

The threshold � is best regarded as a variable pa-
rameter to the os-generalisation procedure that can
be used to control the degree to which a generalised
ofs model will �t the data: the higher � , the more
closely the model will �t the data, and the less it will
generalise over it. This is particularly appropriate in
phonotactic modelling, because phonotactics seeks
to encode not just the set of attested words, but also

50

Prototype ofs Model Syllable = (fSyllable; Onset; P eak;Codag; T; P; 2)
1: Syllable) Onset Peak Coda
0: Onset) fx j xay 2 D;x 2 CONSONANTS

� ; a 2 VOWELSg
Peak) fx j yxz 2 D;x 2 VOWELS

+ ; y; z 2 CONSONANTS
�g

Coda) fx j yax 2 D;x 2 CONSONANTS
� ; a 2 VOWELS g

Figure 2: Simple prototype ofs model for syllable-level phonotactics.

æz, æS, A:sk, æsp, æs, æt, Et, O:k, O:ks, A:nts, O:, O:z, æks, aI, aIz, beI, bA:, bA:z, beIb, bæk,
bæks, si:, kæb, ÙE@�, ÙE@d, sInÙ, sInÙt, kli:v, dEf, di:l, dju:st, d2vz, drA:fts, dwEld, faI, frEt,
g@Uld, gr6t, kwId, splæt, sprIN, stræps, st2n

Figure 3: Small data set of English monosyllabic words.

ofs Model Syllable = (fSyllable; Onset; P eak;Codag; T; P; 2)
1: Syllable) Onset Peak Coda
0: Onset) f �, b, s, k, st, f, d, Ù, kl, dj, dr, dw, fr, g, gr, kw, spl, spr, str g

Peak) fæ, A:, E, O:, aI, eI, i:, E@, 2, @U, 6, I, u: g
Coda) f �, b, s, k, st, f, d, z, S, sk, sp, ks, nts, �, nÙ, nÙt, v, l, vz, fts, ld, t, N, ps, n g

Figure 4: Syllable-level phonotactic ofs model instantiated with set of English monosyllables.

ofs Model Syllable = (fSyllable; Onset Coda; Peak; g; T; P; 2)
1: Syllable) Onset Coda Peak Onset Coda
0: Onset Coda) f �, b, s, k, st, f, d, Ù, kl, dj, dr, dw, fr, g, gr, kw, spl, spr, str,

z, S, sk, sp, ks, nts, �, nÙ, nÙt, v, l, vz, fts, ld, t, N, ps, n g
Peak) fæ, A:, E, O:, aI, eI, i:, E@, 2, @U, 6, I, u: g

Figure 5: ofs model of Figure 4 generalised with � � 0:19.

unattested, but wellformed words (often called `ac-
cidental' gaps), while excluding only illformed words
(or `systematic' gaps). There is no objective divid-
ing line between idiosyncratic and systematic gaps,
and setting � can be used as one way of controlling
the degree of conservativeness in generalising over
the set of attested words.

3.2 Example

As an illustration, consider the following example
construction of a simple ofs model for syllable-level
phonotactics (the constraints that hold on the possi-
ble phoneme sequences within syllables)5. The pro-
totype ofs model constructed in the �rst step (Fig-
ure 2) encodes the standard assumption that the
syllable-level phonotactics in di�erent languages can
be appropriately modelled by interpreting syllables
as a sequence of consonantal phonemes (onset), fol-
lowed by a sequence of vocalic phonemes (peak), and
another sequence of consonantal phonemes (coda).
In the second construction step, a data set of En-

5The example model is not intended to be a realistic
phonotactic model, but is provided here merely as an illus-
tration of the techniques outlined above.

glish monosyllabic words (Figure 3) is used to in-
stantiate the prototype ofs model. The instantia-
tion procedure constructs an ofs model with new
level 0 rhss as shown in Figure 4. During os-
generalisation, sim values are computed for each
pair of level 0 object sets. The only pairwise inter-
section that is non-empty (hence the only non-zero
sim value) in this example is that between the sets
Coda and Onset (sim = 0:19), which are merged
if os-generalisation is applied to ofs model Syllable
with � � 0:19, resulting in the simpler, more general
ofs model shown in Figure 5.

3.3 Language-Independent Prototyping

Language-independent prototyping (lip) as a gen-
eral approach to linguistic description seeks to de-
�ne generic models that restrict � in some linguis-
tically meaningful way � the set of grammars or
descriptions that can be inferred from data. ofs

modelling can be used as an implementational tool
for lip. Language-independent prototype ofs mod-
els can be de�ned by specifying a maximal number
of objects and corresponding production rules such
that when the prototype is instantiated and gener-
alised with data sets from individual languages, dif-

51

Prototype ofs Model Word = (N;M;P; 2)
1: Word) S mon st +

S mon pl +
(S ini st S fin po) +
(S ini st S med po S med pl� S fin pl) +
(S ini pr S fin st) +
(S ini pr S med st S fin po) +
(S ini pr S med st S med po S med pl� S fin pl) +
(S ini pl S med pl� S med pr S fin st) +
(S ini pl S med pl� S med pr S med st S fin po) +
(S ini pl S med pl� S med pr S med st S med po S med pl� S fin pl)

0: S mon st) fx : 0x 2 D;x 2 (Mnf�g)�g
S mon pl) fx : x 2 D;x 2 (Mnf�;0 g)�g
S ini st) fx : 0x� w 2 D;x 2 (Mnf�g)�g
S ini pr) fx : x�0 vw 2 D;x; v 2 (Mnf�g)�g
S ini pl) fx : x� u�0 vw 2 D;x; v 2 (Mnf�g)�g
S med st) fx : v �0 x� w 2 D;x 2 (Mnf�g)�g
S med pr) fx : u� x�0 vw 2 D;x; v 2 (Mnf�g)�g
S med po) fx : u0v � x� w 2 D;x; v 2 (Mnf�g)�g
S med pl) fx : (u0y � v � x�w 2 D)_ (u� x� v �0 w 2 D); x 2 (Mnf�g)�g
S fin st) fx : w �0 x 2 D;x 2 (Mnf�g)�g
S fin po) fx : w0v � x 2 D;x; v 2 (Mnf�g)�g
S fin pl) fx : w0v � u� x 2 D;x; v 2 (Mnf�g)�g

Figure 6: Prototype ofs model for multi-syllable word-level phonotactics.

ferent object sets will be deleted and merged for dif-
ferent languages, resulting in di�erent �nal, instan-
tiated and generalised ofs models. In the following
section, a language-independent phonotactic proto-
type ofs model is instantiated to surprisingly di�er-
ent ofs models for three closely related languages.

4 Multi-Syllable Phonotactic Models
for German, English and Dutch

When applied to modelling multi-syllable word-level
phonotactics, lip with ofs Modelling means de�n-
ing the maximumpossible number of syllable classes
that may be subject to di�erent phonotactic con-
straints in a given group of languages. The exact
set of syllable classes depends on the group of lan-
guages the prototype is intended to cover as well as
the desired amount of generalisation over data (in
general, a model that distinguishes only two syllable
classes will generalise more than a model that distin-
guishes three or more classes, given the same data).
The prototype presented in this section is intended
to cover German, English and Dutch, and takes into
account only phonological factors (syntactic factors
such as word category which can also a�ect phono-
tactics are not taken into account). Two phonologi-
cal factors are modelled: position of a syllable within
a word, and position of a syllable relative to primary
word stress.
For this modelling task, the lip approach is im-

plemented by constructing an ofs prototype model

in which syllable classes re�ecting all possible di�er-
ent combinations of position within a word and rel-
ative to stress are de�ned as level 0 uninstantiated
object rules, and all possible ways in which the cor-
responding objects can be combined to form words
are de�ned as higher-level object rules. No prior as-
sumptions about where phonotactic variation occurs
is hardwired into the model. Instead, the maximal
ways in which phonotactics may vary in a group of
languages is encoded. The idea is that prototype in-
stantiation and os-generalisation with data sets of
phonological words from di�erent languages will re-
sult in di�erent �nal, instantiated phonotactic mod-
els.

4.1 Language-Independent Prototype OFS
Model for Multi-syllable Phonotactics

The prototype model shown in Figure 6 distin-
guishes between twelve syllable classes which cor-
respond to all possible combinations of position
within a word and position relative to primary stress
(0 marks primary stress, � is the syllable separator,
and S = syllable). As before, the set of all sylla-
bles is divided into four classes on the basis of po-
sition (mon = monosyllabic, ini = initial, med =
medial, fin = �nal), each of which is divided fur-
ther into four subclasses on the basis of stress (st =
stressed, pr = pretonic, po = posttonic, pl = plain).
This results in a total of 12 possible syllable cat-

52

German English Dutch
all unique (%) all unique (%) all unique (%)

Set mon st 5,028 849 (16.89%) 7,254 2,958 (40.77%) 5,641 719 (12.75%)
Set mon pl 1,813 1 (0.06%) 11 5 (45.45%) 0 - (-)
Set ini st 3,658 527 (14.41%) 3,345 409 (12.23%) 5,258 772 (14.68%)
Set ini pr 707 18 (2.55%) 2,560 1,328 (51.88%) 1,346 49 (3.64%)
Set ini pl 1,628 19 (1.17%) 1,495 437 (29.23%) 1,252 28 (2.24%)
Set med st 2,527 92 (3.64%) 1,600 90 (5.63%) 3,907 282 (7.22%)
Set med pr 618 12 (1.94%) 916 30 (3.28%) 1,026 26 (2.53%)
Set med po 2,518 66 (2.62%) 1,415 65 (4.59%) 3,296 185 (5.61%)
Set med pl 2,220 28 (1.26%) 1,156 82 (7.09%) 2,897 36 (1.24%)
Set fin st 4,261 822 (19.29%) 3,376 583 (17.27%) 4,972 803 (16.15%)
Set fin po 4,354 413 (9.49%) 4,141 882 (21.3%) 4,525 460 (1.02%)
Set fin pl 3,716 166 (4.47%) 2,635 306 (11.61%) 3,820 101 (2.64%)
total 10,598 3,013 (28.42%) 14,333 7,175 (50.06%) 11,443 3,461 (30.25%)

Table 4: Sizes of Level 0 object sets resulting from instantiations, and syllables unique to each set.

egories6. D is the data set given in instantiation,
and M the corresponding set of terminals (here, the
phonemic symbols that occur in D). The rhs of the
level 1 object rule encodes all possible ways in which
the twelve syllable classes can theoretically combine
to form words. The prototype model is language-
independent, because not all syllable classes will ex-
ist in all languages (e.g. a language where primary
stress is always on the �rst syllable would not have
classes of word-initial pretonic or plain syllables),
and os-generalisation will create di�erent new syl-
lable classes, depending on which classes are most
similar in a given language.

4.2 Prototype Model Instantiations

Table 4 shows the sizes of the di�erent level 0 object
sets resulting from ofs model instantiations to the
German, English and Dutch word sets derived from
celex (the syllable sets are far too large to be shown
in their entirety). In all three languages, the largest
syllable set is the set of stressed monosyllables, and
the smallest is the set of medial pretonic syllables7.
Table 4 also shows (in the same format as in Sec-
tion 2) the number of syllables in each syllable class
that do not occur in any of the other classes.
In German and Dutch, percentages of unique syl-

lables are signi�cantly lower than in the classes
re�ecting position only and stress only that were
shown in Section 2, indicating that some of the
classes may not be worth distinguishing in phono-
tactic models. In English, however, the higher per-
centages of unique syllables are not far behind those
shown previously, indicating that most of the twelve

6Not 4� 4 = 16 classes, because some classes cannot exist
(e.g. there is no such thing as a posttonic initial syllable).

7Disregarding the set of plain monosyllables of which there
were no examples in the Dutch section of celex, and only a
very small number in the English section.

syllable classes in the prototype are worth distin-
guishing.

Some correlation is evident between the size of a
set and the percentage of unique syllables it contains.
In German, average syllable set size is 2; 754 and the
average percentage of unique syllables is 6:48%. Five
syllable sets are of above average size, and four of
these also have above-average percentages of unique
syllables. Seven syllable sets are below average in
size, and non of these have above-average percent-
ages of unique syllables. In English, the picture is
not as straightforward. Average syllable set size is
2; 717, and average percentage of unique syllables is
18:62%. Of the four sets of above-average size, two
have above-average, and two have below-average,
percentages of unique syllables. Of the seven En-
glish syllable sets of below-average size (the set of
plain monosyllables is disregarded again for English
and Dutch), two have above-average, and �ve have
below-average percentages of unique syllables. Fi-
nally, in Dutch, average set size is 3; 449 and aver-
age percentage of unique syllables is 6:33%. Four
of the six above-average sized sets also have above-
average percentages of unique syllables, while all of
the below-average sized sets also have below-average
percentages of unique syllables. However, there is no
complete correlation, with some of the largest sets
having very small percentages of unique syllables,
and vice versa.

4.3 OS-Generalisation of Models

As is clear from the instantiation results presented in
the preceding section, some syllable classes contain
such low percentages of unique syllables that it is
not worth distinguishing them as a separate class.
os-generalisation of models can be used to merge
the most similar classes and reduce the number of
classes that the model distinguishes.

53

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0

ini_pr

med_st

ini_st

med_po

med_pl

ini_pl

fin_po

fin_pl

mon_st

mon_pl

fin_st

med_pr

Figure 7: Cluster tree for German syllable sets.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0

ini_pr

ini_st

med_pl

fin_po

fin_pl

mon_st

mon_pl

ini_pl

med_st

med_po

fin_st

med_pr

Figure 8: Cluster tree for Dutch syllable sets.

4.3.1 Generalisation of Multi-Syllable OFS
Model for German

Figure 7 shows the cluster tree for the German sylla-
ble sets produced by carrying out os-generalisation
for � = 0:1::1:0 in increments of 0:1. Each node in
the tree shows at which � values the original sylla-
ble sets at the leaves dominated by the node were
merged. The tree reveals a very neat picture for
German. 0:56 is the highest � value between any syl-
lable class pair, so for � � 0:6 no classes are merged.
� = 0:5 results in two clusters, one containing �nal
unstressed syllables, the other initial and medial un-
stressed syllables. At � = 0:4, all monosyllables are
added to the �nal syllable class, and one more me-
dial and one more initial class to the set of initial
and medial syllables. At � = 0:3, all monosyllables

and �nal syllables on the one hand, and all initial
and medial syllables on the other, are merged. Set-
ting � lower makes no di�erence until it is set below
0:2, at which point all of the original syllable classes
are merged into a single set.

This shows clearly that in German the distinc-
tion between monosyllables and �nal syllables on
the one hand, and between initial and medial syl-
lables on the other, is very strongly marked (pre-
served even when � is set as low as 0:2). This distinc-
tion is thus marked far more strongly than the un-
stressed/stressed division (which is more commonly
encoded in dfa models of German phonotactics),
which disappears at � = 0:4 (in fact, even earlier, at
� = 0:47).

54

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0

ini_pr

med_pl

fin_po

mon_st

mon_pl

ini_pl

med_po

med_pr

med_st

fin_pl

0.25

ini_st

fin_st

Figure 9: Cluster tree for English syllable sets.

4.3.2 Generalisation of Multi-Syllable OFS
Model for Dutch

The cluster tree for Dutch (Figure 8) also reveals an
important division between �nal and monosyllables
on the one hand, and initial and medial syllables
on the other. However, it is not as clearly marked
as in German. There is a point (� = 0:4) when
all �nal and monosyllables are in the same cluster,
but this is not the case for the initial and medial
syllables, which form subclusters that are correlated
with stress. The medial plain and posttonic syllable
sets are merged with each other at � = 0:6, and with
the initial stressed and medial stressed syllables at
� = 0:4. But there is no greater similarity between
this cluster and the cluster of inital pretonic and
plain syllables (formed at � = 0:4) than there is
between it and the cluster of �nal and monosyllables.
All three are merged into a single cluster at � = 0:3.

4.3.3 Generalisation of Multi-Syllable OFS
Model for English

In the cluster tree for English (Figure 9), there are
clusters clearly correlated with stress and clusters
clearly correlated with position. At � = 0:3 three
clusters are formed, one containing all medial sylla-
ble sets except the stressed medial syllables, another
containing all �nal syllable sets except the stressed
�nal syllables, and the third containing two stressed
syllable sets. At � = 0:25, all stressed syllables
together form one cluster. However, at � = 0:2,
two unstressed syllable sets are added to this clus-
ter, while all the remaining unstressed sets form the
other large cluster. Thus, in English, both stress and
position are strong determinants of phonotactic vari-
ation, but di�erences resulting from stress are more
pronounced than those resulting from position.

4.4 Discussion

The lip approach implemented with ofs Modelling
proceeds in three steps. First, the factors likely to
produce phonotactic idiosyncracy (stress and posi-
tion in the above examples), and the constituents to
be used in the analysis (syllables only in the above
examples), are decided, and a prototype model is
constructed on this basis. This prototype distin-
guishes as many objects at level 0 as there are pos-
sible combinations of factors and lowest-level con-
stituents. All ways in which these objects can com-
bine to form higher-level constituents are encoded at
the corresponding higher levels in the model.

In the second step, the prototype is instantiated
with data sets from di�erent languages. The degree
to which the instantiated models generalise over
the given data is determined by the number of
constituents and subcategories of constituents
distinguished in the prototype. As an example,
consider the di�erent degrees to which three models
that discriminate di�erent numbers of syllable
classes generalise over given data. All three models
de�ne words as sequences of syllables, and syllables
as sequences of phonemes. The �rst model has
only one syllable class, the second distinguishes
four classes re�ecting position in a word, and the
third is the same as the model presented in the
preceding section, i.e. distinguishes twelve syllable
classes. After instantiation with the same data set
of German phonological word forms from celex

used previously, the three models will encode
supersets of the data set that generalise over it
to di�erent degrees. Looking at subsets of words
of the same length gives some impression of the
di�erences. For instance, model 1 encodes 10; 598
monosyllabic German words (the total number of

55

di�erent syllables in the data), whereas models 2
and 3 encode only 6; 841 monosyllables (the actual
number of monosyllabic words in celex). The
following table shows the number of bisyllabic words
each model encodes.

Model Bisyllabic words
(1) Syll Syll 1:12� 108

(2) Syll ini Syll fin 2:67� 107

(3) (Syll ini pr Syll fin st)+
(Syll ini st Syll fin po) 1:89� 107

Attested forms 7:09� 104

Model 3 permits about 266 times as many bisyl-
labic word forms as there are in celex, model 2 en-
codes 1.4 times as many as model 3, and model 1 en-
codes 4.2 times as many as model 2. Thus, through
progressively �ner grained subcategories of syllables,
progressively closer approximations of the set of at-
tested forms can be achieved.
However, doing this in an indiscriminate,

language-independent way may produce some syl-
lable classes that are very similar. With os-
generalisation, the most similar classes can be
merged, so that only strongly marked di�erences are
preserved. However, setting � to any speci�c value
is problematic. Producing cluster trees with a range
of � values can give some idea of important class dis-
tinctions, and can be used as a basis for determining
an appropriate � value. � can further be motivated
by di�erent linguistic assumptions and the intended
purpose of the generalised models. Generalising dif-
ferent instantiations of the same prototype for the
same � value, makes it possible to compare the rela-
tive markedness of phonotactic variation in di�erent
languages.

5 Summary and Further Research

This paper described how ofs modelling and
the multi-syllable approach can be combined
with language-independent prototyping to create a
method for designing phonotactic models that (i) fa-
cilitates automatic model construction, (ii) produces
models that are arbitrarily close approximations of
the set of wellformed phonological words in a given
language, and (iii) provides a generalisation method
with control over the degree to which �nal models
�t given data. Extensions of the approach currently
under investigation include stochastic ofs models,
and the integration of ofs models into �nite-state
syntactic grammars.

References

R. H. Baayen, R. Piepenbrock, and L. Gulikers, ed-
itors. 1995. The CELEX Lexical Database (CD-
ROM). Linguistic Data Consortium, University of
Pennsylvania, Philadelphia.

Anja Belz. 1998. An approach to the automatic ac-
quisition of phonotactic constraints. In T. Mark
Ellison, editor, Proceedings of SIGPHON `98: The
Computation of Phonological Contraints, pages
35�44.

Anja Belz. 2000. Computational Learning of Fi-
nite State Models for Natural Language Process-
ing. Ph.D. thesis, School of Cognitive and Com-
puting Sciences, University of Sussex.

S. Bird, editor. 1991. Declarative Perspectives on
Phonology, volume 7 of Edinburgh Working Pa-
pers in Cognitive Science. Centre for Cognitive
Science, University of Edinburgh.

Julie Carson-Berndsen. 1992. An event-based
phonotactics for German. Technical Report ASL-
TR-29-92/UBI, Fakultät für Linguistik und Liter-
aturwissenschaft, University of Bielefeld.

Julie Carson-Berndsen. 2000. Finite state models,
event logics and statistics in speech recognition.
In Philosophical Transactions of the Royal Soci-
ety, volume A 358. Royal Society. In press.

J. S. Coleman and J. Pierrehumbert. 1997. Stochas-
tic phonological grammars and acceptability. In
Proceedings of the Third Meeting of the ACL Spe-
cial Interest Group in Computational Phonology,
SIGPHON '97, pages 49�56.

John A. Goldsmith. 1990. Autosegmental and Met-
rical Phonology. Blackwell, Cambridge.

Jusek, Fink, Kummert, Sagerer, Berndsen, and Gib-
bon. 1994. Detektion unbekannter Wörter mit
Hilfe phonotaktischer Modelle. In W. Kropatsch
and H. Bischof, editors, Mustererkennung '94, 16.
DAGM-Symposium und 18. Workshop der ÖAGM
Wien, pages 238�245.

A. Jusek, A. Fink, F. Kummert, and G. Sagerer.
1996. Automatically generated models for un-
known words. In Proceedings of the Sixth Aus-
tralian International Conference on Speech Sci-
ence and Technology, pages 301�306.

Michael Mastroianni and Bob Carpenter. 1994.
Constraint-based morpho-phonology. In Proceed-
ings of the First Meeting of the ACL Special In-
terest Group in Computational Phonology, SIG-
PHON '94.

Marc A. Zissman. 1995. Language identi�cation
using phoneme recognition and phonotactic lan-
guage modelling. In Proceedings of ICASSP '95,
volume 5, pages 3503�3506.

56

Taking Primitive Optimality Theory Beyond the Finite State

Daniel M. Albro
Linguistics Department

UCLA

Abstract

Primitive Optimality Theory (OTP) (Eisner,
1997a; Albro, 1998), a computational model
of Optimality Theory (Prince and Smolensky,
1993), employs a �nite state machine to repre-
sent the set of active candidates at each stage
of an Optimality Theoretic derivation, as well
as weighted �nite state machines to represent
the constraints themselves. For some purposes,
however, it would be convenient if the set of
candidates were limited by some set of crite-
ria capable of being described only in a higher-
level grammar formalism, such as a Context
Free Grammar, a Context Sensitive Grammar,
or a Multiple Context Free Grammar (Seki et
al., 1991). Examples include reduplication and
phrasal stress models. Here we introduce a
mechanism for OTP-like Optimality Theory in
which the constraints remain weighted �nite
state machines, but sets of candidates are repre-
sented by higher-level grammars. In particular,
we use multiple context-free grammars to model
reduplication in the manner of Correspondence
Theory (McCarthy and Prince, 1995), and de-
velop an extended version of the Earley Algo-
rithm (Earley, 1970) to apply the constraints to
a reduplicating candidate set.

1 Introduction

The goals of this paper are as follows:

� To show how �nite-state models of Opti-
mality Theoretic phonology (such as OTP)
can be extended to deal with non-�nite
state phenomena (such as reduplication) in
a principled way.

� To provide an OTP treatment of redupli-
cation using the standard Correspondence
Theory account.

� To extend the Earley chart parsing algo-
rithm to multiple context free grammars
(MCFGs).

The basic idea of this approach is to begin
with a non-�nite-state description of the space
of acceptable candidates (e.g., candidates with
some sort of reduplication inherent in them, or
candidates which are the outputs of a syntac-
tic grammar), and to repeatedly intersect the
high-level grammar representing those candi-
dates with �nite state machines representing
constraints. The intersection operation is one
of weighted intersection (where only the set of
lowest-weighted candidates survive) in order to
model Optimality Theory, and will make use of
a modi�ed version of the Earley parsing algo-
rithm.

There are at least two alternative approaches
to that which we will propose here: to aban-
don �nite state models altogether and move to
uniformly higher-level approaches (e.g., Tesar
(1996)), or to modify �nite state models mini-
mally to allow for (perhaps limited) reduplica-
tion (e.g., Walther (2000)). The �rst of these
alternative approaches deals with context free
grammars alone, so it would not be able to
model reduplicative e�ects. Besides this, it
seems preferable to stick with �nite-state ap-
proaches as far as possible, because phonolog-
ical e�ects beyond the �nite state seem quite
rare. The second of these approaches seems rea-
sonable in itself, but it is not suited for the
type of analyses for which the approach laid
out here is designed. In particular, Walther's
approach is tied to One-Level Phonology, a the-
ory which limits itself to surface-true generaliza-
tions, whereas the approach here is designed to
model Optimality Theory|a system with vio-
lable constraints|and in particular Correspon-

57

dence Theory. Tesar's approach as well, while
it is a model of Optimality Theory, does not
seem suited to Correspondence Theory. A �nal
argument for using this approach, in preference
to one similar to Walther's approach, is that it
can be extended to cover other non-�nite-state
areas of phonology, such as phrasal stress pat-
terns, with no modi�cation to the basic model.

2 Quick Overview of OTP

2.1 Optimality Theory

Optimality Theory (OT), of which OTP is a
formalized computational model, is structured
as follows, with three components:

1. Gen: a procedure that produces in�nite
surface candidates from an underlying rep-
resentation (UR)

2. Con: a set of constraints, de�ned as func-
tions from representations to integers

3. Eval: an evaluation procedure that, in suc-
cession, winnows out the candidates pro-
duced by Gen.

So OT is a theory that deals with potentially in-
�nite sets of phonological representations. The
OT framework does not by itself specify the
character of these representations, however.

2.2 Primitive Optimality Theory
(OTP)

The components of OT, as modeled by OTP
(see Eisner (1997a), Eisner (1997b), Albro
(1998)):

1. Gen: a procedure that produces from an
underlying representation a �nite state ma-
chine that represents all possible surface
candidates that contain that UR (always
an in�nite set)

2. Con: a set of constraints de�nable in
a restricted formalism|internally repre-
sented as Weighted Deterministic Finite
Automata (WDFAs) which accept any
string in the representational alphabet.
The weights correspond to constraint vio-
lations. The weights passed through when
accepting a string are the violations in-
curred by that string.

C CC

�

V

�

�

(a) Conventional

�: [+ + + + + + +]

�: - - [+ | + + +]

C: [+] - [+ | +]

V: - - [+] - - - -

C: - - - - [+ | +]

V: - - [+] - - - -

(b) OTP

Figure 1: OTP Representation

3. Eval: the following procedure, where
I represents the input FSM pro-
duced by Gen, and M is a machine
representing the output set of candi-
dates:

M I
for all Ci 2 Con, taken in rank order
do
M intersection of M with Ci

Remove non-optimal paths from M
Zero out weights in M

end for

Representations in OTP are gestural scores us-
ing symbols from the set f�;+; [;]; jg. See
Figure 1 for an example. This �gure shows
a CVCC syllable in a conventional notation,
and also in OTP notation. The OTP nota-
tion is slightly more complex, though, in that
it also shows an underlying form for the sylla-
ble. The overlap relation of the conventional
notation's association lines is expressed in the
OTP notation by the presence of constituent in-
teriors (\+") in the same vertical slice through
the diagram. This same-time-slice-membership
relation is also used to show correspondence.
Thus we see from this diagram that the sur-
face \CVCC" syllable corresponds to underly-
ing \VCC," and that the initial \C" does not
correspond to any underlying segment. Note
that tiers with no special marking are used to
represent the surface level of representation, and
underlined tiers are used to represent the under-
lying level of representation.

3 Handling Reduplication: Overview

3.1 Overview

Finite State Machines are useful in phonology
because it is possible to take any two �nite

58

state machines, each of which represents a set of
strings, and perform an intersection operation
on them. The resulting machine represents the
intersection of the two sets of strings. For exam-
ple, this allows us to use constraints represented
as FSMs to limit a candidate set.
Although we would sometimes like to charac-

terize the candidate sets using CFGs or MCFGs,
it must be kept in mind that these formalisms
do not have the property of being intersectable
with each other. Thus, in OTP terms, it would
not be possible to represent the constraints as
CFGs or MCFGs. However, there is a way out:
it is possible to intersect an FSM with a CFG
or an MCFG.
Based on the above, an approach to handing

reduplication in phonology becomes clear|we
start with an MCFG that enforces reduplica-
tive identity, then intersect it with the input
FSM (produced by Gen), then the constraint
FSMs, as before. The hard part, then, is to
come up with an eÆcient FSM-intersection al-
gorithm for MCFGs which also deals correctly
with weighted FSMs.

3.2 MCFGs

A grammar formalism that is midway between
CFGs and CSGs in expressive power, an MCFG
is like a CFG except that categories may rewrite
to tuples of strings instead of rewriting to just
one string as usual. It should be noted that
MCFGs have been shown (van Vugt, 1996) to
be equivalent to string-valued attribute gram-
mars with only s-attributes, relational gram-
mars, and top-down tree-to-string transducers,
so we could use any one of these grammars to
provide a candidate space. As an example of
an MCFG, here's a simple MCFG for the lan-
guage fwwjw 2 f0; 1g+g (the language of total
reduplication):

S ! A0 A1

A ! (1; 1)
j (0; 0)
j (0A0; 0 A1)
j (1A0; 1 A1)

The nonterminals of this grammar are S, which
has arity 1, and A, which has arity 2. The right-
hand sides of the productions include notations
such as A0, which indicate the placement of each
part of the tuple-yield of any category. Here, A0

0 0

S

A

A

A

00

1 1

(0, 0)

(1 0, 1 0)

(0 1 0, 0 1 0)

0 1 0 0 1 0

Figure 2: Derivation of \010010"

and A1 are the two parts of the single category
A, so a rule like A! (0A0; 0A1) indicates that
A rewrites to 0 0 A, with the actual strings ar-
ranged in a tuple with a 0 preceding the �rst
part of A in the �rst half of the pair, and 0 pre-
ceding the second part of A in the second half
of the pair.

This grammar is in the normal form required
by the algorithms presented here. This normal
form can be characterized as follows:

For any category C of arity greater
than 1, the category may appear in the
right hand side of a production only if
the right hand side refers to each ele-
ment of C exactly once.

A derivation of the string \010010" in this
grammar would go as follows: S rewrites as
A0A1, that is, to the concatenation of the string-
yield of the two parts of A. From here, A0 and
A1 must both come from the parts of a sin-
gle one of the four productions for A. A then
rewrites to (0 A0; 0 A1), making, for example,
the value of A0 in the S production be (0 A0).
A then rewrites to (1A0; 1A1), so S reduces to
01 A0 01 A1. Finally, A rewrites to (0; 0), leav-
ing the value of S as 010010. This derivation
is illustrated in Figure 2, the left side of which
depicts the derivation tree, while its right side
shows (from the bottom up) the string-yield of
each non-terminal (shown just below and to the
right of it).

59

3.3 Representation of Reduplicative
Forms in OTP

OTP constraints are inherently local|they can
only refer to overlap or non-overlap of interiors
or edges in an instant of time. Therefore, to en-
force correspondences between forms, they must
be juxtaposed so as to occur in the same time-
slices. In OTP, correspondence between the sur-
face and underlying forms is established by us-
ing one set of tiers for the surface form (each tier
represents either a feature or a type of prosodic
constituent) and another corresponding set for
the underlying form. For example, the tier son
might specify the distribution of the surface fea-
ture \sonorant", while the tier son would specify
its underlying correspondent. Elements of those
tiers placed in the same time-slice are consid-
ered to be in correspondence with one another.
In order to create correspondence between two
portions of the same surface form, then, we need
to somehow have them simultaneously juxta-
posed so as to appear in the same segments of
time and separated in time as they will be on
the surface. This is accomplished by a represen-
tational trick: in the example of reduplication, a
copy of the reduplicant's surface form is placed
in a special set of tiers within the base:

SL: BASE RED2

UL: UR1 UR2

RL: RED1 |

| or |

SL: RED2 BASE
UL: UR2 UR1

RL: | RED1

In these representations SL stands for the sur-
face level of representation, UL for the under-
lying level, and RL for the special reduplicant
level (the place where a copy of the reduplicant
is kept). UR1 and UR2 are identical in the
input, and RED1 and RED2 need to be kept
identical by other means. The means chosen
here is to use an MCFG enforcing the identity.
BASE-RED correspondence constraints operate
upon RED1 while templatic and general sur-
face well-formedness constraints operate upon
RED2. An example of this sort of representa-
tion might help here. Suppose that there are
two surface tiers, C and V. Then a form such

as [CV+CVC] (with CV pre�xing reduplication,
assuming that the base is CVC, and with the
underlying form RED+/VC/) might be repre-
sented as follows:

C: [+] - - - [+] - [+]

V: - - [+] - - - [+] - -

C: - - - - [+] - - - [+]

V: - - [+] - - - [+] - -

C: - - - - - - [+] - - - -

V: - - - - - - - - [+] - -

INS: [+] - - - [+] - - - -

DEL: - - - - [+] - - - - - -

RDEL: - - - - - - - - - - [+]

RED: [+ + + + +] - - - - - -

BASE: - - - - - - [+ + + + +]

Note here that the special BASE and RED tiers
indicate the portions of the surface forms that
are the base and reduplicant, and that the redu-
plicant level of representation (that is, the level
that holds the copy of the reduplicant used for
correspondence) is present on the tiers labeled
with double underlines. The INS tier represents
a time-discrepancy between the levels of repre-
sentation where time does not exist on the un-
derlying level (so the period of time taken up by
the initial C in the surface reduplicant and base
doesn't correspond to anything in the underly-
ing level), and the DEL tier represents time that
does not exist on the surface level, so the time
taken up by the �nal C in the underlying form of
the reduplicant does not correspond to anything
on the surface. The RDEL tier is a mirror of the
contents of the DEL tier in the surface redupli-
cant, and thus represents time that does not
exist in the special reference copy of the redu-
plicant. This representation allows us to notice
that the reduplicant �ts a CV template | the
left edge of it is aligned with a surface C, the
right edge with a surface V, and there are no
other segments within it. (The relevant OTP
constraints to reinforce this would be \RED[!
C[," \]RED!]V," \]C ? C[? RED," and \]C
? V[? RED," if highly ranked and in that or-
der.)
In terms of translating these representations

to �nite state machines (or to strings), we use
the alphabet f�;+; [;]; jg, so that each FSM
edge is labeled with a member of this alphabet.
This representation di�ers from that of earlier
accounts of OTP, in that the FSM edges in those
accounts represented entire time slices, whereas

60

an edge in this representation represents a single
tier in a time slice. As an example, the repre-
sentation of:

C: [+�]
V: - - -

is as shown in Figure 3, where the \C" and \V"
labels are not part of the representation, but
just there to ease reading.

3.4 The Grammar Used

The grammar used here is a bit complicated,
but the important thing to note about it is that
it generates exactly the set of possible OTP out-
put forms in which the special reduplicant ref-
erence level of representation contains an exact
copy of the surface reduplicant, placed within
the time-duration of the base. The grammar
for a situation in which there are two surface
tiers appears in Figure 4. Extending this gram-
mar to other numbers of tiers is straightforward.
The constituents of this grammar are as follows:

S The start symbol.

Non Non-reduplicating material (such as non-
reduplicating morphemes) before and/or
after the reduplicating material.

SSR The surface tiers in a time-slice.

UR The underlying tiers in a time-slice.

MRD The reduplicant reference-level tiers in a
time-slice where the tiers must contain the
value � (that is, outside of the base, which
is the only place where the reduplicant level
is used).

Rd/Rd1/Rd2 The reduplicating part of an
utterance.

BDR A right-facing boundary (allows any-
thing to be in the surface tiers during its
time-slice, and copies the right-facing half
of that material into the reduplicant).

BDL A left-facing boundary (see BDR).

B The surface tiers in a time-slice plus identical
material in the reduplicant tiers. Thus B
represents an item in the reduplicant plus
its copy in the special reduplicant reference
level.

The remaining non-terminals de�ne di�erent
values for the INS, DEL, RDEL, RED, and

BASE tiers, where INS and DEL are as de-
�ned in Albro (1998), RDEL represents time
that does not exist in the reduplicant, RED rep-
resents the reduplicant (as a morpheme bound-
ary), and BASE represents the base as a mor-
pheme boundary:

NBR represents the state of not being in the
base or the reduplicant.

RLE represents the left edge of the reduplicant.

RRE represents the right edge of the redupli-
cant.

BLE represents the left edge of the base.

BRE represents the right edge of the base.

RB represents a boundary between a redupli-
cant and a base, where the reduplicant
comes �rst.

BR represents the reverse of RB .

RED represents the inside of the reduplicant.

BASE represents the inside of the base.

In this grammar any given time-slice will be de-
�ned as SSR or the �rst component of one of
the B categories, followed by UR, followed by
MRD or the second component of one of the
B categories, followed by one of the NBR, etc.,
categories.

4 The Earley Algorithm

The Earley algorithm is an eÆcient chart pars-
ing method. Chart parsing can be seen as a
method for taking the intersection of a string
or FSM with a CFG (later, an MCFG). Here
we take a CFG as a 4-tuple hV;N; P; Si where
V represents the set of terminals in the gram-
mar, N represents the set of non-terminals, P
represents the set of productions, and S 2 N
is the start symbol. In the de�nitions to fol-
low, �, �, and represent arbitrary members
of (V [N)�, A and C represent arbitrary mem-
bers of N , a and b represent arbitrary members
of V , p represents an arbitrary member of P ,
and the indices i, j, and k represent positions
within the input string to be parsed, numbered
as in Figure 5.
In the standard de�nition, a member of the

chart is a 3-tuple (i; C ! ���; j), where i repre-
sents the position at the beginning of the input

61

1 2
[C

3
-V

4+C

5

]C

-V

6
-V

Figure 3: FSM Representation Used Here

string covered by � and j represents the posi-
tion at the end of the covered portion of the
string. The parsing operation in the standard
de�nition, which parses a single input string,
is de�ned as a closure via the following three
inference rules of a chart initially consisting of
(0; S ! ��; 0):

predict: (i;C!��A�;j)
(j;A!�;j) if A! 2 P (if begins

with a terminal, that terminal must be the
symbol at position j in the input string)

scan: (i;C!��a�;j)
(i;C!�a��;j+1) if a is the symbol after j

complete: (i;C!��A�;j) (j;A!�;k)
(i;C!�A��;k)

The input string is recognized if the chart con-
tains an element (0; S ! ��; n), where n is the
�nal position of the input string.

5 Extending Earley

The algorithm presented so far just checks to see
whether a particular string exists in a grammar.
In order for it to be useful for our purposes, the
following extensions must be made:

1. Intersection with an FSM, not just a string

2. Recovery of intersection grammar

3. Weights (intersection should allow lowest-
weight derivations only)

4. MCFGs

5.1 Intersection with an FSM

To modify the algorithm to intersect a grammar
with an FSM, we replace the input string with
an FSM, and change our de�nition of a chart
entry. Now, a chart entry is a 3-tuple (i; C !
� � �; j), where i represents the �rst FSM state

covered by � and j represents the last FSM state
covered. We de�ne an FSM here as a 5-tuple
hQ;�; s; F;Mi, where Q is the set of states in
the FSM, � is the label alphabet for the FSM
(for our purposes � is always the same as V
for all grammars in use), s 2 Q is the start
state, F � Q is the set of �nal states of the
FSM, and M is a set of 3-tuples (i; a; j), which
represent transitions from state i to state j with
label a. Given these rede�nitions we can then
just modify the scan rule:

scan: (i;C!��a�;j)
(i;C!�a��;j+1) if (j; a; k) 2 M , where M

is the input FSM.

and the predict rule in the obvious way:

predict: (i;C!��A�;j)
(j;A!�;j) if A ! 2 P (if is of

the form a 0, (j; a; k) 2 M must hold as
well)

Note that the initial entry in the chart is now
(s; S ! ��; s).

5.2 Grammar Recovery

It is possible to recover the output of intersec-
tion by increasing slightly what is in the chart.
In particular, for every item on the chart, we
note how it got there (just the last step). Each
item on the chart may be referred to by its col-
umn number C and its position N within that
column. We annotate only items produced by
scan and complete steps, as follows:

� sC=N

� cC1=N1;C2=N2

where C1=N1 refers to the (j; A ! �; k) item
from the complete step, and C2=N2 refers to the

62

S ! Non Rd Non

j Rd Non

j Non Rd

j Rd

Non ! SSR UR MRD NBR

j Non SSR UR MRD NBR

SSR ! AA
UR ! AA

MRD ! ��
Rd ! Rd1 0 Rd1 1

BDR !

�
BDR0 0 BDR1 0;
BDR0 1 BDR1 1

�

BDL !

�
BDL0 0 BDL1 0;
BDL0 1 BDL1 1

�

B !

�
B0 0 B1 0;
B0 1 B1 1

�
A ! � j + j [j] j j

BDRn !

�
�;
�

���� +;
+

���� [;
[

����];
�

���� j;
[

�

BDLn !

�
�;
�

���� +;
+

���� [;
�

����];
]

���� j;
]

�

Bn !

�
�;
�

���� +;
+

���� [;
[

����];
]

���� j;
j

�

continuing with

NBR ! A A � � �
RLE ! A A � [�
RRE ! A A �] �
BLE ! A A A � [
BRE ! A A A �]
RB ! A A A] [
BR ! A A A []

RED ! A A � + �
BAS ! A A A � +

In cases where the reduplicant precedes the base, the
reduplication rules will appear as follows:

Rd1 !

BDR0 UR MRD RLE Rd2 0;
BDL0 UR BDR1 RB Rd2 1

SSR UR BDL1 BRE

!

Rd2 !

�
B0 UR MRD RED ;
SSR UR B1 BAS

�

j

�
Rd2 0 B0 UR MRD RED ;
Rd2 1 SSR UR B1 BAS

�

Otherwise, where the base precedes the reduplicant, the
rules will appear as follows:

Rd1 !

SSR UR BDR1 BLE Rd2 0;
BDR0 UR BDL1 BR Rd2 1

BDL0 UR MRD RRE

!

Rd2 !

�
SSR UR B1 BAS ;
B0 UR MRD RED

�

j

�
Rd2 0 SSR UR B1 BAS ;
Rd2 1 B0 UR MRD RED

�

Figure 4: Reduplication Grammar

a b c
" " " "
0 1 2 3

Figure 5: Numbering of string positions in the
string \abc"

(i; C ! � � A�; j) item. A chart item is thus
now a 4-tuple (i; C ! � � �; j;H), where H is a
set of history items of the type described here,
one for each scan or complete step that put the
item there.
Recovery of a grammar then starts from the

\success items," that is items in the chart that
begin in state 1 and end with a �nal state and
represent a production from the start symbol
of the grammar, with the Earley position dot
at the end of the production. We then move
from right to left within those productions, �ll-
ing in the state pairs for each constituent we
pass, and tracing through their productions as
well. Whenever we get to the left side of a pro-
duction, we output it. The exact algorithm is
as follows:

GrammarRecovery(chart)

queue []
for all success items (s; S ! �; f 2
F;H0) at (C;N) do
queue up (C;N) onto queue
while queue not empty do
(C;N) dequeue from queue

item item at (C;N): (i; A !
��; j;H1)
pos pos. of � in item

RHSs GetRHSs([[]], item, pos,
queue)
for all RHS 2 RHSs do
output \A(i; j)! RHS"

end for
end while

end for

GetRHSs(rhss, item, pos, queue)

if pos = 0 then
return rhss

end if
new rhss []
for all history path components hitem
of item do
rhss 0 copy rhss

extend(rhss 0, hitem, pos, queue)

63

add rhss 0 to new rhss

end for
return new rhss

extend(rhss, hitem, pos, queue)

if hitem = s(C;N) then
prepend scanned symbol to each rhs

2 rhss

prev item at (C;N)
else if hitem = c(C1=N1;C2=N2) then
(i; A! �; j;H) item at (C1; N1)
prepend A(i; j) to each rhs 2 rhss

enter (C1; N1) into queue

prev item at (C2; N2)
end if
return GetRHSs(rhss, item, pos�1,
queue)

5.3 Weights

The basic idea for handling weights is an adap-
tion from the Viterbi algorithm, as used for
chart parsing of probabilistic grammars. Basi-
cally, we reduce the grammar to allow only the
lowest-weight derivations from each new cate-
gory.

Implementation: Each chart item has an as-
sociated weight, computed as follows:

predict: weight of the predicted rule A!

scan: sum of the weight of the item scanned
from and the weight of the FSM edge
scanned across.

complete: sum of the weights of the two items
involved

We build new chart items whenever permitted
by the rules given in previous sections, assigning
weights to them by the above considerations. If
no equivalent item (equivalence ignores weight
and path to the item) is in the chart, we add
the item. If an equivalent item is in the chart,
there are three possible actions, according to the
weight of the new item:

1. Higher than the old item: do nothing
(don't add the new path).

2. Lower than the old item: remove all other
paths to the item, add this path to the
item. Adjust weights of all items built from
this one downward.

3. Same as the old item: add the new path to
the item.

A chart item is thus now a 5-tuple (w; i; C !
� � �; j;H), where w represents a weight, and
all the other items are as before.

5.4 MCFGs

To extend the Earley algorithm to MCFGs, we
�rst reduce the chart-building part of the Earley
algorithm for MCFGs to the already-worked out
algorithm for CFGs by converting the MCFG
into a (not-equivalent) CFG. We then mod-
ify the grammar-recovery step to convert the
CFG produced into an MCFG, verifying that
the MCFG produced is a proper one.

5.4.1 Adjustments to the
Chart-Building Algorithm:

First, we treat each part of the rule as a sepa-
rate rule, and use the regular algorithm. Thus,

B!

�
0
1

�
becomes B0! 0 and B1! 1. Hav-

ing separated a single rule such as C ! (�; �)
into two parts C0 ! � and C1 ! �, we need to
keep track, when building the chart and after, of
which rule in the associated MCFG each chart
item refers to. These annotations will be useful
in Grammar Recovery (something like C0 ! �
can only be combined with C1 ! � if they both
come from the same MCFG rule). Thus, a chart
item is a 6-tuple (r; w; i; C ! ���; j;H), where
r is the rule number from the original MCFG to
which the production C ! � � � corresponds,
and all the others are as before.

5.4.2 Adjustments to Grammar
Recovery

As before, followed by a �nal combinatory and
checking step:

for all non-terminals A with arity n do
for all possible combinations A0(i; j) !
0; A1(k; l)! 1; : : : ; An(m;n)! n do
if the MCFG condition applies to the
combination then
output A(i; j)(k; l) : : : (m;n) !
(0; 1; : : : ; n)

end if
end for

end for

where the MCFG condition is as follows:

All i on the right hand side of the
combination must be derived from the

64

same rule in the original set of rules
and their yields must not overlap each
other in the FSM.

Given the way the chart-parsing and recovery
algorithms work, the MCFG condition will be
satis�ed if we simply check that all the elements
of the combination come from the same rule in
the original MCFG. This will result in some
invalid rules in the output grammar, but this
simple check guarantees that these rules will be
such that they will be unable to participate in
derivations, since their right-hand sides will re-
fer to categories that do not head any produc-
tions.

5.5 Example

As an example, let's take the simple reduplica-
tion grammar from before:

(1) S ! A0 A1

(2) A ! (1; 1)
(3) j (0; 0)
(4) j (0A0; 0 A1)
(5) j (1A0; 1 A1)

and intersect it with the machine

1

0/0

1/0

2
0/1

1/0

This machine generates the set of strings
f0j1g+, but weights all strings ending with 0.
The corresponding CFG-grammar used for

the chart-building step is as follows:

(1) S ! A0 A1

(2) A0 ! 1
A1 ! 1

(3) A0 ! 0
A1 ! 0

(4) A0 ! 0 A0

A1 ! 0 A1

(5) A0 ! 1 A0

A1 ! 1 A1

The chart produced by the chart-building
part of the algorithm is as follows:

Column 1 (j = 1, i = 1)

r w 2 P H
0 1 0 S ! �A0 A1 ;
1 2 0 A0 ! �1 ;
2 3 0 A0 ! �0 ;
3 4 0 A0 ! �0A0 ;
4 5 0 A0 ! �1A0 ;
5 5 0 A0 ! 1 �A0 fs1=4g
6 4 0 A0 ! 0 �A0 fs1=3g
7 3 0 A0 ! 0� fs1=2g
8 1 0 S ! A0 �A1

fc1=7; 1=0; c1=10; 1=0; c1=9; 1=0; c1=22; 1=0g
9 5 0 A0 ! 1A0�

fc1=7; 1=5; c1=10; 1=5; c1=9; 1=5; c1=22; 1=5g
10 4 0 A0 ! 0A0�

fc1=7; 1=6; c1=10; 1=6; c1=9; 1=6; c1=22; 1=6g
11 2 0 A1 ! �1 ;
12 3 0 A1 ! �0 ;
13 4 0 A1 ! �0A1 ;
14 5 0 A1 ! �1A1 ;
15 5 0 A1 ! 1 �A1 fs1=14g
16 4 0 A1 ! 0 �A1 fs1=13g
17 3 0 A1 ! 0� fs1=12g
18 1 0 S ! A0 A1�

fc1=17; 1=8; c1=20; 1=8; c1=19; 1=8; c1=21; 1=8g
19 5 0 A1 ! 1A1�

fc1=17; 1=14; c1=20; 1=14; c1=19; 1=14; c1=21; 1=14g
20 4 0 A1 ! 0A1�

fc1=17; 1=13; c1=20; 1=13; c1=19; 1=13; c1=21; 1=13g
21 2 0 A1 ! 1� fs1=11g
22 2 0 A0 ! 1� fs1=1g

Column 2 (j = 2, i = 1)

r w 2 P H
0 5 0 A0 ! 1 �A0 fs1=4g
1 4 1 A0 ! 0 �A0 fs1=3g
2 3 1 A0 ! 0� fs1=2g
3 1 0 S ! A0 �A1

fc2=13; 1=0; c2=5; 1=0; c2=4; 1=0g
4 5 0 A0 ! 1A0�

fc2=13; 1=5; c2=5; 1=5; c2=4; 1=5g
5 4 0 A0 ! 0A0�

fc2=13; 1=6; c2=5; 1=6; c2=4; 1=6g
6 5 0 A1 ! 1 �A1 fs1=14g
7 4 1 A1 ! 0 �A1 fs1=13g
8 3 1 A1 ! 0� fs1=12g
9 1 0 S ! A0 A1�

fc2=12; 1=8; c2=11; 1=8; c2=10; 1=8g
10 5 0 A1 ! 1A1�

fc2=12; 1=15; c2=11; 1=15; c2=10; 1=15g
11 4 0 A1 ! 0A1�

fc2=12; 1=16; c2=11; 1=16; c2=10; 1=16g
12 2 0 A1 ! 1� fs1=11g
13 2 0 A0 ! 1� fs1=1g

In this chart the items with an empty history
list were entered by prediction steps. The \suc-
cess item" for this grammar is then item (2,9):
(r = 1; w = 0; i = 1; p = S ! A0 A1�; j =

65

2;H = fc2=12; 1=8; c2=11; 1=8; c2=10; 1=8g), so
begin there:

S(1; 2)! A0 A1

We then queue up (2,12), (2,11), and (2,10),
noting that for all of these the states for A1

are (1,2), and we move to item (1,8): (r =
1; w = 0; i = 1; p = S ! A0 � A1; j = 1;H =
fc1=7; 1=0; c1=10; 1=0; c1=9; 1=0; c1=22; 1=0g).
Here we queue up (1,7), (1,10), (1,9), and
(1,22), noting that for all of these the states for
A0 are (1,1). Moving to (1,0), we note that we
are done, and we thus output a complete rule:

(r1) S(1; 2)! A0(1; 1)A1(1; 2):

We then encounter (2,12) on the queue: (r =
2; w = 0; i = 1; p = A1 ! 1�; j = 2;H =
fs1=11g), which can be output with no further
ado:

(r2)A1(1; 2)! 1

Moving to item (2,11) (r = 4; w =
0; i = 1; p = A1 ! 0 A1�; j =
2;H = fc2=12; 1=16; c2=11; 1=16; c2=10; 1=16g)
we don't need to queue anything, and we can
see that the output will be:

(r4)A1(1; 2)! 0A1(1; 2)

Item (2,10) is (r = 5; w = 0; i =
1; p = A1 ! 1 A1�; j = 2;H =
fc2=12; 1=15; c2=11; 1=15; c2=10; 1=15g), so we
output

(r5)A1(1; 2)! 1A1(1; 2)

We now move on to item (1,7): (r = 3; w =
0; i = 1; p = A0 ! 0�; j = 1;H = fs1=2g),
which we output as

(r3)A0(1; 1)! 0:

Item (1,10) is (r = 4; w = 0; i =
1; p = A0 ! 0 A0�; j = 1;H =
fc1=7; 1=6; c1=10; 1=6; c1=9; 1=6; c1=22; 1=6g).
In dealing with this we need to queue nothing,
and we output:

(r4)A0(1; 1)! 0A0(1; 1)

Moving to (1,9), which is (r = 5; w =
0; i = 1; p = A0 ! 1 A0�; j = 1;H =

fc1=7; 1=5; c1=10; 1=5; c1=9; 1=5; c1=22; 1=5g),
we queue nothing and output

(r5)A0(1; 1)! 1A0(1; 1)

Finally we get to (1,22): (r = 2; w = 0; i =
1; p = A0 ! 1�; j = 1;H = fs1=1g), which gets
output as

(r2)A0(1; 1)! 1

Collecting these together (for category A), we
get the following pairings:

0
@ (r2) A0(1; 1) ! 1 A1(1; 2) ! 1

(r3) A0(1; 1) ! 0
(r4) A0(1; 1) ! 0A0(1; 1) A1(1; 2) ! 0A1(1; 2)
(r5) A0(1; 1) ! 1A0(1; 1) A1(1; 2) ! 1A1(1; 2)

1
A

Note that the \pair" for (r3) has no second
member, so nothing will be output for it. Com-
bining the compatible rules, we get the following
grammar:

S(1; 2) ! A(1; 1)(1; 2)0 A(1; 1)(1; 2)1
A(1; 1)(1; 2) ! (1; 1)

j (0A0(1; 1)(1; 2); 0 A1(1; 1)(1; 2))
j (1A0(1; 1)(1; 2); 1 A1(1; 1)(1; 2))

which is equivalent to the grammar:

S ! A0 A1

A ! (1; 1)
j (0A0; 0 A1)
j (1A0; 1 A1)

This grammar indeed represents the best out-
puts from the intersection|all reduplicating
forms which end in a 1.

References

Daniel M. Albro. 1998. Evaluation, implemen-
tation, and extension of Primitive Optimality
Theory. Master's thesis, UCLA.

Jay Earley. 1970. An eÆcient context-free pars-
ing algorithm. Comm. of the ACM, 6(2):451{
455.

Jason Eisner. 1997a. EÆcient generation in
primitive Optimality Theory. In Proceedings

of the ACL.

Jason Eisner. 1997b. What constraints should
OT allow? Handout for talk at LSA,
Chicago, January.

66

John McCarthy and Alan Prince. 1995. Faith-
fulness and reduplicative identity. In J. Beck-
man, S. Urbanczyk, and L. Walsh, edi-
tors, Papers in Optimality Theory, num-
ber 18 in University of Massachusetts Occa-
sional Papers, pages 259{384. GLSA, UMass,
Amherst.

Alan Prince and Paul Smolensky. 1993. Opti-
mality Theory: Constraint interaction in gen-
erative grammar. Technical Report 2, Center
for Cognitive Science, Rutgers University.

H. Seki, T. Matsumura, M. Fujii, and
T. Kasami. 1991. On multiple context-free
grammars. Theoretical Computer Science,
88:191{229.

Bruce Tesar. 1996. Computing optimal descrip-
tions for optimality theory grammars with
context-free position structures. In Proceed-

ings of ACL.
Nik�e van Vugt. 1996. Generalized context-free
grammars. Master's thesis, Universiteit Lei-
den. Internal Report 96-12.

Markus Walther. 2000. Finite-state redupli-
cation in one-level prosodic morphology. In
Proceedings of NAACL-2000, pages 296{302,
Seattle, WA.

67

