
The.,CLEF= semi-~recursive generation algori:thm
Rodrigo Reyes

Thomson-CSF/LCR
Talana, Univ. Paris 7

February 6 th ,2000

Abstract 2 Presentation of GTAG

" We+will discuss the:somi-reeursiveaigorithm for -+-+,~he~GTAG.£ovmalismdescrihes.th~domain_
text generation, as defined for the GTAG model used to specify the input of the generator,

formalism, and its implementation in the CLEF
project. We will show how to use iexical choice
constraints and properties of the LTAG grammar
to minimize the backtracking of the semi-
recursive algorithm.

1 Introduction

GTAG is a multilingual text generation
formalism derived from the Tree Adjoining
Grammar model ((Joshi and al., 1975), (Shabes
and Shieber,1994)). This formalism, which is still
evolving, uses slightly enriched TAG grammars
as its syntactic back-end.
GTAG only deals with the << How to say it ?>>
aspect of the generation process. It takes as input
a partly computed symbolic representation of the
discourse, and defines the processing and the data
necessary to produce the final text.GTAG is
widely described in (Danlos, 1996), (Danlos,
1998), and (Danlos1999).
Flaubert was the first GTAG implementation,
conducted by Cora SA ((Meunier and Danlos,
1998), (Meunier 1997)). This implementation
validated the first versions of the formalism, and
yielded a stable version of GTAG. A new
implementation has been initiated by Thomson-
CSF LCR ((Meunier and Reyes, 1999), (Meunier,
1999)), using the Java language, with a strong
emphasis on research and applications.
We will give firstly a short insight of the GTAG
formalism, then introduce the semi-recursive
algorithm in comparison with the recursive

• approach. Then, we will give a presentation of
the CLEF generation algorithm that yields a
nearly-surfacic syntactic representation from the
conceptual representation (a post-processing
phase takes care of the final output).

as well as the linguistics data and processing
necessary to generate texts. GTAG uses a first-
order logic formalism for its domain model, and a
lexicalized TAG grammar as its syntactic model.
We introduce hereafter both sub-formalisms, and
the manner in which GTAG links them.

2.1 Domain model

The Login (Logic and inheritance) formalism
((A'it-Kaci and Nasr, 1986), (Meunier, 1997)) has
been used to model the domain knowledge. It
takes type constraints into account, thus allowing
to validate, to a certain extent, the input
structures' coherence.
GTAG specifies an additional constraint on the
model : the existence of three generic concepts
used to divide the conceptual domain, as follows.
o Entities, representing objects (individuals) of

the world.
o lSt-order relations, representing simple

events, between entities, or between entities
and relations.

• 2nO-order relations, representing relations
between relations.

~ S

Entities

1 St-order 2hal-order

relations relations

Figure I. A typical model for the domain.

Thus, a typical model will have the following
form. as shown in figure I.

231

2.2 The g rammar

The syntactic back-end is a Lexicalized Tree
Adjoining Grammar, which complies with the
Predicate-Argument Cooccurrence Principle
(Abeillr, 1993), enriched with the following :
o T-Features, that tag and identify the

differences between the syntactic structures
(namely the trees). Those atomic tags, such
• as T_CANONICAL, TtaASSIVE,
T_WITHOUT_ARG I,
T_WITHOUT_ARG2, etc., are used as a
compositional selection mechanism of
syntactic structures. For instance, the
~ passive without agent >) structure is
determined by the following array of
features •
T CANONICAL+T PASSIVE+T WITHOU
T ARGI.

o Forms features, associated with each of the
grammar trees, indicating their textual level.
The possible values for the form features are
as follows •

- - T - P • for noun phrases.
. -T+P • for a single sentence.
• +T+ P : for a text, i.e. various

sentences.
" +P " for either a single sentence or a

text.
o G-derivation structures, which correspond to

underspecified derivation trees. The nodes

. can.be constant (eaohnode, is.equivalent-to an
elementary tree, as in standard derivation
trees), or variable. In the latter case, the node
can be associated with e i thera concept
attribute name, or with an instantiated
concept.

• Syntactic functions, which are encoded in the
grammar.

- " 2~3 - T h e semantic-conceptualinterface

The semantic-conceptual interface is provided by
the lexicai bases (LB), which relate each
instantiated concept from the generator input
structure with an array of g-derivation trees. This
interface associates arguments (from the
grammar) with concept attributes (from the
conceptual domain).
A lexical base must be able to give, at any time of
the process, a valid lexical choice. When it is
created, a lexical base refers to a g-derivation
tree, selected by default by the domain creator.
This lexical choice can be modified by
constraints introduced by the generation process.

The GTAG global generation strategy is to
modify the lexical base so that the lexical choices
be coherent (selected trees can be combined), and
that the text be as good as possible.

The input

JOHN

Figure 2.] h e input structure associated to lexical bases

232

3 .The ,generation:algorit hm

Tactical generation algorithms use various
strategies which are all input-dependent.
Moreover, defining the bounds between the "how
to say" and the "what to say" is still an open
question. RAGS (rags, 1999) proposes a standard
architecture for the data, but leaves the

~Eeature; or on.the_linear, order, of the elements, .or " . . .

on the realisation of the arguments, etc.
A list of constraints (initially empty) is associated
to each lexical base, and the generation process
adds new constraints while parsing the input
structure. There are two types of constraints
additions :

processing details underspecified. ® implicit constraints. Such constraints are
. However two main approaehes,carrbe,notieed -'. ,._.., added;by~p~en~LB~that~added:~a:~ons/x~nt,~. ~ ~ , .

the recursive one and the deductive one. The due to its own internal lexical choice. For
recursive approach is basically a depth-first
backtracking search (for example (NicoIov,
1998)), while the deductive one uses inference
mechanisms such as those used in expert systems
or specialized languages such as PROLOG
(Panaget, 1997). As deductive systems are often
used as opaque ways of resolving problems, we
will focus on the recursive algorithm, that can
easily be used as a base for the customizing of
algorithms.

3.1 The input s t ructure

The input of the CLEF generation system is a
hierarchical representation (i.e. a tree structure)
of the conceptual structure. Therefore, a crucial
choice is done before the proper linguistic
generation : selecting the theme and the rheme of
the utterance ~.
The main advantage from a technical point of
view is the processing linearization : such a
structure is not ambiguous regarding to the
mapping between the elements of the input
structures and the elements of the grammar. The
input structure is therefore always considered as
a single tree, and the text generation algorithm is
basically a tree walk on this structure, with a
lexical choice processing for each node.

3.2 Lexical choice constraints

The lexical choices made by the lexical bases are
modified by constraints that are related to
different aspects of the selection : either on the T-

This choice is clearly arbitrary, because it is
equally relevant to the "what to say" and the
"how to say it". Such a choice for CLEF was
mainly guided by technical considerations.

example, the lexical selection of"S 1 before
$2" (for a succession concept) imposes
grammatical constraints on the argument
"after" (related to $2) so that the selection of
the argument be grammatically compatible
(i.e. add a constraint that imposes the use of
an infinitive sentence).
explicit contraints. Those constraints are
added by stylistic rules that will carry on the

•

Figure 3 • R0 and R1 are two 2"d-order
relations. E2, E11, and El2 are two 1 st-
order relation. E0 and E1 are two
global schemas.

lexical choice in order to avoid poor style, or
to prevent dead-ends in the generation
process. For example, the parallelism rule
(Meunier 97) should impose that two verbal
predicates use the same syntactic function for
an argument they have in common.

Every constraint addition is associated with a
position in the input structure walk, so that it can
be removed whenever the backtracking is used.
We will also discuss how the backtracking can be
partly avoided taking into account some
properties of the algorithm, and using a minimum
constraint propagation technique,

233

3.3 The semi-reeurs ivealgor i thm •

(Danlos, 1996) emphasizes on the problems tied
to the use of a recursive depth-first algorithm in
the area of text generation. More specifically she
discusses the impossibility of preventing poor
stylistic choices, even when they can be easily
predicted. In fact, the problem holds in that
stylistic or grammatical rules use information that

~are~computed latev:in!:the~ge, ne~ation~stage b y the
recursive algorithm.
Thus, in the examples given by (Danlos, 1996)
(see figure 3), the two 2hal-order relation choices
are obviously linked to each other. Nevertheless,
the computation of the selection of R1 is not done
until other selections are done (at least E2, in this
example). In this way, if no lexical selection
satisfies the syntactic or stylistic constraints, the
generation process will backtrack on the whole
array of previous selections.
Some techniques can be used to
partially make up for the
problem, for example the
memoization ((Nicolov, 1998), [2,d_order
(Becker, 1998)), but it does not [relations LB
solve the problem. The fact is |
that depth-first recursive

. ,is.~ensure, d~.zand~eaeh~lewel,of~eoncept is
considered globally.

• The compatibility tests between the
selections (i.e. the three levels o f concepts)
are carried out. If the combination is valid, it
is accepted, otherwise some new selections
are done until the compatibility tests succeed.

.,'I'he,approach,of., th~algorithra ,,is;partic~_~!o fly.
relevant, as the consistency is not ensured merely
for the array o f previous lexical choices (which is
not enough, as we discussed), but for the whole
set of iexicai choices on the same level. This
provides a realistic implementation of the global
approach.

3.4 The C L E F algorithm

The CLEF algorithm is a variant of the semi-
recursive algorithm. In fact, the main idea of the
semi-recursive algorithm is the separated

l St-order
relations LB

approaches are not adapted to
text generation, where lexical
choices must be done in a
global, holistic perspective
(Danlos, 1998) and (Busemann,
1993).

In this perspective, (Danlos,
1996) proposes a different
algorithm, called "semi-
recursive" algorithm, in that it
remedies to the main drawbacks
of the recursive algorithm. The
latter is caracterized by the
following features :
o The lexical choices of the

different levels of relations
are carried out in parallel.
The combinations of the trees and the
stylistic choices are carried out separately for
each level of concept. Thus, the consistency
of all the lexical choices for a particular level

Lexical selection for ~ /
RO and R I

Lexical selection for

Combination of 1S'-order relations LB and
2°a-order relations LB

Figure 4. The semi-recursive algorithm.

processing of the different levels (entity, l~Lorder
relations, 2"d-order relations).
One problem remains : although the context is
taken into account, it is only used in the same
level of concepts. Thus, both the 2"a-order
relations and the l~Lorder relations remain

234

independent from each other;~and in case of
failure of the compatibility test, incompatible
selections must be computed again. This is due to
the fact that choices are carried out in parallel. In
order to solve this problem easily, computation
should be carried out sequentially and the
different levels should be computed in a
predefined order. In this ease, the question

syntactic one (eg: aprewious lex, ical selection. - . .._:
imposes some syntactic constraint). Many
essential information, for example to decide
whether a noun phrase must be pronominalized or.
not, whether a verb can be elided or not, are
available only if the surrounding context does
exist and is known.

.:arises: in which ord~,should the different • :. .~ ,;The ~,princilale~0Ethe;determination of.the,hacal , . . . ,.
conceptual levels be computed ? context by the global one" (called "hermeneutics

Several evidences indicate that higher level
elements should be selected first, then the lower
levels (i.e. the 2"d-order relations first, then the
lSt-order relations, and then the entities). In fact,
on the rhetorical point of view, the higher level
elements (in GTAG, the 2nd-order relations)
determine the text argumentative structure, thus
providing stylistic consistency on the whole
generated text. Were they not selected first, they
would be constrained by the lexical choices of
the other types of concepts. In other words, they
would yield to constraints other than purely
stylistic, which is not suitable for elements which
first criterion of choice is, precisely, stylistics.

Moreover, it seems that in numerous cases, it is
preferable to select the simpler elements
according to more complex ones. This
corresponds to the approach developped by
(Rastier and al., 1994), that shows that an
element is only relevant in its surrounding
context. Such an approach is relevant in our
framework, since a particular lexical selection
can only be done with full knowledge of the facts
if its context is known. By context, we mean the
conceptual-semantic context (eg. a reference to
an entity that already exists in the discourse), the
lexical context (eg. some lexical selection that
has already been used for an entity), and the

principle" in (Rastier and al., 1994)) can
therefore be applied only if the global context is
already computed, then the local one, according
to the global context. In order for the generation
process to be compliant with this principle,
elements should be computed in the following
order: 2'd-order relations first, then lSt-order
relations, and then entities.

Proceeding otherwise would be inconsistent : it is
not possible to determine the lexical-syntactic
selection of an entity without knowing if it is
bound to a noun or a verb. The two possibilities
are not necessarily available for a given concept,
and carrying on without this piece of information
could be considered a last resort.

Besides surrounding context, the local context is
also necessary, as shows the perspective notion
which can be found in (Busemann, 1993), and
also supported by (Rastier and al., 1994). It is
therefore necessary to know the dependents (the
children in the input tree structure) in order to
make a lexical-syntactic choice.

These elements were crucial for the design of the
CLEF generation algorithm, which we will
described hereafter.

235

3.4.1 Linearization of the algorithm

The CLEF generation algorithm considers the
three conceptual levels one by one, carrying out
the lexical selection at first on the 2hal-order
relations, then on the PLorder relations, and
finally on the entities.

M A R Y TA R T / / ~ N , , SLEEP I

P E T E R TART P E T E R

Fimlre 'q. The 1 st nha~e.

.~< Mary~cctoke&a:fatt;;then..:. }});;~hen- ::-
COOK will be computed before EAT and
SLEEP. On the contrary, i f a tree anchoring
<< S1 after $ 2 , is used (like in << Peter ate the
tart and fell asleep after... >>), EAT and
SLEEP will be computed first, then COOK.
This important property of the algorithm

: " "SUCCEgSfON ' " : : " " '

M A R Y TART E AT SLEEP

PETER T A R T PETER

Fimlre 6. The "2 nd nha~e

M A R Y T'aSR . l ~ S L I ~ P

PETER TART PETER

Fimlre 7

The graph walk has the following properties :
o It is carried out in three phases, one for each

conceptual level.
o The walk is done depth-first, but following

the surfaeie linear order of the elements.
Thus, the walk order for the lSLorder
elements depends on the lexical choices for
R0 and R1 (see fig.3) : if the lexicalized tree
selected for R1 situates E2 before RI, then
E2 should be computed before El I and El2.
The same way, for El 1 and El2, the order of
the processing will depend on the tree
selected by R1. On our example (fig. 5 to 7),
this means that the order of walk of the
second phase (regarding the l SLorder
relations) will depend on the lexical choices
took during the first phase. For instance, if
the SUCCESSION concept is lexicalized
using a tree anchoring <~ S1 then $2 ~> (like in

The qrd nh,qRe

allows to make lexical choices according to
previous ones.

* A stack is added, and allows the storage of
every lexical choice according to their linear
order. This stack stores the history of the
choices carried out, and thus allows to
backtrack when needed.

o During the tree walk, some constraints are
propagated towards the lower elements of the
tree. So, a lexical-syntactic selection of a
concept would be able to add constraints over
the lexical choices of_the lexical bases lower-
dependent. For example, such a concept
could select a particular Form feature, or a
particular set ofT-Features, for one of its
dependent.

Unlike the semi-recursive algorithm, the global
context choice also carries out according to local
choices. Tile stylistic rules can not only use the

236

. .information given by. the:conceptsofthe same
level, but also the information given by the
dependent nodes, which allows the retrieval of
some predictable information. This information
is, of course, limited as the lexical-syntactic
choice of the dependent lexical bases if not
performed at this point.
For example, if E2 and E 12 refers to the same

~ concept, some constraints could be.e0mputed as.
soon as the lexical selection for R0 is done, and
added to the lexical bases of the dependent nodes
of R0, in particular RI.

3.4.2 Minimum constraint propagation :
controll ing the backtracking

The backtrack, when the processing comes to an
impossibility for a lexical base to get a
satisfactory lexical choice, is not excluded,
although it is inherently limited by the nature of
the graph walk.
The handling of the backtracking can also take
advantage of both the walk mechanism and the
data structures used.
For example, if the algorithm fails to find a valid
choice for the El2 element (see figure 3), the
backtracking can be performed directly on R1, to
find an alternative choice compatible with all the
dependent nodes (that is E 11 and R0, in our
example). Ifa modification is both available and
compatible with the related lexicai bases, it will
be validated. For a lexical base, a modification is
considered compatible if it does not imply any
modification in the set of implicit constraints
added to the related lexical bases, except the
lexical base from which the processing
backtracks.
In our example, the backtracking process can ask
the LB for RI to find an alternative choice that
modifies the constraints on El2, without
modifying any other, that is letting the implicit
constraints for E11 et R0 untouched. In other
words, it consists in adding a new constraint on

• R1 that will imply the selection of a new lexical-
syntactic structure so that the implicit constraints
on E11 and R0 remain identical, and so that the
implicit constraints on El2 impose a new,
compatible, choice.
The algorithm can therefore carry out a minimum
propagation of the constraints, without
necessarily doing a full backtracking. In that case.

......... it_attem pts .to ..find z~the~.best.compram ise .w ith.:the..
related lexical •bases, before falling back to the
normal backtracking mechanism.

4 Conclus ion

We discussed how to implement and improve the
semi-recursive algorithm described in
(Danlos1996), so that the global (holistic)

...... approach ((Danlos, 1996) and (Rastier and -..
" a1.~1994)) be i'eali-sfically iniple/fiented. 'Because

of its nature, the algorithm is intented rather for
best-first generation, and several improvements
are still being studied, regarding the paraphrase
and the dynamic construction and updating of the
lexical bases.

5 References

(Abeille, 1993) Abeill6 A. (1993): <<Les
nouvelles syntaxes: grammaires d'unification et
analyse du frangais >), Armand Colin, Paris.
(AYt-Kaci and Nasr, 1986) AR-Kaci H, Nasr R.
(1986) : << Login : A logic-Programming
Language with Built-In Inheritance >), in Journal
of Logic Programming, 3.
(Beeker, 1998) Becker T. (1998): <<Fully
Lexicalized head-driven syntactic generation >~,
INLG'98, Niagara-on-the-Lake, Ontario, Canada.
(Busemann, 1993) Busemann S. (1993): << A
holistic view of lexical choice>>, in Helmut
Horacek (ed.), New Concepts in Natural
Language Generation : Planning, Realization, and
Systems, Frances Pinter, London, New-York.
(Danlos, 1996) Danlos L. (1996) : << Pr6sentation
de G-TAG, un formalisme pour la gdn6ration de
textes inspir6 des grammaires d'arbres adjoints >>,
in Acres TALN-96, Marseille.
(Danios, 1998) Danlos L. (1998), << G-TAG: a
Formalism for Text Generation inspired from
Tree Adjoining Grammar: TAG issues,, in
Abeill6 A., Rambow, O. (eds), Tree Adjoining
Grammars, CSLI, Standford.
(Danlos, 1999) Danlos L. (1999), << G-TAG : un
formalisme lexicalis6 pour la g6n6ration de textes
inspir6 de TAG >>, TAL, Vol. 39.2.
(Danlos and Meunier, 1996) Danlos L., Meunier
F. (1996), << La g6n6ration multilingue :
applications industrielles et r6alisation
scientifique >>, Langues situ~es, technologic
communications, 1996

237

(Joshi and al., 1975) Joshi A., Levy L.,
Takahashi M. (1975) : ~ Tree Adjunct
Grammars)~, in Journal of the Computer and
System Sciences, l0 :l.
(Meunier, 1997) Meunier F. (1997),

Implantation du formalisme de gdn~ration
G-TAG, Th/~se de doctorat, Universit6 de Paris 7
(Meunier, 1999) Meunier F. (1999),
Mod61isation des ressources linguistiques d'une
application industrielle, Actes TALN'99, Carg/~se.
(Meunier and Reyes, 1999) Meunier F., Reyes
R. (1999), Plate-forme de d6veloppement de
g6n6rateurs multilingues, Actes GA T'99,
Grenoble, France.
(Meunier and Danlos, 1998) Danlos L., Meunier
F. (1998), ~ FLAUBERT : User-friendly
multilingual NLG ~, INLG 1998, Niagara-on-the-
Lake, Ontario, Canada.
(Nieolov, 1998) Nicolov N. (1998) :
t~ Memoization in Sentence Generation with
Lexicalized Grammars ~. Proceedings of the 4 th

International Workshop on Tree-Adjoining
Grammars and Related Frameworks (TAG+4),
Philadelphia.
(Rags, 1999) The RAGS Project (1999) :
~ Toward a reference architecture for natural
language generation systems)>.
http://www.itri.brighton.ac.uk/projects/rags
(Rastier and al., 1994) Rastier F., Cavazza M.,
and Abeill6 A. (1994) : ~ S~mantique pour
l'analyse ~), Masson, Paris.
(Sehabes and Sllieher, 1994) Schabes Y., and
Shieber S. (1994) : ~ An alternative conception of
the Tree-Adjoining Grammars)~, in Actes 13 rd
COLING-90, Helsinki.

238

