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Abstract 2 Presentation of GTAG 

" . . . . . . . . . . . . .  We+will discuss the:somi-reeursiveaigorithm for ....... -+-+,~he~GTAG.£ovmalismdescrihes.th~domain_ 
text generation, as defined for the GTAG model used to specify the input of  the generator, 

formalism, and its implementation in the CLEF 
project. We will show how to use iexical choice 
constraints and properties of  the LTAG grammar 
to minimize the backtracking of  the semi- 
recursive algorithm. 

1 Introduction 

GTAG is a multilingual text generation 
formalism derived from the Tree Adjoining 
Grammar model ((Joshi and al., 1975), (Shabes 
and Shieber,1994)). This formalism, which is still 
evolving, uses slightly enriched TAG grammars 
as its syntactic back-end. 
GTAG only deals with the << How to say it ?>> 
aspect of  the generation process. It takes as input 
a partly computed symbolic representation of  the 
discourse, and defines the processing and the data 
necessary to produce the final text.GTAG is 
widely described in (Danlos, 1996), (Danlos, 
1998), and (Danlos1999). 
Flaubert was the first GTAG implementation, 
conducted by Cora SA ((Meunier and Danlos, 
1998), (Meunier 1997)). This implementation 
validated the first versions of the formalism, and 
yielded a stable version of GTAG. A new 
implementation has been initiated by Thomson- 
CSF LCR ((Meunier and Reyes, 1999), (Meunier, 
1999)), using the Java language, with a strong 
emphasis on research and applications. 
We will give firstly a short insight of the GTAG 
formalism, then introduce the semi-recursive 
algorithm in comparison with the recursive 

• approach. Then, we will give a presentation of 
the CLEF generation algorithm that yields a 
nearly-surfacic syntactic representation from the 
conceptual representation (a post-processing 
phase takes care of the final output). 

as well as the linguistics data and processing 
necessary to generate texts. GTAG uses a first- 
order logic formalism for its domain model, and a 
lexicalized TAG grammar as its syntactic model. 
We introduce hereafter both sub-formalisms, and 
the manner in which GTAG links them. 

2.1 Domain model 

The Login (Logic and inheritance) formalism 
((A'it-Kaci and Nasr, 1986), (Meunier, 1997)) has 
been used to model the domain knowledge. It 
takes type constraints into account, thus allowing 
to validate, to a certain extent, the input 
structures' coherence. 
GTAG specifies an additional constraint on the 
model : the existence of three generic concepts 
used to divide the conceptual domain, as follows. 
o Entities, representing objects (individuals) of  

the world. 
o lSt-order relations, representing simple 

events, between entities, or between entities 
and relations. 

• 2nO-order relations, representing relations 
between relations. 

~ S  

Entities 

1 St-order 2hal-order 

relations relations 

Figure I. A typical model for the domain. 

Thus, a typical model will have the following 
form. as shown in figure I. 
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2.2 The g rammar  

The syntactic back-end is a Lexicalized Tree 
Adjoining Grammar, which complies with the 
Predicate-Argument Cooccurrence Principle 
(Abeillr, 1993), enriched with the following : 
o T-Features, that tag and identify the 

differences between the syntactic structures 
(namely the trees). Those atomic tags, such 
• as T_CANONICAL, TtaASSIVE, 
T_WITHOUT_ARG I, 
T_WITHOUT_ARG2, etc., are used as a 
compositional selection mechanism of 
syntactic structures. For instance, the 
~ passive without agent >) structure is 
determined by the following array of  
features • 
T CANONICAL+T PASSIVE+T WITHOU 
T ARGI. 

o Forms features, associated with each of the 
grammar trees, indicating their textual level. 
The possible values for the form features are 
as follows • 

- - T - P  • for noun phrases. 
. -T+P • for a single sentence. 
• +T+ P : for a text, i.e. various 

sentences. 
" +P " for either a single sentence or a 

text. 
o G-derivation structures, which correspond to 

underspecified derivation trees. The nodes 

. . . . . . . . . . . . . . . . . .  can.be constant (eaohnode, is.equivalent-to an 
elementary tree, as in standard derivation 
trees), or variable. In the latter case, the node 
can be associated with e i thera  concept 
attribute name, or with an instantiated 
concept. 

• Syntactic functions, which are encoded in the 
grammar. 

- " 2~3 - T h e  semantic-conceptualinterface 

The semantic-conceptual interface is provided by 
the lexicai bases (LB), which relate each 
instantiated concept from the generator input 
structure with an array of  g-derivation trees. This 
interface associates arguments (from the 
grammar) with concept attributes (from the 
conceptual domain). 
A lexical base must be able to give, at any time of  
the process, a valid lexical choice. When it is 
created, a lexical base refers to a g-derivation 
tree, selected by default by the domain creator. 
This lexical choice can be modified by 
constraints introduced by the generation process. 

The GTAG global generation strategy is to 
modify the lexical base so that the lexical choices 
be coherent (selected trees can be combined), and 
that the text be as good as possible. 

The input 

JOHN 

Figure 2. ] h e  input structure associated to lexical bases 
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3 .The ,generation:algorit hm 

Tactical generation algorithms use various 
strategies which are all input-dependent. 
Moreover, defining the bounds between the "how 
to say" and the "what to say" is still an open 
question. RAGS (rags, 1999) proposes a standard 
architecture for the data, but leaves the 

~Eeature; or on.the_linear, order, of  the elements, .or " . . .  

on the realisation of the arguments, etc. 
A list of  constraints (initially empty) is associated 
to each lexical base, and the generation process 
adds new constraints while parsing the input 
structure. There are two types of  constraints 
additions : 

processing details underspecified. ® implicit constraints. Such constraints are 
. . . . . . . . . . . . . .  However two main approaehes,carrbe,notieed -'. . . . .  ,._.., .......... added;by~p~en~LB~that~added:~a:~ons/x~nt,~. ~ ~ , .  

the recursive one and the deductive one. The due to its own internal lexical choice. For 
recursive approach is basically a depth-first 
backtracking search (for example (NicoIov, 
1998)), while the deductive one uses inference 
mechanisms such as those used in expert systems 
or specialized languages such as PROLOG 
(Panaget, 1997). As deductive systems are often 
used as opaque ways of  resolving problems, we 
will focus on the recursive algorithm, that can 
easily be used as a base for the customizing of  
algorithms. 

3.1 The input s t ructure 

The input of the CLEF generation system is a 
hierarchical representation (i.e. a tree structure) 
of the conceptual structure. Therefore, a crucial 
choice is done before the proper linguistic 
generation : selecting the theme and the rheme of 
the utterance ~. 
The main advantage from a technical point of  
view is the processing linearization : such a 
structure is not ambiguous regarding to the 
mapping between the elements of  the input 
structures and the elements of the grammar. The 
input structure is therefore always considered as 
a single tree, and the text generation algorithm is 
basically a tree walk on this structure, with a 
lexical choice processing for each node. 

3.2 Lexical choice constraints 

The lexical choices made by the lexical bases are 
modified by constraints that are related to 
different aspects of the selection : either on the T- 

This choice is clearly arbitrary, because it is 
equally relevant to the "what  to say" and the 
"how to say it". Such a choice for CLEF was 
mainly guided by technical considerations. 

example, the lexical selection of"S 1 before 
$2" (for a succession concept) imposes 
grammatical constraints on the argument 
"after" (related to $2) so that the selection of  
the argument be grammatically compatible 
(i.e. add a constraint that imposes the use of 
an infinitive sentence). 
explicit contraints. Those constraints are 
added by stylistic rules that will carry on the 

• 

Figure 3 • R0 and R1 are two 2"d-order 
relations. E2, E11, and El2  are two 1 st- 
order relation. E0 and E1 are two 
global schemas. 

lexical choice in order to avoid poor style, or 
to prevent dead-ends in the generation 
process. For example, the parallelism rule 
(Meunier 97) should impose that two verbal 
predicates use the same syntactic function for 
an argument they have in common. 

Every constraint addition is associated with a 
position in the input structure walk, so that it can 
be removed whenever the backtracking is used. 
We will also discuss how the backtracking can be 
partly avoided taking into account some 
properties of the algorithm, and using a minimum 
constraint propagation technique, 
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3.3 The  semi-reeurs ivealgor i thm • 

(Danlos, 1996) emphasizes on the problems tied 
to the use of  a recursive depth-first algorithm in 
the area of  text generation. More specifically she 
discusses the impossibility of  preventing poor 
stylistic choices, even when they can be easily 
predicted. In fact, the problem holds in that 
stylistic or grammatical rules use information that 

~are~computed latev:in!:the~ge, ne~ation~stage b y  the 
recursive algorithm. 
Thus, in the examples given by (Danlos, 1996) 
(see figure 3), the two 2hal-order relation choices 
are obviously linked to each other. Nevertheless, 
the computation of the selection of  R1 is not done 
until other selections are done (at least E2, in this 
example). In this way, if no lexical selection 
satisfies the syntactic or stylistic constraints, the 
generation process will backtrack on the whole 
array of previous selections. 
Some techniques can be used to 
partially make up for the 
problem, for example the 
memoization ((Nicolov, 1998), [ 2,d_order 
(Becker, 1998)), but it does not [ relations LB 
solve the problem. The fact is | 
that depth-first recursive 

. . . . . . . . . .  ,is.~ensure, d~.zand~eaeh~lewel,of~eoncept is 
considered globally. 

• The compatibility tests between the 
selections (i.e. the three levels o f  concepts) 
are carried out. If the combination is valid, it 
is accepted, otherwise some new selections 
are done until the compatibility tests succeed. 

. . . . . .  .,'I'he,approach,of., th~algorithra ,,is;partic~_~!o fly. 
relevant, as the consistency is not ensured merely 
for the array o f  previous lexical choices (which is 
not enough, as we discussed), but for the whole 
set of  iexicai choices on the same level. This 
provides a realistic implementation of  the global 
approach. 

3.4 The  C L E F  algorithm 

The CLEF algorithm is a variant of  the semi- 
recursive algorithm. In fact, the main idea of  the 
semi-recursive algorithm is the separated 

l St-order 
relations LB 

approaches are not adapted to 
text generation, where lexical 
choices must be done in a 
global, holistic perspective 
(Danlos, 1998) and (Busemann, 
1993). 

In this perspective, (Danlos, 
1996) proposes a different 
algorithm, called "semi- 
recursive" algorithm, in that it 
remedies to the main drawbacks 
of the recursive algorithm. The 
latter is caracterized by the 
following features : 
o The lexical choices of the 

different levels of relations 
are carried out in parallel. 
The combinations of the trees and the 
stylistic choices are carried out separately for 
each level of  concept. Thus, the consistency 
of all the lexical choices for a particular level 

Lexical selection for ~ / 
RO and R I 

Lexical selection for 

Combination of 1S'-order relations LB and 
2°a-order relations LB 

Figure 4. The  semi-recursive algorithm. 

processing of the different levels (entity, l~Lorder 
relations, 2"d-order relations). 
One problem remains : although the context is 
taken into account, it is only used in the same 
level of  concepts. Thus, both the 2"a-order 
relations and the l~Lorder relations remain 
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independent from each other;~and in case of  
failure of  the compatibility test, incompatible 
selections must be computed again. This is due to 
the fact that choices are carried out in parallel. In 
order to solve this problem easily, computation 
should be carried out sequentially and the 
different levels should be computed in a 
predefined order. In this ease, the question 

syntactic one (eg: aprewious lex, ical selection. - . .._: 
imposes some syntactic constraint). Many 
essential information, for example to decide 
whether a noun phrase must be pronominalized or. 
not, whether a verb can be elided or not, are 
available only if the surrounding context does 
exist and is known. 

.:arises: in which ord~,should the  different • :. .~ ... . .  ,;The ~,princilale~0Ethe;determination of.the,hacal , . . .  ,. 
conceptual levels be computed ? context by the global one" (called "hermeneutics 

Several evidences indicate that higher level 
elements should be selected first, then the lower 
levels (i.e. the 2"d-order relations first, then the 
lSt-order relations, and then the entities). In fact, 
on the rhetorical point of  view, the higher level 
elements (in GTAG, the 2nd-order relations) 
determine the text argumentative structure, thus 
providing stylistic consistency on the whole 
generated text. Were they not selected first, they 
would be constrained by the lexical choices of 
the other types of concepts. In other words, they 
would yield to constraints other than purely 
stylistic, which is not suitable for elements which 
first criterion of  choice is, precisely, stylistics. 

Moreover, it seems that in numerous cases, it is 
preferable to select the simpler elements 
according to more complex ones. This 
corresponds to the approach developped by 
(Rastier and al., 1994), that shows that an 
element is only relevant in its surrounding 
context. Such an approach is relevant in our 
framework, since a particular lexical selection 
can only be done with full knowledge of the facts 
if its context is known. By context, we mean the 
conceptual-semantic context (eg. a reference to 
an entity that already exists in the discourse), the 
lexical context (eg. some lexical selection that 
has already been used for an entity), and the 

principle" in (Rastier and al., 1994)) can 
therefore be applied only if the global context is 
already computed, then the local one, according 
to the global context. In order for the generation 
process to be compliant with this principle, 
elements should be computed in the following 
order: 2'd-order relations first, then lSt-order 
relations, and then entities. 

Proceeding otherwise would be inconsistent : it is 
not possible to determine the lexical-syntactic 
selection of  an entity without knowing if it is 
bound to a noun or a verb. The two possibilities 
are not necessarily available for a given concept, 
and carrying on without this piece of information 
could be considered a last resort. 

Besides surrounding context, the local context is 
also necessary, as shows the perspective notion 
which can be found in (Busemann, 1993), and 
also supported by (Rastier and al., 1994). It is 
therefore necessary to know the dependents (the 
children in the input tree structure) in order to 
make a lexical-syntactic choice. 

These elements were crucial for the design of the 
CLEF generation algorithm, which we will 
described hereafter. 
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3.4.1 Linearization of  the  algorithm 

The CLEF generation algorithm considers the 
three conceptual levels one by one, carrying out 
the lexical selection at first on the 2hal-order 
relations, then on the PLorder relations, and 
finally on the entities. 

M A R Y  TA R T / / ~ N , ,  SLEEP I 

P E T E R  TART P E T E R  

Fimlre 'q. The 1 st nha~e. 

.~< Mary~cctoke&a:fatt;;then..:. }});;~hen- ::- 
COOK will be computed before EAT and 
SLEEP. On the contrary, i f a  tree anchoring 
<< S1 after $ 2 ,  is used (like in << Peter ate the 
tart and fell asleep after... >>), EAT and 
SLEEP will be computed first, then COOK. 
This important property of  the algorithm 

: . . . . . . . . . .  " .... "SUCCEgSfON ' " :  ...... : "  .... " '  

M A R Y  TART E AT  SLEEP 

PETER T A R T  PETER 

Fimlre 6. The "2 nd nha~e 

M A R Y  T'aSR . l ~  S L I ~ P  

PETER TART PETER 

Fimlre 7 

The graph walk has the following properties : 
o It is carried out in three phases, one for each 

conceptual level. 
o The walk is done depth-first, but following 

the surfaeie linear order  of the elements. 
Thus, the walk order for the lSLorder 
elements depends on the lexical choices for 
R0 and R1 (see fig.3) : if the lexicalized tree 
selected for R1 situates E2 before RI, then 
E2 should be computed before El I and El2. 
The same way, for El 1 and El2, the order of  
the processing will depend on the tree 
selected by R1. On our example (fig. 5 to 7), 
this means that the order of  walk of the 
second phase (regarding the l SLorder 
relations) will depend on the lexical choices 
took during the first phase. For instance, if 
the SUCCESSION concept is lexicalized 
using a tree anchoring <~ S1 then $2 ~> (like in 

The qrd nh,qRe 

allows to make lexical choices according to 
previous ones. 

* A stack is added, and allows the storage of  
every lexical choice according to their linear 
order. This stack stores the history of the 
choices carried out, and thus allows to 
backtrack when needed. 

o During the tree walk, some constraints are 
propagated towards the lower elements of  the 
tree. So, a lexical-syntactic selection of a 
concept would be able to add constraints over 
the lexical choices of_the lexical bases lower- 
dependent. For example, such a concept 
could select a particular Form feature, or a 
particular set ofT-Features, for one of its 
dependent. 

Unlike the semi-recursive algorithm, the global 
context choice also carries out according to local 
choices. Tile stylistic rules can not only use the 
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. .information given by. the:conceptsofthe same 
level, but also the information given by the 
dependent nodes, which allows the retrieval of  
some predictable information. This information 
is, of  course, limited as the lexical-syntactic 
choice of  the dependent lexical bases if not 
performed at this point. 
For example, if E2 and E 12 refers to the same 

~ concept, some constraints could be.e0mputed as. 
soon as the lexical selection for R0 is done, and 
added to the lexical bases of  the dependent nodes 
of R0, in particular RI. 

3.4.2 Minimum constraint propagation : 
controll ing the backtracking 

The backtrack, when the processing comes to an 
impossibility for a lexical base to get a 
satisfactory lexical choice, is not excluded, 
although it is inherently limited by the nature of 
the graph walk. 
The handling of the backtracking can also take 
advantage of both the walk mechanism and the 
data structures used. 
For example, if the algorithm fails to find a valid 
choice for the El2 element (see figure 3), the 
backtracking can be performed directly on R1, to 
find an alternative choice compatible with all the 
dependent nodes (that is E 11 and R0, in our 
example). Ifa modification is both available and 
compatible with the related lexicai bases, it will 
be validated. For a lexical base, a modification is 
considered compatible if it does not imply any 
modification in the set of  implicit constraints 
added to the related lexical bases, except the 
lexical base from which the processing 
backtracks. 
In our example, the backtracking process can ask 
the LB for RI to find an alternative choice that 
modifies the constraints on El2, without 
modifying any other, that is letting the implicit 
constraints for E11 et R0 untouched. In other 
words, it consists in adding a new constraint on 

• R1 that will imply the selection of a new lexical- 
syntactic structure so that the implicit constraints 
on E11 and R0 remain identical, and so that the 
implicit constraints on El2 impose a new, 
compatible, choice. 
The algorithm can therefore carry out a minimum 
propagation of the constraints, without 
necessarily doing a full backtracking. In that case. 

......... it_attem pts .to ..find z~the~.best.compram ise .w ith.:the.. 
related lexical •bases, before falling back to the 
normal backtracking mechanism. 

4 Conclus ion 

We discussed how to implement and improve the 
semi-recursive algorithm described in 
(Danlos1996), so that the global (holistic) 

...... approach ((Danlos, 1996) and (Rastier and -.. 
" a1.~1994)) be i'eali-sfically iniple/fiented. 'Because 

of its nature, the algorithm is intented rather for 
best-first generation, and several improvements 
are still being studied, regarding the paraphrase 
and the dynamic construction and updating of  the 
lexical bases. 
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