
A Uni form M e t h o d of Grammar Extrac t ion
and Its Appl icat ions

Fei X i a and M a r t h a P a l m e r and A r a v i n d J o s h i
D e p a r t m e n t of Compu te r and Informat ion Science

University of Pennsylvania
Phi ladelphia PA 19104, USA

{fxia, mpalmer, j oshi)@linc, cis. upenn, edu

A b s t r a c t

Grammars are core elements of many NLP ap-
plications. In this paper, we present a system
that automatically extracts lexicalized gram-
mars from annotated corpora. The data pro-
duced by this system have been used in sev-
eral tasks, such as training NLP tools (such
as Supertaggers) and estimating the coverage
of harid-crafted grammars. We report experi-
mental results on two of those tasks and com-
pare our approaches with related work.

1 I n t r o d u c t i o n

There are various grammar frameworks pro-
posed for natural languages. We take Lexi-
calized Tree-adjoining Grammars (LTAGs) as
representative of a class of lexicalized gram-
mars. LTAGs (Joshi et al., 1975) are ap-
pealing for representing various phenomena
in natural languages due to its linguistic and
computational properties. In the last decade,
LTAG has been used in several aspects of
natural language understanding (e.g., pars-
ing (Schabes, 1990; Srinivas, 1997), semantics
(Joshi and Vijay-Shanker, 1999; Kallmeyer
and Joshi, 1999), and discourse (Webber and
Joshi, 1998)) and a number of NLP applica-
tions (e.g., machine translation (Palmer et al.,
1998), information retrieval (Chandrasekar
and Srinivas, 1997), and generation (Stone
and Doran, 1997; McCoy et al., 1992). This
paper describes a system that extracts LTAGs
from annotated corpora (i.e., Treebanks).

There has been much work done on extract-
ing Context-Free grammars (CFGs) (Shirai
et al., 1995; Charniak, 1996; Krotov et al.,
1998). However, extracting LTAGs is more
complicated than extracting CFGs because
of the differences between LTAGs and CFGs.
First, the primitive elements of an LTAG are
lexicalized tree structures (called elementary
trees), not context-free rules (which can be
seen. as trees with depth one). Therefore, an
LTAG extraction algorithm needs to examine

a larger portion of a phrase structure to build
an elementary tree. Second, the composition
operations in LTAG are substitution (same
as the one in a CFG) and adjunction. It is
the operation of adjunction that distinguishes
LTAG from all other formalisms. Third, un-
like in CFGs, the parse trees (also known as
derived trees in the LTAG) and the derivation
trees (which describe how elementary trees
are combined to form parse trees) are differ-
ent in the LTAG formalism in the sense that
a parse tree can be produced by several dis-
tinct derivation trees. Therefore, to provide
training data for statistical LTAG parsers, an
LTAG extraction algorithm should also build
derivation trees.

For each phrase structure in a Treebank,
our system creates a fully bracketed phrase
structure, a set of elementary trees and
a derivation tree. The data produced by
our system have been used in several NLP
tasks. We report experimental results on two
of those applications and compare our ap-
proaches with related work.

2 L T A G f o r m a l i s m

The primitive elements of an LTAG are ele-
mentary trees (etrees). Each etree is associ-
ated with a lexical item (called the anchor of
the tree) on its frontier. We choose LTAGs as
our target grammars (i.e., the grammars to be
extracted) because LTAGs possess many de-
sirable properties, such as the Extended Do-
main of Locality, which allows the encapsula-
tion of all arguments of [he anchor associated
with an etree. There are two types of etrees:.
initial trees and auxiliary trees. An auxiliary
tree represents recursive structure and has a
unique leaf node, called the foot node, which
has the same syntactic category as the root
node. Leaf nodes other than anchor nodes
and foot nodes are substitutionnodes. Etrees
are combined by two operations: substitution
and adjunction, as in Figure 1 and 2. The

53

resulting structure of the combined etrees is
called a derived tree. The combination pro-
cess is expressed as a derivat ion tree.

Figure 1: The substitution operation

=>/_ _~

Figure 2: The adjunction operation

Figure 3 shows the etrees, the derived tree,
and the derivation tree for the sentence un-
derwri ters st i l l draft policies. Foot and sub-
stitution nodes are marked b y . , and $, re-
spectively. The dashed and solid lines in the
derivation tree are for adjunction and substi-
tution operations, respectively.

3 S y s t e m O v e r v i e w

We have built a system, called LexTract, for
grammar extraction. The architecture of Lex-
Tract is shown in Figure 4 (the parts that will
be discussed in this paper are in bold). The
core of LexTract is an extraction algorithm
that takes a Treebank sentence such as the
one in Figure 5 and produces the trees (el-
ementary trees, derived trees and derivation
trees) such as the ones in Figure 3.

3.1 T h e F o r m of Ta rge t G r a m m a r s

Without further constraints, the etrees in the
target grammar could be of various shapes.

#, . 4 " - - . ~ , #3. ~:
l : " VP -- ' S

NP A "- ~I - - NP

I ADVP VP* ". NP I VP '
s~s I " "~:~'-. i Ntis

xa v!31> NP t / I
I t i ~ Iicll~i undenviStel'x s t i l l dr'aft Ix) '

(a) err¢¢a

draft(#3)

I ADVP VP u n d e r w d l e r s (# 1) ", pol ic ies(#4)
NNS l ~ s t i l l (#2)

slill ~ NN$
I

(b) derived tree (c) derivation tr~

Figure 3: Etrees, derived tree and derivation
tree for underwr i t e r s still draft policies

i l.~xTract Syslcm i matde:d

i ! L'rAo~

Treebonk ~peclflc tlerlvatim

t ~ i implaulible

Figure 4: Architecture of LexTract

((S (PP-LOC (IN at)
(NP (NNP FNX)))

(NP-SBJ-I (NNS underwriters))
(ADVP (RiB still))
(VP (VBP draft)

(NP (NNS policies))
(S-MNR

(NP-SBJ (-NONE- *- 1))
(VP (VBG using)

(NP
(NP (NN fountain) (NNS pens))
(CC and)
(NP (VBG blotting) (NN papers))))))))

Figure 5: A Treebank example

Our system recognizes three types of rela-
tion (namely, predicate-argument, modifica-
tion, and coordination relations) between the
anchor of an etree and other nodes in the etree,
and imposes the constraint that all the etrees
to be extracted should fall into exactly one of
the three patterns in Figure 6.

• The spine-etrees for predicate-argument
relations. X ° is the head of X m and the
anchor of the etree. The etree is formed
by a spine X m --+ X m-1 -~ .. --+ X ° and
the arguments of X °.

• The mod-etrees for modification rela-
tions. The root of the etree has two chil-
dren, one is a foot node with the label
Wq, and the other node X m is a modifier

X m

A

x '

X ° zP~,

lexical item

X m
Wq

A
Wq" X m ~ . . cclt x ~

xO zPl x o z~ I
lcxical ilerrl I

Icxical i lem

(a) spinc..etree (b) mod-etz.~ (c) conj-etree

Figure 6: Three types of elementary trees in
the target grammar

5 4

of the foot node. X TM is further expanded
into a spine-etree whose head X ° is the
anchor of the whole mod-etree.

• The conj-etrees for coordination rela-
tions. In a conj-etree, the children of the
root are two conjoined constituents and a
node for a coordination conjunction. One
conjoined constituent is marked as the
foot node, and the other is expanded into
a spine-etree whose head is the anchor of
the whole tree.

Spine-etrees are initial trees, whereas mod-
etrees and conj-etrees are auxiliary trees.

3.2 T r e e b a n k - s p e c i f i c i n f o r m a t i o n

The phrase structures in the Treebank (ttrees
for short) are partially bracketed in the sense
that arguments and modifiers are not struc-
turally distinguished. In order to construct
the etrees, which make such distinction, Lex-
Tract requires its user to provide additional
information in the form of three tables: a
Head Percolation Table, an Argument Table,
and a Tagset Table.

A Head Percolation Table has previ-
ously been used in several statistical parsers
(Magerman, 1995; Collins, 1997) to find heads
of phrases. Our strategy for choosing heads is
similar to the one in (Collins, 1997). An Ar-
gument Table informs LexTract what types of
arguments a head can take. The Tagset Table
specifies what function tags always mark ar-
guments (adjuncts, heads, respectively). Lex-
Tract marks each sibling of a head as an argu-
ment if the sibling can be an argument of the
head according to the Argument Table and
none of the function tags of the sister indi-
cates that it is an adjunct. For example, in
Figure 5, the head of the root S is the verb
draft, and the verb has two siblings: the noun
phrase policies is marked as an argument of
the verb because from the Argument Table we
know that verbs in general can take an NP ob-
ject; the clause is marked as a modifier of the
verb because, al though verbs in general can
take a sentential argument, the Tagset Table
informs LexTract that the function tag -MNR
(manner) always marks a modifier.

3.3 O v e r v i e w o f t h e E x t r a c t i o n
A l g o r i t h m

The extraction process has three steps: First,
LexTract fully brackets each ttree; Second,
LexTract decomposes the fully bracketed ttree

((S (PP-LOC (IN at)
(NP (NNP FNX)))

(S (NP-SBJ-I (NNS underwriters))
(VP (ADVP (RB still))

(VP (VP (VBP draft)
(NP (NNS policies)))

(S-MNR
(NP-SBJ (-NONE- *-1))
(VP (VBG using)

(NP (NP (NN fountain)
(NP (NNS pens)))

(CC and)
(NP (VBG blotting)

(NP (NN papers)))))))))))

Figure 7: The fully bracketed ttree

into a set of etrees; Third, LexTract builds the
derivation tree for the ttree.

3.3.1 Fu l ly b r a c k e t i n g ttrees

As just mentioned, the ttrees in the Tree-
bank do not explicitly distinguish arguments
and modifiers, whereas etrees do. To account
for this difference, we first fully bracket the
ttrees by adding intermediate nodes so that
at each level, one of the following relations
holds between the head and its siblings: (1)
head-argument relation, (2) modification re-
lation, and (3) coordination relation. Lex-
Tract achieves this by first choosing the head-
child at each level and distinguishing argu-
ments from adjuncts with the help of the three
tables mentioned in Section 3.2, then adding
intermediate nodes so that the modifiers and
arguments of a head at tach to different levels.
Figure 7 shows the fully bracketed ttree. The
nodes inserted by LexTract are in bold face.

3.3.2 B u i l d i n g etrees

In this step, LexTract removes recursive struc-
tures - which will become mod-etrees or conj-
etrees - from the fully bracketed ttrees and
builds spine-etrees for the non-recursive struc-
tures. Start ing from the root of a fully brack-
eted ttree, LexTract first finds a unique path
from the root to its head. It then checks each
node e on the path. If a sibling of e in the ttree
is marked as a modifier, LexTract marks e and
e's parent, and builds a mod-etree (or a conj-
etree if e has another sibling which is a con-
junction) with e's parent as the root node, e as
the foot node, and e's siblings as the modifier.
Next, LexTract creates a spine-etree with the
remaining unmarked nodes on the pa th and
their siblings. Finally, LexTract repeats this
process for the nodes that are not on the path.

In Figure 8, which is the same as the one in
Figure 7 except that some nodes are numbered
and split into the top and bo t tom pairs, 1 the

1When a pai r of e t rees a re c o m b i n e d dur ing pars ing,

55

#5

s2.b -"----...L ¢"

2

" d I .

#6

Figure 8: The extracted et:rees can be seen as
a decomposition of the fully bracketed ttree

#1: #2: #3: #4: #5: #6:
S NP NP VP S NP

PP S" NNS ADVP VP = NPI VP NNS

,s NP ~ { I RB VBP Na
[FNX undcrwriten; ~ I pollciex

still draft a[

#7: #8: #9: #10: #I [: #12:

Vp NP NP NP
" ~ I cc NP

v . s NN N . N~S I ~ VBG NP" NP" CCI NP
Ne VP [NN

l~,t,lntaln bloitln8
£

~per
uffm8

Figure 9: The extracted etrees from the fully
bracketed ttree

path from the root $1 to the head VBP is
$1 ~ $2 ~ VP1 ~ VP2 --+ VP3 ~ V B P .
Along the path the P P ~ at F N X - is a
modifier of $2; therefore, Sl.b, S2.t, and the
spine-etree rooted at P P form a mod-etree
#1 . Similarly, the ADVP still is a modifier
of VP2 and $3 is a modifier of VP3, and the
corresponding structures form mod-etrees # 4
and #7. On the pa th from the root to V B P ,
S l . t and S2.b are merged (and so are V P i . t
and VP3.b) to from the spine-etree #5. Re-
peating this process for other nodes will gen-
erate other trees such as trees #2 , # 3 and #6.
The whole ttree yields twelve etrees as shown
in Figure 9.

3.3.3 B u i l d i n g d e r i v a t i o n t r e e s

The fully bracketed ttree is in fact a derived
tree of the sentence if the sentence is parsed
with the etrees extracted by LexTract. In ad-
dit ion to these etrees and the derived tree, we

the root of one etree is merged with a node in the other
etree. Splitting nodes into top and bottom pairs during
the decomposition of the derived tree is the reverse
process of merging nodes during parsing. For the sake
of simplicity, we show the top and the bottom parts of
a node only when the two parts will end up in different
etrees.

also need derivation trees to train statistical
LTAG parsers. Recall that , in general, given
a derived tree, the derivation tree that can
generate the derived tree may not be unique.
Nevertheless, given the fully bracketed ttree,
the etrees, and the positions of the etrees in
the ttree (see Figure 8), the derivation tree
becomes unique if we choose either one of the
following:

• We adopt the t radi t ional definition of
derivation trees (which allows at most one
adjunct ion at any node) and add an ad-
ditional constraint which says that no ad-
junct ion operation is allowed at the foot
node of any auxiliary tree. 2

• We adopt the definition of derivation
trees in (Schabes and Shieber, 1992)
(which allows multiple adjunction at any
node) and require all mod-etrees adjoin
to the etree that they modify.

The user of LexTract can choose either op-
tion and inform LexTract about his choice by
setting a parameter. 3 Figure 10 shows the
derivation tree based on the second option.

draft (#5)

a[(#1) underwriters(#3) ~i11(#4) policies(#6) using(#7)

I I
FNX(#2) pen(#9)

fountain(#8) paper(#12)

and(#10) bloldng(#l I)

Figure 10: The derivation tree for the sentence

3.4 U n i q u e n e s s o f d e c o m p o s i t i o n

To summarize, LexTract is a language-
independent grammar extraction system,
which takes Treebank-specific information
(see Section 3.2) and a ttree T, and creates

2Without this additional constraint, the derivation
tree sometimes is not unique. For example, in Figure
8, both #4 and #7 modify the etree #5. If adjunc-
tion were allowed at foot nodes, ~4 could adjoin to
~7 at VP2.b, and #7 would adjoin to #5 at VPs.b.
An alternative is for #4 to adjoin to #5 at VPs.b and
for ~7 to adjoin to ~4 at VP2.t. The no-adjunction-
at-foot-node constraint would rule out the latter al-
ternative and make the derivation tree unique. Note
that this constraint has been adopted by several hand-
crafted grammars such as the XTAG grammar for En-
glish (XTAG-Group, 1998), because it eliminates this
source of spurious ambiguity.

SThis decision may affect parsing accuracy of an
LTAG parser which uses the derivation trees for train-
ing, but it will not affect the results reported in this
paper.

56

(1) a fully bracketed ttree T*, (2) a set E s e t
of etrees, and (3) a derivation tree D for T*.
Furthermore, E s e t is the only tree set that
satisfies all the following conditions:

(C1) D e c o m p o s i t i o n : The tree set is a de-
composit ion of T*, that is, T* would be
generated if the trees in the set were com-
bined via the subst i tut ion and adjunction
operations.

(C2) L T A G f o r m a l i s m : Each tree in the
set is a valid etree, according to the LTAG
formalism. For instance, each tree should
be lexicalized and the arguments of the
anchor should be encapsulated in the
same etree.

(C3) T a r g e t g r a m m a r : Each tree in the
set falls into one of the three types as
specified in Section 3.1.

(C4) T r e e b a n k - s p e c i f i c i n f o r m a t i o n :
The head /a rgument /ad junc t distinction
in the trees is made according to the
Treebank-specific information provided
by the user as specified in Section 3.2.

S

NP VP
< 1 I

N V

I t
John left

(T*)

Ja, . I I
John left

(E l) (E2)

[&~m t lea lc~hn [Icft

(E) (E,) (Es) (E6)

Figure 11: Tree sets for a fully bracketed ttree

This uniqueness of the tree set may be quite
surprising at first sight, considering that the
number of possible decompositions of T* is
~(2n), where n is the number of nodes in T*. 4
Instead of giving a proof of the uniqueness,

4Recall that the process of building etrees has two
steps. First, LexTract treats each node as a pair of
the top and bottom parts. The ttree is cut into pieces
along the boundaries of the top and bottom parts of
some nodes. The top and the bottom parts of each
node belong to either two distinct pieces or one piece,
as a result, there are 2 ~ distinct partitions. Second,
some non-adjacent pieces in a partition can be glued
together to form a bigger piece. Therefore, each par-
tition will result in one or more decompositions of the
ttree. In total, there are at least 2 n decompositions of
the ttree.

we use an example to il lustrate how the con-
ditions (C1) - - (C4) rule out all the decompo-
sitions except the one produced by LexTract.
In Figure 11, the ttree T* has 5 nodes (i.e.,
S, NP, N, VP, a n d V). There are 32 distinct
decompositions for T*, 6 of which are shown
in the same figure. Out of these 32 decom-
positions, only five (i.e., E2 - - E6) are fully
lexicalized - - that is, each tree in these tree
sets is anchored by a lexical item. The rest,
including El , are not fully lexicalized, and are
therefore ruled out by the condition (C2). For
the remaining five etree sets, E2 - - E4 are
ruled out by the condition (C3), because each
of these tree sets has one tree that violates one
constraint which says that in a spine-etree an
argument of the anchor should be a substi tu-
tion node, rather than an internal node. For
the remaining two, E5 is ruled out by (C4)
because according to the Head Table provided
by the user, the head of the S node should be
V, not N. Therefore, E6, the tree set that is
produced by LexTract, is the only etree set for
T* that satisfies (C1)-- (C4) .

3.5 T h e E x p e r i m e n t s

We have ran LexTract on the one-million-
word English Penn Treebank (Marcus et
al., 1993) and got two Treebank grammars.
The first one, G1, uses the Treebank's
tagset. The second Treebank grammar,
G2, uses a reduced tagset, where some tags
in the Treebank tagset are merged into a
single tag. For example, the tags for verbs,
M D / V B / V B P / V B Z / V B N / V B D / V B G , are
merged into a single tag V. The reduced
tagset is basically the same as the tagset
used in the XTAG grammar (XTAG-Group,
1998). G2 is built so that we can compare
it with the XTAG grammar, as will be
discussed in the next section. We also ran the
system on the 100-thousand-word Chinese
Penn Treebank (Xia et al., 2000b) and on a
30-thousand-word Korean Penn Treebank.
The sizes of extracted grammars are shown in
Table 1. (For more discussion on the Chinese
and the Korean Treebanks and the compar-
ison between these Treebank grammars, see
(Xia et al., 2000a)). The second column of
the table lists the numbers of unique tem-
plates in each grammar, where templates are
etrees with the lexical i tems removed, s The
third column shows the numbers of unique

5For instance, #3, #6 and #9 in Figure 9 are three
different etrees but they share the same template. An
etree can be seen as a (word, template) pair.

57

etrees. The average numbers of etrees for each
word type in G1 and G2 are 2.67 and-2.38
respectively. Because frequent words often
anchor many etrees, the numbers increase by
more than 10 times when we consider word
token, as shown in the fifth and sixth columns
of the table. G3 and G4 are much smaller
than G1 and G2 because the Chinese and the
Korean Treebanks are much smaller than the
English Treebank.

In addition to LTAGs, by reading context-
free rules off the etrees of a Treebank LTAG,
LexTract also produces CFGs. The numbers
of unlexicalized context-free rules from G1--
G4 are shown in the last column of Table 1.
Comparing with other CFG extraction algo-
r i thms such as the one in (Krotov et al., 1998),
the CFGs produced by LexTract have sev-
eral good properties. For example, they allow
unary rules and epsilon rules, they are more
compact and the size of the grammar remains
monotonic as the Treebank grows.

Figure 12 shows the log frequency of tem-
plates and the percentage of template tokens
covered by template types in G1. 6 In both
cases, template types are sorted according to
their frequencies and plotted on the X-axes.
The figure indicates that a small portion of
template types, which can be seen as the core
of the grammar, cover majority of template
tokens in the Treebank. For example, the first
100 (500, 1000 and 1500, resp.) templates
cover 87.1% (96.6~o, 98.4% and 99.0% resp.)
of the tokens, whereas about half (3411) of
the templates each occur only once, account-
ing for only 0.29% of template tokens in total.

4 A p p l i c a t i o n s o f L e x T r a c t

In addition to extract LTAGs and CFGs, Lex-
Tract has been used to perform the following
tasks:

• We use the Treebank grammars produced
by LexTract to evaluate the coverage of
hand-crafted grammars.

• We use the (word, template) sequence
produced by LexTract to re-train Srini-
vas' Supertaggers (Srinivas, 1997).

• The derivation trees created by LexTract
are used to train a statistical LTAG
parser (Sarkar, 2000). LexTract output
has also been used to train an LR LTAG
parser (Prolo, 2000).

6Similar results hold for G2, G3 and G4.

• We have used LexTract to retrieve the
data from Treebanks to test theoret-
ical linguistic hypotheses such as the
Tree-locality Hypothesis (Xia and Bleam,
20O0).

• LexTract has a filter that checks the
plausibility of extracted etrees by decom-
posing each etree into substructures and
checking them. Implausible etrees are of-
ten caused by Treebank annotation er-
rors. Because LexTract maintains the
mappings between etree nodes and ttree
nodes, it can detect certain types of an-
notat ion errors. We have used LexTract
for the final cleanup of the Penn Chinese
Treebank.

Due to space limitation, in this paper we
will only discuss the first two tasks.

4.1 E v a l u a t i n g t h e cove rage of
h a n d - c r a f t e d g r a m m a r s

The XTAG grammar (XTAG-Group, 1998)
is a hand-crafted large-scale grammar for En-
glish, which has been developed at University
of Pennsylvania in the last decade. It has been
used in many NLP applications such as gen-
eration (Stone and Doran, 1997). Evaluating
the coverage of such a grammar is important
for both its developers and its users.

Previous evaluations (Doran et al., 1994;
Srinivas et al., 1998) of the XTAG grammar
use raw data (i.e., a set of sentences with-
out syntactic bracketing). The data are first
parsed by an LTAG parser and the coverage
of the grammar is measured as the percent-
age of sentences in the data that get at least
one parse, which is not necessarily the correct
parse. For more discussion on this approach,
see (Prasad and Sarkar, 2000).

We propose a new evaluation method that
takes advantage of Treebanks and LexTract.
The idea is as follows: given a Treebank T and
a hand-crafted grammar Gh, the coverage of
Gh on T can be measured by the overlap of Gh
and a Treebank grammar Gt that is produced
by LexTract from T. In this case, we will esti-
mate the coverage of the XTAG grammar on
the English Penn Treebank (PTB) using the
Treebank grammar G2.

There are obvious differences between these
two grammars. For example, feature struc-
tures and multi-anchor etrees are present only
in the XTAG grammar, whereas frequency in-
formation is available only in G2. When we
match templates in two grammars, we disre-

58

template etree
types types

Eng G1 6926 131,397
Eng G2 2920 117,356
Ch G3 1140 21,125
Kor G4 634 9,787

word
types

49,206
49,206
10,772
6,747

etree types etree types CFG rules
per word type i per word token (unlexicalized)

2.67~ 34.68 1524
2.38 27.70 675
1.96 9.13 515
1.45 2.76 177

Table 1: Grammars extracted from three Treebanks

' r
o.~

o.e

0.7

o.e

o.5

o.4

o ~

0 2

o.~

o

T ~ m T ~

(a) Frequency of templates (b) Coverage of templates

Figure 12: Template types and template tokens in G1

gard the type of information that is present
only in one grammar. As a result, the map-
ping between two grammars is not one-to-one.

XTAG
G~
~equency

matched unmatched total
templates templates
497 507 1004
215 2705 2920
82.1% I 17 .9% [100%

Table 2: Matched templates in two grammars

Table 2 shows that 497 templates in the
XTAG grammar and 215 templates in G2
match, and the latter accounts for 82.1% of
the template tokens in the P T B . The remain-
ing 17.9% template tokens in the P T B do not
match any template in the XTAG grammar
because of one of the following reasons:

(T1) Incorrect t empla te s in G2: These tem-
plates result from Treebank annotation er-
rors, and therefore, are not in XTAG.

(T2) Coord ina t ion in XTAG: the templates
for coordinations in XTAG are generated
on the fly while parsing (Sarkar and Joshi,
1996), and are not part of the 1004 templates.
Therefore, the conj-etrees in G2, which ac-
count for 3.4% of the template tokens in the
Treebank, do not match any templates in
XTAG.

(T3) Al te rna t ive analyses: XTAG and PTB
sometimes choose different analyses for the
same phenomenon. For example, the two
grammars treat reduced relative clauses dif-
ferently. As a result, the templates used to
handle those phenomena in these two gram-

mars do not match according to our defini-
tion.

(T4) Cons t ruc t ions not covered by XTAG:
Some of such constructions are the unlike
coordination phrase (UCP), parenthetical
(PRN), and ellipsis.

For (T1)- - (T3) , the XTAG grammar can
handle the corresponding constructions al-
though the templates used in two grammars
look very different. To find out what construc-
tions are not covered by XTAG, we manually
classify 289 of the most frequent unmatched
templates in G2 according to the reason why
they are absent from XTAG. These 289 tem-
plates account for 93.9% of all the unmatched
template tokens in the Treebank. The results
are shown in Table 3, where the percentage is
with respect to all the tokens in the Treebank.
From the table, it is clear that the most com-
mon reason for mis-matches is (T3). Combin-
ing the results in Table 2 and 3, we conclude
that 97.2% of template tokens in the Treebank
are covered by XTAG, while another 1.7% are
not. For the remaining 1.1% templa te tokens,
we do not know whether or not they are cov-
ered by XTAG because we have not checked
the remaining 2416 unmatched templates in
G2. T

To summarize, we have just showed that,

7The number 97.2% is the sum of two numbers:
the first one is the percentage of matched template to-
kens (82.1% from Table 2). The secb-nd number is the
percentage of template tokens which fall under (T1)--
(T3), i.e., 16.8%-1.7%=15.1% from Table 3.

59

T1 T2 T3 T4 total
type 51 52 ~93 93 289
freq 1 .1% 3.4% 10.6% 1.7% 16.8%

Table 3: Classifications of 289 unmatched
templates

by comparing templates in the XTAG gram-
mar with the 'IYeebank grammar produced by
LexTract, we estimate that the XTAG gram-
mar covers 97.2% of template tokens in the
English Treebank. Comparing with previous
evaluation approach, this :method has several
advantages. First, the whole process is semi-
automatic and requires little human effort.
Second, the coverage can be calculated at ei-
ther sentence level or etree level, which is more
fine-grained. Third, the method provides a
list of etrees that can be added to the gram-
mar to improve its coverage. Fourth, there
is no need to parse the whole corpus, which
could have been very time-consuming.

4.2 Tra in ing S u p e r t a g g e r s

A Supertagger (Joshi and Srinivas, 1994;
Srinivas, 1997) assigns an etree template to
each word in a sentence. The templates
are also called Supertags because they in-
clude more information than Part-of-Speech
tags. Srinivas implemented the first Supertag-
ger, and he also built a Lightweight Depen-
dency Analyzer that assembles the Supertags
of words to create an almost-parse for the sen-
tence. Supertaggers have been found useful
for several applications, such as information
retrieval (Chandrasekar and Srinivas, 1997).

To use a Treebank to train a Supertagger,
the phrase structures in the Treebank have to
be converted into (word, Supertag) sequences
first. Producing such sequences is exactly one
of LexTract's main functions, as shown previ-
ously in Section 3.3.2 and Figure 9.

Besides LexTract, there are two other at-
tempts in converting the English Penn Tree-
bank to train a Supertagger. Srinivas (1997)
uses heuristics to map structural information
in the Treebank into Supertags. His method
is different from LexTract in that the set of
Supertags in his method is chosen from the
pre-existing XTAG grammar before the con-
version starts, whereas LexTract extracts the
Supertag set from Treebanks. His conversion
program is also designed for this particular
Supertag set, and it is not very-easy to port
it to another Supertag set. A third difference
is that the Supertags in his converted data do

not always fit together, due to the discrep-
ancy between the XTAG grammar and t h e
Treebank annotation and the fact that the
XTAG grammar does not cover all the tem-
plates in the Treebank (see Section 4.1). In
other words, even if the Supertagger is 100%
accurate, it is possible that the correct parse
for a sentence can not be produced by com-
bining those Supertags in the sentence.

Another work in converting Treebanks into
LTAGs is described in (Chen and Vijay-
Shanker, 2000). The method is similar to ours
in that both work use Head Percolation Tables
to find the head and both distinguish adjuncts
from modifiers using syntactic tags and func-
tional tags. Nevertheless, there are several
differences: only LexTract explicitly creates
fully bracketed ttrees, which are identical to
the derived trees for the sentences. As a re-
sult, building etrees can be seen as a task of
decomposing the fully bracketed ttrees. The
mapping between the nodes in fully bracketed
ttrees and etrees makes LexTract a useful tool
for 'IYeebank annotation and error detection.
The two approaches also differ in how they
distinguish arguments from adjuncts and how
they handle coordinations.

Table 4 lists the tagging accuracy of the
same trigram Supertagger (Srinivas, 1997)
trained and tested on the same original PTB
data. s The difference in tagging accuracy
is caused by different conversion algorithms
that convert the original PTB data into the
(word, template) sequences, which are fed
to the Supertagger. The results of Chen &
Vijay-Shanker's method come from their pa-
per (Chen and Vijay-Shanker, 2000). They
built eight grammars. We just list two of them
which seem to be most relevant: C4 uses a re-
duced tagset while C3 uses the PTB tagset.
As for Srinivas' results, we did not use the re-
sults reported in (Srinivas, 1997) and (Chen et
al., 1999) because they are based on different
training and testing data. 9 Instead, we re-ran

SAll use Section 2-21 of the PTB for training, and
Section 22 or 23 for testing. We choose those sec-
tions because several state-of-thwart parsers (Collins,
1997; Ratnaparkhi, 1998; Charniak, 1997) are trained
on Section 2-21 and tested on Section 23. We include
the results for Section 22 because (Chen and Vijay-
Shanker, 2000) is tested on that section. For Srinivas'
and our grammars, the first line is the results tested on
Section 23, and the second line is the one for Section
22. Chen & Vijay-Shauker's results~e for Section 22
only.

9He used Section 0-24 minus Section 20 for training
and the Section 20 for testing.

60

his Supertagger using his da ta on the sections
that we have chosen. 1° We have calculated
two baselines for each seg of data. The first
one tags each word in testing da ta with the
most common Super tag w.r.t the word in the
training data. For an unknown word, just use
its most common Supertag. For the second
baseline, we use a t r igram POS tagger to tag
the words first, and then for each word we use
the most common Supertag w.r.t, the (word,
POS tag) pair.

templates
Srinivas' 483

our G2 2920

our G1 6926

Chen's 2366 - -
(sect 22) - - 8996
C4 4911
C3 8623

basel base2
72.59 74.24
72.14 73.74

71.45 74.14
70.54 73.41
69.70 71.82
68.79 70.90

acc

85.78
85.53

84.41
83.60
82.21
81.88
77.8 - -
- - 78.9
78.90
78.O0

Table 4: Supertagging results based on three
different conversion algorithms

A few observations are in order. First, the
baselines for Supertagging are lower than the
one for POS tagging, which is 91%, indicat-
ing Supertagging is harder than POS tagging.
Second, the second baseline is slightly bet-
ter than the first baseline, indicating using

~°Noticeably, the results we report on Srinivas' data,
85.78% on Section 23 and 85.53% on Section 22, axe
lower than 92.2% reported in (Srinivas, 1997) and
91.37% in (Chen et al., 1999). There axe several
reasons for the difference. First, the size of training
data in our report is smaller than the one for his pre-
vious work; Second, we treat punctuation marks as
normal words during evaluation because, like other
words, punctuation marks can anchor etrees, whereas
he treats the Supertags for punctuation marks as al-
ways correct. Third, he used some equivalent classes
during evaluations. If a word is mis-tagged as x, while
the correct Supertag is y, he considers that not to be
an error if x and y appear in the same equivalent class.
We suspect that the reason that those Supertagging er-
rors axe disregarded is that those errors might not af-
fect parsing results when the Supertags are combined.
For example, both adjectives and nouns can modify
other nouns. The two templates (i.e. Supertags) rep-
resenting these modification relations look the same
except for the POS tags of the anchors. If a word
which should be tagged with one Supertag is mis-
tagged with the other Supertag, it is likely that the
wrong Supertag can still fit with other Supertags in
the sentence and produce the right parse. We did not
use these equivalent classes in this experiment because
we are not aware of a systematic way to find all the
cases in which Supertagging errors do not affect the
final parsing results.

POS tags may improve the Supertagging ac-
curacy, n Third , the Supertagging accuracy
using G2 is 1.3-1.9% lower than the one using
Srinivas' data. This is not surprising since the
size of G2 is 6 times tha t of Srinivas' grammar.
Notice tha t G1 is twice the size of G2 and
the accuracy using G1 is 2% lower. Fourth,
higher Supertagging accuracy does not neces-
sarily means the quali ty of converted da ta are
bet ter since the underlying grammars differ a
lot with respect to the size and the coverage.
A bet ter measure will be the parsing accu-
racy (i.e., the converted da ta should be fed to
a common LTAG parser and the evaluations
should be based on parsing results). We are
currently working on that . Nevertheless, the
experiments show tha t the (word, template)
sequences produced by LexTract are useful for
training Supertaggers. Our results are slightly
lower than the ones t ra ined on Srinivas' data,
but our conversion algori thm has several ap-
pealing properties: LexTract does not use pre-
existing Supertag set; LexTract is language-
independent; the (word, Supertag) sequence
produced by LexTract fit together.

5 C o n c l u s i o n

We have presented a system for grammar ex-
traction that produces an LTAG from a Tree-
bank. The output p roduced by the system
has been used in many NLP tasks, two of
which are discussed in the paper. In the first
task, by comparing the XTAG grammar with
a Treebank grammar produced by LexTract ,
we estimate tha t the XTAG grammar covers
97.2% of template tokens in the English Tree-
bank. We plan to use the Treebank grammar
to improve the coverage of the XTAG gram-
mar. We have also found constructions that
are covered in the XTAG grammar but do not
appear in the Treebank. In the second task,
LexTract converts the Treebank into a format
that can be used to t ra in Supertaggers, and
the Supertagging accuracy is compatible to, if
not bet ter than, the ones based on other con-
version algorithms. For future work, we plan
to use derivation trees to t ra in LTAG parsers
directly and use LexTract to add semantic in-
formation to the Penn Treebank.

R e f e r e n c e s

R. Chandrasekar and B. Srinivas. 1997. Glean-
ing information from the Web: Using Syntax
to Filter out Irrelevant Information. In Proc. of

nThe baselines and results on Section 23 for (Chen
and Vijay-Shanker, 2000) are not available to us.

61

AAAI 1997 Spring Symposium on NLP on the
World Wide Web.

Eugene Charniak. 1996. Treebank Grammars. In
Proc. of AAAI-1996.

Eugene Charniak. 1997. Statistical Parsing with
a Context-Free Grammar and Word Statistics.
In Proc. of AAAI-1997.

John Chen and K. Vijay-Shanker. 2000. Auto-
mated Extraction of TAGs from the Penn Tree-
bank. In 6th International Workshop on Pars-
ing Technologies (IWPT..2000), Italy.

John Chen, Srinivas Bangalore, and K. Vijay-
Shanker. 1999. New Models for Improving
Supertag Disambiguation. In Proc. of EACL-
1999.

Mike Collins. 1997. Three Generative, Lexicalised
Models for Statistical Parsing. In Proc. of the
35th ACL.

C. Doran, D. Egedi, B. A. Hockey, B. Srinivas,
and M. Zaidel. 1994. XTAG System - A Wide
Coverage Grammar for English. In Proc. of
COLING-1994, Kyoto, Japan.

Aravind Joshi and B. Srinivas. 1994. Disambigua-
tion of Super Parts of Speech (or Supertags):
Almost Parsing. In Proc. of COLING-1994.

Aravind Joshi and K. Vijay-Shanker. 1999. Com-
positional Semantics with LTAG: How Much
Underspecification Is Necessary? In Proc. of
3nd International Workshop on Computational
Semantics.

Aravind K. Joshi, L. Levy, and M. Takahashi.
1975. Tree Adjunct Grammars. Journal of
Computer and System Sciences.

Laura Kallmeyer and Aravind Joshi. 1999. Un-
derspecified Semantics with LTAG.

Alexander Krotov, Mark Hepple, Robert
Galzauskas, and Yorick Wilks. 1998. Compact-
ing the Penn Treebank Grammar. In Proc. of
A CL- COLING.

David M. Magerman. 1995. Statistical Decision-
Tree Models for Parsing. In Proc. of the 33rd
ACL.

M. Marcus, B. Santorini, and M. A.
Marcinkiewicz. 1993 . Building a Large
Annotated Corpus of English: the Penn
Treebank. Computational Lingustics.

K. F. McCoy, K. Vijay-Shanker, and G. Yang.
1992. A Functional Approach to Generation
with TAG. In Proc. of the 30th A CL.

Martha Palmer, Owen Rainbow, and Alexis
Nasr. 1998. Rapid Prototyping of Domain-
Specific Machine Translation System. In Proc.
of AMTA-1998, Langhorne, PA.

Rashmi Prasad and Anoop Sarkar. 2000. Compar-
ing Test-Suite Based Evaluation and Corpus-
Based Evaluation of a Wide-Coverage Grammar
for English. In Proc. of LREC satellite work-
shop Using Evaluation within HLT Programs:
Results and Trends, Athen, Greece.

Carlos A. Prolo. 2000. An Efficient LR Parser
Generator for TAGs. In 6th International

Workshop on Parsing Technologies (IWPT
2000), Italy.

Adwait Ratnaparkhi. 1998. Maximum Entropy
Models for Natural Language Ambiguity Resolu-
tion. Ph.D. thesis, University of Pennsylvania.

Anoop Sarkar and Aravind Joshi. 1996. Coordi-
nation in Tree Adjoining Grammars: Formaliza-
tion and Implementation. In Proc. of the 18th
COLING, Copenhagen, Denmark.

Anoop Sarkar. 2000. Practical Experiments in
Parsing using Tree Adjoining Grammars. In
Proc. of 5th International Workshop on TAG
and Related Frameworks (TAG+5).

The XTAG-Group. 1998. A Lexicalized Tree Ad-
joining Grammar for English. Technical Report
IRCS 98-18, University of Pennsylvania.

Yves Schabes and Stuart Shieber. 1992. An Al-
ternative Conception of Tree-Adjoining Deriva-
tion. In Proc. of the 20th Meeting of the Asso-
ciation for Computational Linguistics.

Yves Schabes. 1990. Mathematical and Computa-
tional Aspects of Lexicalized Grammars. Ph.D.
thesis, University of Pennsylvania.

Kiyoaki Shirai, Takenobu Tokunaga, and Hozumi
Tanaka. 1995 . Automatic Extraction of
Japanese Grammar from a Bracketed Corpus.
In Proc. of Natural Language Processing Pacific
Rim Symposium (NLPRS-1995).

B. Srinivas, Anoop Sarkar, Christine Doran, and
Beth Ann Hockey. 1998. Grammar and Parser
Evaluation in the XTAG Project. In Workshop
on Evaluation of Parsing Systems, Granada,
Spain.

B. Srinivas. 1997. Complexity of Lexical De-
scriptions and Its Relevance to Partial Parsing.
Ph.D. thesis, University of Pennsylvania.

Matthew Stone and Christine Doran. 1997. Sen-
tence Planning as Description Using Tree Ad-
joining Grammar. In Proc. of the 35th A CL.

Bonnie Webber and Aravind Joshi. 1998. Anchor-
ing a Lexicalized Tree Adjoining Grammar for
Discourse. In Proc. of A CL-COLING Workshop
on Discourse Relations and Discourse Markers.

Fei Xia and Tonia Bleam. 2000. A Corpus-Based
Evaluation of Syntactic Locality in TAGs. In
Proc. of 5th International Workshop on TAG
and Related Frameworks (TAG+5).

Fei Xia, Chunghye Han, Martha Palmer, and
Aravind Joshi. 2000a. Comparing Lexicalized
Treebank Grammars Extracted from Chinese,
Korean, and English Corpora. In Proc. of the
2nd GT~inese Language Processing Workshop,
Hong Kong, China.

Fei Xia, Martha Palmer, Nianwen Xue, Mary Ellen
Okurowski, John Kovarik, Shizhe Huang, Tony
Kroch, and Mitch Marcus. 2000b. Developing
Guidelines and Ensuring Consistency for Chi-
nese Text Annotation. In Proc. of the 2nd In-
ternational Conference on Language Resources
and Evaluation (LREC-2000),-Athens, Greece.

62

