
Sample Selection for Statistical Grammar Induction

R e b e c c a H w a
Division of Engineer ing and Appl ied Sciences

• Harvard Universi ty
Cambridge, MA 02138 USA

rebecca@eecs.harvard.edu

A b s t r a c t

Corpus-based grz.mmar induction relies on us-
ing many hand-parsed sentences as training
examples. However, the construction of a
training corpus with detailed syntactic analy-
sis for every sentence is a labor-intensive task.
We propose to use sample selection methods
to minimize the amount of annotation needed
in the training data, thereby reducing the
workload of the human annotators. This pa-
per shows that the amount of annotated train-
ing data can be reduced by 36% without de-
grading the quality of the induced grammars.

1 I n t r o d u c t i o n :

Many learning problems in the domain of
natural language processing need supervised
training. For instance, it is difficult to induce
a grammar from a corpus of raw text; but the
task becomes much easier when the training
sentences are supplemented with their parse
trees. However, appropriate supervised train-
ing data may be difficult to obtain. Existing
corpora might not contain the relevant type
of supervision, and the data might not be
in the domain of interest. For example, one
might need morphological analyses of the lex-
icon in addition to the parse trees for inducing
a grammar, or one might be interested in pro-
cessing non-English languages for which there
is no annotated corpus. Because supervised
training typically demands significant human
involvement (e.g., annotat ing the parse trees
of sentences by hand), building a new corpus is
a labor-intensive task. Therefore, it is worth-
while to consider ways of minimizing the size
of the corpus to reduce the effort spent by an-
notators.

* This material is based upon work supported by the
National Science Foundation under Grant No. IRI
9712068. We thank Wheeler Rural for his plotting
tool; and Stuart Shieber, Lillian Lee, Ric Crabbe, and
the anonymous reviewers for their comments on the
paper.

There are two possible directions: one
might a t tempt to reduce the amount of anno-
tations in each sentence, as was explored by
Hwa (1999); alternatively, one might a t tempt
to reduce the number of training sentences.
In this paper, we consider the latter approach
using sample selection, an interactive learning
method in which the machine takes the initia-
tive of selecting potentially beneficial train-
ing examples for the humans to annotate. If
the system could accurately identify a subset
of examples with high Training Utility Values
(TUV) out of a pool of unlabeled data, the
annotators would not need to waste time on
processing uninformative examples.

We show that sample selection can be
applied to grammar induction to produce
high quality grammars with fewer annotated
training sentences. Our approach is to use
uncertainty-based evaluation functions that
estimate t h e TUV of a sentence by quantify-
ing the grammar's uncertainty about assign-
ing a parse tree to this sentence. We have
considered two functions. The first is a sire-

• ple heuristic that approximates the grammar's
uncertainty in terms of sentence lengths. The
second computes uncertainty in terms of the
tree entropy of the sentence. This metric is
described in detail later.

This paper presents an empirical study
measuring the effectiveness of our evaluation
functions at selecting training sentences from
the Wall Street Journal (WSJ) corpus (Mar-
cuse t al., 1993) for inducing grammars. Con-
ducting the experiments with training pools
of different sizes, we have found that sample
selection based on tree entropy reduces a large
training pool by 36% and a small training pool
by 27%. These results s u r e s t that sample se-
lection can significantly reduce]~uman effort
exerted in building training corpora.

45

2 S a m p l e S e l e c t i o n

Unlike traditional learning systems that re-
ceive training examples indiscriminately, a
learning system that uses sample selection
actively influences its progress by choosing
new examples to incorporate into its training
set. Sample selection works with two types
of learning systems: a committee of learners
or a single learner. The committee-based se-
lection algorithm works with multiple learn-
ers, each maintaining a different hypothesis
(perhaps pertaining to different aspects of the
problem). The candidate examples that led
to the most disagreements among the differ-
ent learners are considered to have the high-
est TUV (Cohn et al., 1994; Freund et al.,
1997). For computationally intensive prob-
lems such as grammar induction, maintaining
multiple learners may be an impracticality. In
this work, we explore sample selection with a
single learner that keeps just one working hy-
pothesis at all times.

Figure 1 outlines the single-learner sample
selection training loop in pseudo-code. Ini-
tially, the training set, L , consists of a small
number of labeled examples, based on which
the learner proposes its first hypothesis of
the target concept, C. Also available to the
learner is a large pool of uulabeled training
candidates, U. In each training iteration, the
selection algorithm, Select(n, U, C, f) , ranks
t h e candidates of U according to their ex-
pected TUVs and returns the n candidates
with the highest values. The algorithm com-
putes the expected TUV of each candidate,
u E U, with an evaluation function, f (u, C).
This function may possibly rely on the hy-
pothesis concept C to estimate the utility of
a candidate u. The set of the n chosen candi-
dates are then labeled by human and added
to the existing training set. Rnnning the
learning algorithm~ Train(L), on the updated
training set, the system proposes a new hy-
pothesis consistent with all the examples seen
thus far. The loop continues until one of three
stopping conditions is met: the hypothesis is
considered close enough to the target concept,
all candidates are labeled, or all human re-
sources are exhausted.

Sample selection may be beneficial for many
learning tasks in natural language process-
ing. Although there exist abundant collec-
tions of raw text, the high expense of man-
ually annotating the text sets a severe lim-
itation for many learning algorithms in nat-

U is a Set of unlabeled candidates.
L is a set of labeled training examples.
C is the current hypothesis.
Init ial ize:

C +-- Train(L).
R e p e a t

N ~-- Select(n, U, C, f) .
U ~ - U - N .
L ~-- L t2 Label(N).
C ~ Train(L).

Unt i l (C ---- Ctrue)Or (U = O) or (human stops)

Figure 1: The pseudo-code for the sample se-
lection learning algorithm

ural language processing. Sample selection
presents an attractive solution to offset this
labeled data sparsity problem. Thus far, it
has been successfully applied to several classi-
fication applications. Some examples include
text categorization (Lewis and Gale, 1994),
part-of-speech tagging (Engelson and Dagan,
1996), word-sense disambiguation (Fujii et al.,
1998), and prepositional-phrase attachment
(Hwa, 2000).

More difficult are learning problems whose
objective is not classification, but generation
of complex structures. One example in this di-
rection is applying sample selection to seman-
tic parsing (Thompson et al., 1999), in which
sentences are paired with their semantic rep-
resentation using a deterministic shift-reduce
parser. Our work focuses on another complex
natural language learning problem: inducing
a stochastic context-free grammar that can
generate syntactic parse trees for novel test
sentences.

Although abstractly, parsing with a gram-
mar can be seen as a classification task of de-
termining the structure of a sentence by se-
lecting one tree out of a set of possible parse
trees, there are two major distinctions that
differentiate it from typical classification prob-
lems. First, a classifier usually chooses from
a fixed set of categories, but in our domain,
every sentence has a different set of possible
parse trees. Second, for most classification
problems, the the number of the possible cate-
gories is relatively small, whereas the number
of potential parse trees for a sentence is expo-
nential with respect to the sentence length.

46

3 G r a m m a r I n d u c t i o n

The degree of difficulty of the task of learning
a grammar from data depends on the quantity
and quality of the training supervision. When
the training corpus consists of a larg e reservoir
of fully annotated parse trees, it is possible
to directly extract a grammar based on these
parse trees. The success of recent high-quality
parsers (Charniak, 1997; Collins, 1997) relies
on the availability of such treebank corpora.
To work with smaller training corpora, the
learning system would require even more in-
formation about the examples than their syn-
tactic parse trees. For instance, Hermjakob
and Mooney (1997) have described a learning
system that can build a deterministic shift-
reduce parser from a small set of training
examples with the aid of detailed morpho-
logical, syntactical, and semantic knowledge
databases and step-by-step guidance from hu-
man experts.

The induction task becomes more chal-
lenging as the amount o f supervision in the
training data and background knowledge de-
creases. To compensate for the missing infor-
mation, the learning process requires heuristic
search to find locally optimal grammars. One
form of partially supervised data might spec-
ify the phrasal boundaries without specify-
ing their labels by bracketing each constituent
unit with a pair of parentheses (McNaughton,
1967). For example, the parse tree for the sen-
tence '~Several fund managers expect a rough
market this morning before prices stablize."
is labeled as "((Several fund managers) (ex-
pect ((a rough market) (this morning)) (be-
fore (prices stabilize))).)" As shown in Pereira
and Schabes (1992), an essentially unsuper-
vised learning algorithm such as the Inside-
Outside re-estimation process (Baker, 1979;
Lari and Young, 1990) can be modified to take
advantage of these bracketing constraints.

For our sample selection experiment, we
chose to work under the more stringent con-
dition of partially supervised training data, as
described above, because our ultimate goal is
to minimize the amount of annotation done
by humans in terms of bo th the number of
sentences and the number of brackets within
the sentences. Thus, t he quality of our in-
duced grammars should not be compared to
those extracted from a fully annotated train-
ing corpus. The learning algorithm we use is
a variant of the Inside-Outside algorithm that
induces grammars expressed in the Probabilis-

tic Lexicalized Tree Insertion Grammar rep-
resentation (Schabes and Waters, 1993; Hwa,
1998). This formalism's Context-free equiva-
lence and its lexicalized representation make
the training process efficient and computa-
tionally plausible.

4 S e l e c t i v e S a m p l i n g E v a l u a t i o n
F u n c t i o n s

In this paper, we propose two uncertainty-
based evaluation functions for estimating the
training utilities of the candidate sentences.
The first is a simple heuristic that uses the
length of a sentence to estimate uncertain-
ties. The second function computes uncer-
tainty in terms of the entropy of the parse
trees that the hypothesis-grammar generated
for the sentence.

4.1 S e n t e n c e L e n g t h

Let us first consider a simple evaluation
function that estimates the training utility
of a candidate without consulting the cur-
rent hypothesis-grammar, G. The function
ften(s,G) coarsely approximates the uncer-
tainty of a cand ida t e sentence s with its
length:

flen(S, G) = length(s).

The intuition behind this function is based
on the general observation that longer sen-
tences tend to have complex structures and
introduce more opportunit ies for ambiguous
parses. Since the scoring only depends on
sentence lengths, this naive evaluation func-
tion orders the training pool deterministically
regardless of either the current state of the
g rammar or the annotat ion of previous train-
ing sentences. This approach has one major
advantage: it is easy to compute and takes
negligible processing time.

4.2 T ree E n t r o p y

Sentence length is not a very reliable indi-
cator of uncertainty. To measure the un-
certainty of a sentence more accurately, the
evaluation function must base its estimation
on the outcome of testing the sentence on
the hypothesis-grammar. When a stochastic
grammar parses a sentence, it generates a set
of possible trees and associates a likelihood
value with each. Typically, the most likely
tree is taken to be the best parse for the sen-
tence.

We propose an evaluation function that
considers the probabilities of all parses. The

47

set of probabilities of the possible parse trees
for a sentence defines a distribution that in-
dicates the grammar's uncertainty about the
structure of the sentence. For example, a uni-
form distribution signifies that the grammar
is at its highest uncertainty because all the
parses are equally likely; whereas a distribu-
tion resembling an impulse function suggests
that the grammar is very certain because it
finds one parse much more likely than all oth-
ers. To quantitatively characterize a distribu-
tion, we compute its entropy.

Entropy measures the uncertainty of assign-
ing a value to a random variable over a dis-
tribution. Informally speaking, it is the ex-
pected number of bits needed to encode the
assignment. A higher entropy value signifies
a higher degree of uncertainty. At the highest
uncertainty, the random variable is assigned
one of n values over a uniform distribution,
and the outcome would require log2 (n) bits to
encode.

More formally, let V be a discrete random
variable that can take any possible outcome
in set V. Let p(v) be the density function
p(v) = Pr(Y = v), v E l). The entropy H(V)
is the expected negative log likelihood of ran-
dom variable V:

H (V) = - E X (logdv(V))).
= -

vEY

Further details about the properties of en-
tropy can be found in textbooks on informa-
tion theory (Cover and Thomas, 1991).

Determining the parse tree for a sentence
from a set of possible parses can be viewed as
assigning a value to a random variable. Thus,
a direct application of the entropy definition
to the probability distribution of the parses for
sentence s in grammar G computes its tree en-
tropy, TE(s, G), the expected number of bits
needed to encode the distribution of possible
parses for s. Note that we cannot compare
sentences of different lengths by their entropy.
For two sentences of unequal lengths, both
with uniform distributions, the entropy of the
longer one is higher. To normalize for sen-
tence length, we define an evaluation function
that computes the similarity between the ac-
tual probability distribution and the uniform
distribution for a sentence of that length. For
a sentence s of length l, there can be at most
0(2 l) equally likely parse trees and its maxi-

real entropy is 0(l) bits (Cover and Thomas,
1991). Therefore, we define the evaluation
function, fte(s, G) to be the tree entropy di-
vided by the sentence length.

TE(s, G)
Ire(s, G) = length(s)"

We now derive the expression for TE(s, G).
Suppose that a sentence s can be generated by
a grammar G with some non-zero probability,
Pr(s [G). Let V be the set of possible parses
that G generated for s. Then the probability
that sentence s is generated by G is the sum
of the probabilities of its parses. That is:

Pr(s [G) = ~Pr(vlG).

vEY

Note that Pr(v [G) reflects the probability of
one particular parse tree, v, in the grammar
out of all possible parse trees for all possible
sentences that G accepts. But in order to ap-
ply the entropy definition from above, we need
to specify a distribution of probabilities for the
parses of sentence s such that

vr(v Is, o) = 1.
vEV

Pr(v [s, G) indicates the likelihood that v is
the correct parse tree out of a set of possible
parses for s according to grammar G. It is
also the density function, p(v), for the distri-
bution (i.e., the probability of assigning v to
a random variable V). Using Bayes Rule and
noting that Pr(v, s [G) = Pr(v [G) (because
the existence of tree v implies the existence of
sentence s), we get:

v(v) = v r (v I s, G) = V r (. , s I G) = Vr(v I G)
Pr(s I G) Pr(s I G)"

Replacing the generic density function term
in the entropy definition, we derive the expres-
sion for TE(s, G), the tree entropy of s:

TE(s,G) = H(V)

- - - - -- Z PCv) Iog2P(V)
vEV

= - P (s I a) log2(? (s I c))
vEY

Pr(v l C)
= - ~ Pr(s [G) l °g2Pr(v [G)

vEY

+ ~ Pr(v [G) log h P r (s l G)
vev Pr(s [G)

48

~ ,cv Pr(v l G) log2 Pr(v l G)
Pr(s I G)

E sv P (v I a)
+ logs P (s I - , i b)

~vev Pr(v] G) l°g 2 P r (v I G)
Pr(s 1 a)

+ log 2 Pr(s I G)

Using the bottom-up, dynamic program-
ming technique of computing Inside Proba-
bilities (Lari and Young, 1990), we can ef-
ficiently compute the probability of the sen-
tence, Pr(s I G). Similarly, the algorithm
can be modified to compute the quantity
~]v~vPr(v I G)log2(Pr(v I G)) (see Ap-
pendix A).

5 E x p e r i m e n t a l S e t u p

To determine the effectiveness of selecting
training examples with the two proposed eval-
uation functions, we compare them against
a baseline of random selection (frand(S, G) =
rand()). The task is to induce grammars from
selected sentences in the Wall Street Journal
(WSJ) corpus, and to parse unseen test sen-
tences with the trained gr~.mmars. Because
the vocabulary size (and the grammar size
by extension) is very large, we have substi-
tuted the words with their part-of-speech tags
to avoid additional computational complexity
in training the grammar. After replacing the
words with part-of-speech tags, the vocabu-
lary size of the corpus is reduced to 47 tags.

We repeat the study for two different
candidate-pool sizes. For the first experiment,
we assume that there exists an abundant sup--
ply of unlabeled data. Based on empirical ob-
servations (as will be shown in Section 6), for
the task we are considering, the induction al-
gorithm typically reaches its asymptotic limit
after training with 2600 sentences; therefore,
it is sufficient to allow for a candidate-pool size
of U = 3500 unlabeled WSJ sentences. In the
second experiment, we restrict the size of the
candidate-pool such that U contains only 900
unlabeled sentences. This experiment studies
how the paucity of training data affects the
evaluation functions.

For both experiments, each of the three
evaluation functions: frand, ften, and fte, is
applied to the sample selection learning algo-
r i thm shown in Figure 1, where concept C is
the current hypothesis-grammar G, and L, the
set of labeled training data; initially consists

of 100 sentences. In every iteration, n = 100
new sentences are picked from U to be added
to L, and a new C is induced from the updated
L. After the hypothesis-grammar is updated,
it is tested. The quality of the induced gram-
max is judged by its ability to generate cor-
rect parses for unseen test sentences. We use
the consistent bracketing metric (i.e., the per-
centage of brackets in the proposed parse not
crossing brackets of the true parse) to mea-
sure parsing accuracy 1. To ensure the staffs-
tical significance of the results, we report the
average of ten trials for each experiment 2.

6 Results

The results of the two experiments are graph-
ically depicted in Figure 2. We plot learning
rates of the induction processes using train-
ing sentences selected by the three evaluation
functions. The learning rate relates the qual-
ity of the induced grammars to the amount of
supervised training data available. In order
for the induced grammar to parse test sen-
tences with higher accuracy (x-axis), more su-
pervision (y-axis) is needed. The amount of
supervision is measured in terms of the num-
ber of brackets rather than sentences because
it more accurately quantifies the effort spent
by the human annotator. Longer sentences
tend to require more brackets than short ones,
and thus take more time to analyze. We deem
one evaluation function more effective than
another if the smallest set of sentences it se-
lected can train a grammar that performs at
least as well as the grammar trained under the
other function and if the selected data con-
tains considerably fewer brackets than that of
the other function.

Figure 2(a) presents the outcomes of the
first experiment, in which the evaluation func-
tions select training examples out of a large
candidate-pool. We see that overall, sample
selection has a positive effect on the learning

IThe unsupervised induction algorithm induces
grammars that generate binary branching trees so that
the number of proposed brackets in a sentence is al-
ways one fewer than the length of the sentence. The
WSJ corpus, on the other hand, favors a more fiat-
tened tree structure with considerably fewer brackets
per sentence. The consistent bracketing metric does
not unfairly penalize a proposed parse tree for being
binary branching.

2We generate different candidate-pools by moving
a fixed-size window across WSJ sections 02 through
05, advancing 400 sentences for each trial. Sec~n 23
is always used for testing.

49

E

/ o

a ~

Pa.~ing accura,.~ on the ~

(a)

i t f

s :
• J

. / J

...o°..o-- ~

Farsir~ accuracy on the t t~t

(b)

Figure 2: The learning rates of the induction processes using examples selected by the three
evaluation functions for (a) when the candidate-pool is large, and (b) when the candidate-pool
is small.

grammar set
baseline-26
length-17
tree entropy-!4

11 avg. training brackets t-test on bracket.avg. [avg. score
33355 N/A 80.3
30288 better 80.3
21236 better 80.4

t-test on score avg

N/A
not sig. worse
not sig. worse

Table 1: Summary of pair-wise t-test with 95% confidence comparing the best set of grammars
induced with the baseline (after 26 selection iterations) to the sets of grammars induced under
the proposed evaluation functions (ften after 17 iterations, fte after 14 iterations).

rate of the induction process. For the base-
line case, the induction process uses frand,
in which training sentences are randomly se-
lected. The resulting grammars achieves an
average parsing accuracy of 80.3% on the test
sentences after seeing an average of 33355
brackets in the training data. The learning
rate of the tree entropy evaluation function,
fte, progresses much faster than the baseline.
To induce a grammar that reaches the same
80.3% parsing accuracy with the examples se-
lected by fte, the learner requires, on average,
21236 training brackets, reducing the amount
of annotation by 36% comparing to the base-
line. While the simplistic sentence length
evaluation function, f~en, is less helpful, its
learning rate still improves slightly faster than
the baseline. A grammar of comparable qual-
ity can be induced from a set of training exam-
ples selected by fzen containing an average of
30288 brackets. This provides a small reduc-
tion of 9% from the baseline 3. We consider a
set of grammars to be comparable to the base-

3In terms of the number of sentences, the baseline
f ~ d used 2600 randomly chosen training sentences;
.fze,~ selected the 1700 longest sentences as training
data; and fte selected 1400 sentences.

line if its mean test score is at least as high
as that of the baseline and if the difference of
the means is not statistically significant (us-
ing pair-wise t-test at 95% confidence). Ta-
ble 1 summarizes the statistical significance of
comparing the best set of baseline grammars
with those of of f~en and ffte.

Figure 2(b) presents the results of the sec-
ond experiment, in which the evaluation func-
tions only have access to a small c and i da t e
pool. Similar to the previous experiment,
grammars induced from training examples se-
lected by fte require significantly less anno t a -
tions than the baseline. Under the baseline,
frand, to train grammars wi th 78.5% parsing
accuracy on test data, an average of 11699
brackets (in 900 sentences) is required. In con-
trast , fte can induce a comparable grammar
with an average of 8559 brackets (in 600 sen-
tences), providing a saving of 27% in the num-
ber of training brackets. The simpler evalua-
tion function f~n out:performs the baseline
as well; the 600 sentences it selected have an
average of 9935 brackets. Table 2 shows the
statistical significance of these comParisons.

A somewhat surprising outcome of the sec-
ond s tudy is that the grammars induced from

50

grammar set

baseline-9
length-6
tree entropy-6
tree entropy-8

II avg. training brackets t-test on bracket avg. avg. score t-~est on score a~

11699 N/A 78.5 N/A
9936 better 78.5 not sig. worse
8559 better 78.5 not sig. worse
11242 better 79.1 better

t-test avg.

Table 2: Summary of pair-wise t-test with 95% confidence comparing the best set of grammars
induced with the baseline (after 9 selection iterations) to the sets of grammars induced under
the proposed evaluation functions (ften after 6 iterations, fte after 6 and 8 iterations).

the three methods did not parse with the same
accuracy when all the sentences from the un-
labeled pool have been added to the training
set. Presenting the training examples in dif-
ferent orders changes the search path of the
induction process. Trained on data selected
by fte, the induced grammar parses the test
sentences with 79.1% accuracy, a small but
statistically significant improvement over the
baseline. This suggests that, when faced with
a dearth of training candidates, fte can make
good use of the available data to induce gram-
mars that are comparable to those directly in-
duced from more data.

7 C o n c l u s i o n a n d F u t u r e W o r k

This empirical study indicates that sample se-
lection can significantly reduce the human ef-
fort in parsing sentences for inducing gram-
mars. Our proposed evaluation function using
tree entropy selects helpful training examples.
Choosing from a large pool of unlabeled can-
didates, it significantly reduces the amount of
training annotations needed (by 36% in the
experiment). Although the reduction is less
dramatic when the pool of candidates is small
(by 27% in the experiment), the training ex-
amples it selected helped to induce slightly
better grammars.

The current work suggests many potential
research directions on selective sampling for
grammar induction. First, since the ideas be-
h ind the proposed evaluation fimctions are
general and independent of formalisms, we
would like to empirically determine their ef-
fect on other parsers. Next, we shall explore
alternative formulations of evaluation func-
tions for the single-learner system. The cur-
rent approach uses uncertainty-based evalua-
tion functions; we hope to consider other fac-
tors such as confidence about the parameters
of the grammars and domain knowledge. We
also plan to focus on the constituent units
within a sentence as training examples. Thus,

the evaluation functions could estimate the
training utilities of constituent units rather
than full sentences. Another area of interest
is to experiment with committee-based sam-
ple selection using multiple learners. Finally,
we are interested in applying sample selection
to other natural language learning algorithms
that have been limited by the sparsity of an-
notated data.

R e f e r e n c e s

James K. Baker. 1979. Trainable grammars for
speech recognition. In Proceedings of the Spring
Conference of the Acoustical Society of Amer-
ica, pages 547-550, Boston, MA, June.

Eugene Charniak. 1997. Statistical parsing with
a context-free grammar and word statistics. In
Proceedings of the AAAI, pages 598-603, Prov-
idence, RI. AAAI Press/MIT Press.

David Cohn, Les Atlas, and Richard Ladner. 1994.
Improving generalization with active learning.
Machine Learning, 15(2):201-221.

Michael Collins. 1997. Three generative, lexi-
calised models for statistical parsing. In Pro-
ceedings of the 35th Annual Meeting of the A CL,
pages 16-23, Madrid, Spain.

Thomas M. Cover and Joy A. Thomas. 1991. El-
ements of Information Theory. John Wiley.

Sean P. Engelson and Ido Dagan. 1996. Mhaimiz-
ing manual annotation cost in supervised train-
ing from copora. In Proceedings of the 34th An-
nual Meeting of the ACL, pages 319-326.

Yoav Freund, H. Sebastian Seung, Eli Shamir, and
Naftali Tishby. 1997. Selective sampling using
the query by committee algorithm. Machine
Learning, 28(2-3):133-168.

Atsushi Fujii, Kentaro Inui, Takenobu Tokunaga,
and Hozumi Tanaka. 1998. Selective sampling
for example-based word sense disambiguation.
Computational Linguistics, 24(4):573-598, De-
cember.

Ulf Hermjakob and Raymond J. Mooney. 1997.
Learning parse and translation decisions from
examples with rich context. In Proceedings o/
the Association for Computational Linguistics,
pages 482-489.

Rebecca Hwa. 1998. An empiric~al evaluation
of probabilistic lexicaiized tree insertion gram-

51

mars. In Proceedings off COLING-ACL, vol-
ume 1, pages 557-563.

Rebecca Hwa. 1999. Supervised grammar in-
duction using training data with limited con-
stituent information. In Proceedings of 37th An-
nual Meeting of the ACL, pages 73-79, June.

Rebecca Hwa. 2000. Learning Probabilistic Lex-
icalized Grammars for Natural Language Pro-
cessing. Ph.D. thesis, ttarvard University.
Forthcoming.

K. Lari and S.J. Young. 19!70. The estimation
of stochastic context-free grammars using the
inside-outside algorithm. Computer Speech and
Language, 4:35-56.

David D. Lewis and William A. Gale. 1994. A se-
quential algorithm for training text classifiers.
In Proceedings of the 17th Annual International
ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pages 3-12.

Mitchell Marcus, Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1993. Building
a large annotated corpus of English: the
Penn Treebank. Computational Linguistics,
19(2):313--330.

Robert McNaughton. 1967. Parenthesis gram-
mars. Journal off the ACM, 2(3):490--500.

Fernando Pereira and Yves Schabes. 1992. Inside-
Outside reestimation from partially bracketed
corpora. In Proceedings of the 30th Annual
Meeting o] the ACL, pages 128-135, Newark,
Delaware.

Yves Schabes and Richard Waters. 1993. Stochas-
tic lexicalized context-free grammar. In Pro-
ceedings of the Third International Workshop
on Parsing Technologies, pages 257-266.

Cynthia A. Thompson, Mary Elaine Califf, and
Raymond J. Mooney. 1999. Active learning
for natural language parsing and information
extraction. In Proceedings of 1CML-99, pages
406-414, Bled, Slovenia.

A E f f i c i e n t C o m p u t a t i o n o f T r e e
E n t r o p y

The tree entropy of a sentence depends on the
quantity ~ v e v P r (v [G)log~(Pr(v] G)) de-
scribed in Section 4.2, a snm of an exponential
number of parses. Fortunately, through a dy-
namic programming algorithm similar to the
computation of the Inside Probabilities, this
quantity can be efficiently computed. The ba-
sic idea is to compose the tree entropy of the
entire sentence from the tree entropy of the
subtrees.

For illustrative purposes, we describe the
computation process using a PCFG grammar
expressed in Chomsky Normal Form, in which
each rule can have two forms: X ~ Y Z
or X ---r a, where X, Y, Z are variables over

non-terminal symbols and a is a variable over
terminal symbols. Moreover, let the sym-
bol S be the start symbol of the grammar
G. Following the notation of Lari and Young,
we denote the inside probability as e(X, i , j) ,
which represents the probability that a non-
terminal X :~ w i . . . w j . Similarly, we define
a new function h(X, i , j) to represent the cor-
responding entropy for the set of subtrees.

h(X , i , j) = - P r (. I a)log (Pr(, IV)).
vEX~wi...w~

Therefore, ~vev Pr(v [G)log 2 Pr(v l G) can
be expressed as h(S, 1, n).

We compute all possible h(X , i , j) re-
cursively. The base case is h(X, i , i) =
- e (X , i, i) log2 (e(X, i, i)) since a non-terminal
X can generate the symbol wi in exactly one
way. For the more general case, h(X, i , j) , we
consider all the possible rules with X on the
left hand side that might have contributed to
build X =~ wi . . . wj.

j - 1

hr,
k=i (x~YZ)

The function hy, z ,k (X, i , j) is a portion of

h(X , i , j) where Y =~ w i . . . w k and Z ~
Wk+l... wj. The non-terminals Y a n d Z may,
in turn, generate their substrings with mul-
tiple parses. Let there be a parses for Y
wi . . . Wk and f~ parses for Z ~ Wk+l . . .w i.
Let x denote the event of X --r YZ; y E
Yl , . . . ,Ya; and z E z l , . . . , z z . The proba-
bility of one of the a x fl possible parses is
Pr(x)Pr(y)Pr(z) , and hY, z,k is computed by
summing over all possible parses:

hy, z,k(X, i , j)
= -- ~ , z Pr (x)Pr (y)Pr (z) x

log 2 (Pr (x)Pr (y)Pr (z))
= - Z~,~Pr(x)Pr(y)Pr(z)×

[log 2 Pr(x) + log 2 Pr(y) + log 2 Pr(z)]
= - P r (x) log 2 Pr(x)e(Y, i, k)e(Z, k+l, j)

+Pr(x)h(Y, i , k)e(Z,k + 1,j)
+Pr(x)e(Y, i, k)h(Z, k + 1,j).

These equations can be modified to compute
the tree entropy of sentences using a Prob-
abilistic Lexicalized Tree Insertion Grammar
(Hwa, 2000).

52

