
Coaxing Confidences from an Old Friend:
Probabilistic Classifications from Transformation Rule Lists

R a d u F l o r i a n * J o h n C . H e n d e r s o n t G r a c e N g a i *

*Department of Computer Science
Johns Hopkins University

Baltimore, MD 21218, USA
{rf lor ian ,gyn}@cs. jhu .edu

tThe M I T R E C o r p o r a t i o n
202 B u r l i n g t o n R o a d

Bedford , M A 01730, U S A
j h n d r s n @ m i t r e . o r g

A b s t r a c t

Transformation-based learning has been success-
fully employed to solve many natural language
processing problems. It has many positive fea-
tures, but one drawback is that it does not provide
estimates of class membership probabilities.

In this paper, we present a novel method for
obtaining class membership probabilities from a
transformation-based rule list classifier. Three ex-
periments are presented which measure the model-
ing accuracy and cross-entropy of the probabilistic
classifier on unseen data and the degree to which
the output probabilities from the classifier can be
used to estimate confidences in its classification
decisions.

The results of these experiments show that, for
the task of text chunking 1, the estimates produced
by this technique are more informative than those
generated by a state-of-the-art decision tree.

1 I n t r o d u c t i o n

In natural language processing, a great amount of
work has gone into the development of machine
learning algorithms which extract useful linguistic
information from resources such as dictionaries,
newswire feeds, manually annotated corpora and
web pages. Most of the effective methods can
be roughly divided into rule-based and proba-
bilistic algorithms. In general, the rule-based
methods have the advantage of capturing the
necessary information in a small and concise set
of rules. In part-of-speech tagging, for exam-
ple, rule-based and probabilistic methods achieve
comparable accuracies, but rule-based methods
capture the knowledge in a hundred or so simple
rules, while the probabilistic methods have a
very high--dimensional parameter space (millions
of parameters).

One of the main advantages of probabilistic
methods, on the other hand, is that they include a
measure of uncertainty in their output. This can
take the form of a probability distribution over
potential outputs, or it may be a ranked list of

IA11 the experiments are performed on text chnnklng.
The technique presented is general-purpose, however, and
can be applied to many tasks for which transformation-
based learning performs well, without changing the inter-
rials of the learner.

candidate outputs. These uncertainty measures
are useful in situations where both the classifi-
cation of an sample and the system's confidence
in that classification are needed. An example of
this is a situation in an ensemble system where
ensemble members disagree and a decision must
be made about how to resolve the disagreement.
A similar situation arises in pipeline systems, such
as a system which performs parsing on the output
of a probabilistic part-of-speech tagging.

Transformation-based learning (TBL) (Brill,
1995) is a successful rule-based machine learning
algorithm in natural language processing. It has
been applied to a wide variety of tasks, including
part of speech tagging (Roche and Schabes, 1995;
Brill, 1995), noun phrase chvnklng (Ramshaw and
Marcus, 1999), parsing (Brill, 1996; Vilain and
Day, 1996), spelling correction (Mangu and Brill,
1997), prepositional phrase attachment (Brill and
Resnik, 1994), dialog act tagging (Samuel et
al., 1998), segmentation and message understand-
ing (Day et al., 1997), often achieving state-
of-the-art performance with a small and easily-
understandable list of rules.

In this paper, we describe a novel method
which enables a transformation-based classifier to
generate a probability distribution on the class
labels. Application of the method allows the
transformation rule list to retain the robustness of
the transformation-based algorithms, while bene-
fitting from the advantages of a probabilistic clas-
sifter. The usefulness of the resulting probabilities
is demonstrated by comparison with another state-
of-the-art classifier, the C4.5 decision tree (Quin-
lan, 1993). The performance of our algorithm
compares favorably across many dimensions: it
obtains better perplexity and cross-entropy; an
active learning algorithm using our system outper-
forms a similar algorithm using decision trees; and
finally, our algorithm has better rejection curves
than a similar decision tree. Section 2 presents the
transformation based learning paradigm; Section
3 describes the algorithm for construction of the
decision tree associated with the transformation
based list; Section 4 describes the experiments
in detail and Section 5 concludes the paper and
outlines the future work.

26

2 T r a n s f o r m a t i o n r u l e l i s t s

The central idea of transformation-based learn-
ing is to learn an ordered list of rules which
progressively improve upon the current state of
the training set. An initial assignment is made
based on simple statistics, and then rules are
greedily learned to correct the mistakes, until no
net improvement can be made.

These definitions and notation will be used
throughout the paper:

• X denotes the sample space;

• C denotes the set of possible classifications of
the samples;

• The state space is defined as 8 = X x C.

• 7r will usually denote a predicate defined on
X;

• A rule r is defined as a predicate - class label
- t ime tuple, (~r,c,t), c E C,t E N, where t is
the learning iteration in which when the rule
was learned, its position in the list.

• A rule r = (~r, c, t) applies to a state (z, y) if
7r(z) = t rue and c # y.

Using a TBL framework to solve a problem as-
sumes the existence of:

• An initial class assignment (mapping from X
to ,.9). This can be as simple as the most
common class label in the training set, or it
can be the output from another classifier.

• A set of allowable templates for rules. These
templates determine the predicates the rules
will test, and they have the biggest influence
over the behavior of the system.

• An objective function for learning. Unlike in
many other learning algorithms, the objective
function for TBL will typically optimize the
evaluation function. An often-used method is
the difference in performance resulting from
applying the rule.

At the beginning of the learning phase, the
training set is first given an initial class assign-
ment. The system then iteratively executes the
following steps:

1. Generate all productive rules.

2. For each rule:

(a) Apply to a copy of the most recent state
of the training set.

(b) Score the result using the objective func-
tion.

3. Select the rule with the best score.

4. Apply the rule to the current state of the
training set, updating it to reflect this change.

5. Stop if the score is smaller than some pre-set
threshold T.

6. Repeat from Step 1.

The system thus learns a list of rules in a greedy
fashion, according to the objective function. When
no rule that improves the current state of the
training set beyond the pre-set threshold can
be found, the training phase ends. During the
evaluation phase, the evaluation set is initialized
with the same initial class assignment. Each rule
is then applied, in the order it was learned, to the
evaluation set. The final classification is the one
attained when all rules have been applied.

3 P r o b a b i l i t y e s t i m a t i o n w i t h
t r a n s f o r m a t i o n r u l e l i s t s

Rule lists are infamous for making hard decisions,
decisions which adhere entirely to one possibility,
excluding all others. These hard decisions are
often accurate and outperform other types of
classifiers in terms of exact-match accuracy, but
because they do not have an associated proba-
bility, they give no hint as to when they might
fail. In contrast, probabilistic systems make soft
decisions by assigning a probability distribution
over all possible classes.

There are many applications where soft deci-
sions prove useful. In situations such as active
learning, where a small number of samples are
selected for annotation, the probabilities can be
used to determine which examples the classifier
was most unsure of, and hence should provide the
most extra information. A probabilistic system
can also act as a filter for a more expensive
system or a human expert when it is permitted
to reject samples. Soft decision-making is also
useful when the system is one of the components
in a larger decision-malting process, as is the case
in speech recognition systems (Bald et al., 1989),
or in an ensemble system like AdaBoost (Freund
and Schapire, 1997). There are many other
applications in which a probabilistic classifier is
necessary, and a non-probabHistic classifier cannot
be used instead.

3.1 Estimation v i a conversion to decision
tree

The method we propose to obtain probabilis-
tic classifications from a transformation rule list
involves dividing the samples into equivalence
classes and computing distributions over each
equivalence class. At any given point in time i,
each sample z in the training set has an associated
state si(z) = (z,~l). Let R (z) to be the set of rules
r~ that applies to the state el(z),

R(z) = {ri ~ 7~Ir~ applies to si(z)}

An equivalence class consists of all the samples
z that have the same R(z). Class probability
assignments are then estimated using statistics
computed on the equivalence classes.

27

An illustration of the conversion from a rule
list to a decision tree is shown below. Table 1
shows an example transformation rule list. It is
straightforward to convert this rule list into a de-
cision pylon (Bahl et al., 1989)~. which can be used
to represent all the possible sequences of labels
assigned to a sample during the application of the
TBL algorithm. The decision pylon associated
with this particular rule list is displayed on the left
side of Figure 1. The decision tree shown on the
right side of Figure 1 is constructed such that the
samples stored in any leaf have the same class label
sequence as in the displayed decision pylon. In
the decision pylon, "no" answers go straight down;
in the decision tree, "yes" answers take the right
branch. Note that a one rule in the transformation
rule list can often correspond to more than one
node in the decision tree.

Initial label = A
I f Q1 a n d label=A t h e n label+-B
I f Q2 a n d label=A t h e n labele-B
I f Q3 a n d label=B t h e n l a b e l ~ A

Table I: Example of a Transformation Rule List.

Figure 1: Converting the transformation rule list
from Table 1 to a decision tree,

The conversion from a transformation rule list
to a decision tree is presented as a recursive
procedure. The set of samples in the training set
is transformed to a set of states by applying the
initial class assignments. A node n is created for
each of the initial class label assignments c and all
states labeled c are assigned to n.

The following recursive procedure is invoked
with an initial "root" node, the complete set of
states (from the corpus) and the whole sequence
of rules learned during training:

A l g o r i t h m : R u l e L i s t T o D e c i s i o n T r e e
(R L T D T)

I n p u t :

* A set/3 of N states ((Zl, Yl) --- (ZN, YN)) with
labels Yi E C;

• A set 7~ of M rules (ro,rl . . . rM) where ri =

D o :

1. If 7~ is empty, the end of the rule list has been
reached. Create a leaf node, n, and estimate
the probability class distribution based on the
t rue classifications of the states in 13. Return
n .

2. Let r j = (I r j ,y j , j) be the lowest-indexed rule
in 7~. Remove it from 7~.

3. Split the data in/3 using the predicate 7rj and
the current hypothesis such tha t samples on
which 7rj returns true are on the right of the
split:

BL = {x E BlTrj(x) = false}
/3R = {x E/31 j(x) = true}

4. If IBLI > K and IBRI > K , the split is
acceptable:

(a) Create a new internal node, n;

(b) Set the question: q(n) = 7rj;

(c) Create the left child of n using a recursive
call to RLTDT(BL, 7~);

(d) Create the right child of n using a recur-
sive call to RLTDT(BR, 7~);

(e) Return node n.

Otherwise, no split is performed using r j .
Repeat from Step 1.

The parameter K is a constant tha t determines the
minimum weight that a leaf is permit ted to have,
effectively pruning the tree during construction.
In all the experiments, K was set to 5.

3.2 F u r t h e r g r o w t h o f t h e dec i s ion t r e e

When a rule list is converted into a decision tree,
there are often leaves that are inordinately heavy
because they contain a large number of samples.
Examples of such leaves are those containing
samples which were never transformed by any
of the rules in the rule list. These populations
exist either because they could not be split up
during the rule list learning without incurring a
net penalty, or because any rule tha t acts on them
has an objective function score of less than the
threshold T. This is sub-optimal for estimation
because when a large portion of the corpus falls
into the same equivalence class, the distribution
assigned to it reflects only the mean of those
samples. The undesirable consequence is tha t all
of those samples are given the same probability
distribution.

To ameliorate this problem, those samples are
part i t ioned into smaller equivalence classes by
further growing the decision tree. Since a decision
tree does not place all the samples with the same
current label into a single equivalence class, it does
not get stuck in the same situation as a rule list
m in which no change in the current state of
corpus can be made without incurring a net loss
in performance.

28

Continuing to grow the decision tree that was
converted from a rule list can be viewed from
another angle. A highly accurate prefix tree
for the final decision tree is created by tying
questions together during the first phase of the
growth process (TBL). Unlike traditional decision
trees which select splitting questions for a node
by looking only at the samples contained in the
local node, this decision tree selects questions by
looking at samples contained in all nodes on the
frontier whose paths have a suM< in common. An
illustration of this phenomenon can be seen in
Figure 1, where the choice to split on Question
3 was made from samples which tested false
on the predicate of Question 1, together with
samples which tested false on the predicate of
Question 2. The result of this is that questions
are chosen based on a much larger population than
in standard decision tree growth, and therefore
have a much greater chance of being useful and
generalizable. This alleviates the problem of over-
partitioning of data, which is a widely-recognized
concern during decision tree growth.

The decision tree obtained from this conversion
can be grown further. When the rule list 7~ is
exhausted at Step 1, instead of creating a leaf
node, continue splitting the samples contained in
the node with a decision tree induction algorithm.
The splitting criterion used in the experiments is
the information gain measure.

4 E x p e r i m e n t s

Three experiments that demonstrate the effec-
tiveness and appropriateness of our probability
estimates are presented in this section. The
experiments are performed on text chunking, a
subproblem of syntactic parsing. Unlike full pars-
ing, the sentences are divided into non-overlapping
phrases, where each word belongs to the lowest
parse constituent that dominates it.

The data used in all of these experiments is
the CoNLL-2000 phrase chunking corpus (CoNLL,
2000). The corpus consists of sections 15-18 and
section 20 of the Penn Treebank (Marcus et al.,
1993), and is pre-divided into a 8936-sentence
(211727 tokens) training set and a 2012-sentence
(47377 tokens) test set. The chunk tags are
derived from the parse tree constituents, and the
part-of-speech tags were generated by the Brill
tagger (Brill, 1995).

As was noted by Ramshaw & Marcus (1999),
text chunking can be mapped to a tagging task,
where each word is tagged with a chunk tag
representing the phrase that it belongs to. An
example sentence from the corpus is shown in
Table 4. As a contrasting system, our results
are compared with those produced by a C4.5
decision tree system (henceforth C4.5). The
reason for using C4.5 is twofold: firstly, it is a
widely-used algorithm which achieves state-.of-the-
art performance on a broad variety of tasks; and

Word
A.P.

Green
currently

has
2,664,098

shares
outstanding

POS tag
NNP
NNP
RB

VBZ
CD

NNS
JJ

Chunk Tag
B-NP
I-NP

B-ADVP
B-VP
B-NP
I-NP

B-ADJP
O

Table 2: Example of a sentence with chunk tags

secondly, it belongs to the same class of classifiers
as our converted transformation-based rule list
(henceforth TBLDT).

To perform a fair evaluation, extra care was
taken to ensure that both C4.5 and TBLDT
explore as similar a sample space as possible. The
systems were allowed to consult the word, the
part-of-speech, and the chunk tag of all examples
within a window of 5 positions (2 words on either
side) of each target example. 2 Since multiple
features covering the entire vocabulary of the
training set would be too large a space for C4.5
to deal with, in all of experiments where TBLDT
is directly compared with C4.5, the word types
that both systems can include in their predicates
are restricted to the most "ambiguous" 100 words
in the training set, as measured by the number of
chunk tag types that are assigned to them. The
initial prediction was made for both systems using
a class assignment based solely on the part-of-
speech tag of the word.

Considering chunk tags within a contextual win-
dow of the target word raises a problem with C4.5.
A decision tree generally trains on independent
samples and does not take into account changes
of any features in the context. In our case, the
samples are dependent; the classification of sample
i is a feature for sample i + 1, which means that
changing the classification for sample i affects
the context of sample i + 1. To address this
problem, the C4.5 systems are trained with the
correct chlmk~ in the left context. When the
system is used for classification, input is processed
in a left-to-right manner ;and the output of the
system is fed forward to be used as features
in the left context of following samples. Since
C4.5 generates probabilities for each classification
decision, they can be redirected into the input for
the next position. Providing the decision treewith
this confidence information effectively allows it to
perform a limited search over the entire sentence.

C4.5 does have one advantage over TBLDT,
however. A decision tree can be trained using the
subsetting feature, where questions asked are of
the form: "does feature f belong to the set FT'.
This is not something that a TBL can do readily,

2The TBL templates are similar to those used in
l~am.~haw and Marcus (1999).

29

but since the objective is in comparing TBLDT to
another state-of-the-art system, this feature was
enabled.

4.1 Evaluat ion Measures
The most commonly used measure for evaluating
tagging tasks is tag accuracy, lit is defined as

Accuracy = # of correctly tagged examples
of examples

In syntactic parsing, though, since the task is
to identify the phrasal components, it is more
appropriate to measure the precision and recall:

of correct proposed phrases
Precision =

of proposed phrases
of correct proposed phrases

Recall =
of correct phrases

To facilitate the comparison of systems with dif-
ferent precision and recall, the F-measure metric
is computed as a weighted harmonic mean of
precision and recall:

(82 + 1) × Precision x Recall
=

82 x Precision + Recall

The ~ parameter is used to give more weight to
precision or recall, as the task at hand requires.
In all our experiments, ~ is set to 1, giving equal
weight to precision and recall.

The reported performances are all measured
with the evaluation tool provided with the CoNLL
corpus (CoNLL, 2000).

4.2 Active Learning
To demonstrate the usefulness of obtaining proba-
bilities from a transformation rule list, this section
describes an application which utilizes these prob-
abilities, and compare the resulting performance
of the system with that achieved by C4.5.

Natural language processing has traditionally
required large amounts of annotated data from
which to extract linguistic properties. However,
not all data is created equal: a normal distribu-
tion of aunotated data contains much redundant
information. Seung et al. (1992) and Freund et
al. (1997) proposed a theoretical active learning
approach, where samples are intelligently selected
for annotation. By eliminating redundant infor-
mation, the same performance can be achieved
while using fewer resources. Empirically, active
learning has been applied to various NLP tasks
such as text categorization (Lewis and Gale, 1994;
Lewis and Catlett, 1994; Liere and Tadepalli,
1997), part-of-speech tagging (Dagan and Engel-
son, 1995; Engelson and Dagan, 1996), and base
noun phrase chunbiug (Ngai and Yarowsky, 2000),
resulting in significantly large reductions in the
quantity of data needed to achieve comparable
performance.

This section presents two experimental results
which show the effectiveness of the probabilities
generated by the TBLDT. The first experiment
compares the performance achieved by the active
learning algorithm using TBLDT with the perfor-
mance obtained by selecting samples sequentially
from the training set. The second experiment
compares the performances achieved by TBLDT
and C4.5 training on samples selected by active
learning.

The following describes the active learning algo-
rithm used in the experiments:

1. Label an initial T1 sentences of the corpus;

2. Use the machine learning algorithm (G4.5 or
TBLDT) to obtain chunk probabilities on the
rest of the training data;

3. Choose T2 samples from the rest of the train-
ing set, specifically the samples that optimize
an evaluation function f , based on the class
distribution probability of each sample;

4. Add the samples, including their "true" classi-
fication 3 to the training pool and retrain the
system;

5. If a desired number of samples is reached,
stop, otherwise repeat from Step 2.

The evaluation function f that was used in our
experiments is:

where H(UIS, i) is the entropy of the chllnk
probability distribution associated with the word
index i in sentence S.

Figure 2 displays the performance (F-measure
and chllnk accuracy) of a TBLDT system trained
on samples selected by active learning and the
same system trained on samples selected sequen-
tially from the corpus versus the number of words
in the annotated tralniug set. At each step of
the iteration, the active learning-trained TBLDT
system achieves a higher accuracy/F-measure, or,
conversely, is able to obtain the same performance
level with less training data. Overall, our system
can yield the same performance as the sequential
system with 45% less data, a significant reduction
in the annotation effort.

Figure 3 shows a comparison between two active
learning experiments: one using TBLDT and the
other using C4.5. 4 For completeness, a sequential
run using C4.5 is also presented. Even though
C4.5 examines a larger space than TBLDT by

SThe true (reference or gold standard) classification is
available in this experiment. In an annotation situation,
the samples are sent to human annotators for labeling.

4As mentioned earlier, both the TBLDT and C4.5 were
limited to the same 100 most ambiguous words in the
corpus to ensure comparability.

3O

8 4

AL÷TBLDT ' ~ ' ' '

i i i I i

(a) F-measure vs. number of words in trrdniug set

Oil

A L * ' m I . ~ ' - -

i I

(b) Chunk Accuracy vs. number of words in training
set

Figure 2: Performance of the TBLDT system versus sequential choice.

87

86

| -

81

...=2- '

, . r . ~ . . . r - - I ~ ' ' ' ' ~ ' ' ~ "

[~ "

i
I i L i

(a) F-measure vs. number of words in tr~inln s set

31

AL÷'nBL (I0¢ ~) ~ '

J
i i ~ i i

(b) Accuracy vs. number of words in training set

Figure 3: Performance of the TBLDT system versus the DT system

utilizing the feature subset predicates, TBLDT
still performs better. The difference in accuracy at
26200 words (at the end of the active learning run
for TBLDT) is statistically significant at a 0.0003
level.

As a final remark on this experiment, note that
at an annotation level of 19000 words, the fully
lexicalized TBLDT outperformed the C4.5 system
by making 15% fewer errors.

4 .3 R e j e c t i o n curves
It is often very useful for a classifier to be able
to offer confidence scores associated with its deci-
sions. Confidence scores are associated with the
probability P(C(z) correct[z) where C(z) is the
classification of sample z. These scores can be
used in real-life problems to reject samples that
the the classifier is not sure about, in which case
a better observation, or a human decision, might
be requested. The performance of the classifier
is then evaluated on the samples that were not
rejected. This experiment framework is well-

established in machine learning and optimization
research (Dietterich and Bakiri, 1995; Priebe et
al., 1999).

Since non-probabilistic classifiers do not offer
any insights into how sure they are about a
particular classification, it is not easy to obtain
confidence scores from them. A probabilistic
classifier, in contrast, offers information about the
class probability distribution of a given sample.
Two measures that can be used in generating
confidence scores are proposed in this section.

The first measure, the entropy H of the class
probability distribution of a sample z, C(z) =
{p(CllZ),p(c2[z)...p(cklZ)}, i s a m e a s u r e of the
uncertainty in the distribution:

k

HCCCz)) = - I=) log2 pC Iz)
i=I

The higher the entropy of the distribution of
class probability estimates, the more uncertain the

0.99

0.98

0.97
g~

0.~

~ 0 . 9 5

0.94

0.93

///.._.-.--f"
/ / C4.5 (hard d=fisions)__ i
I / / / . - ~ % _ .. ~.;

':"]
I I I I I I I I I

0J O2 O3 0.4 0.5 O.6 0,7 O.8 O.9 Z
l~c~ t of rej~xaed ~

(a) S u b c o r p u s (b a t c h) r e j e c t i o n

0~ 1 i i 1

0.985 "

0~8

O.975

097

0.965

0.96 - TBL-DT
0.955

095 - C4_5 (soft decisi
0.945 ..-

0 .94 .-.:.-.-.r.-. r.~---.':.'.':.'. ".

0.935 [
0 0.2 0.4 0.6 ~8 1

Probability of th~ most lflmly tag

(b) T h r e s h o l d (o n l i n e) r e j e c t i o n

Figure 4: Rejection curves.

classifier is of its classification. The samples se-
lected for rejection are chosen by sorting the data
using the entropies of the estimated probabilities,
and then selecting the ones with highest entropies.
The resulting curve is a measure of the correlation
between the true probability distribution and the
one given by the classifier.

Figure 4(a) shows the rejection curves for the
T B L D T system and two C4.5 decision trees - one
which receives a probability distribution as input
("soft" decisions on the left context) , and one
which receives classifications ("hard" decisions on
all fields). At the left of the curve, no samples
are rejected; at the right side, only the samples
about which the classifiers were most certain are
kept (the samples with minimum entropy). Note
that the y-values on the right side of the curve are
based on less data, effectively introducing wider
variance in the curve as it moves right.

As shown in Figure 4(a), the C4.5 classifier
tha t has access to the left context chunk tag
probability distributions behaves be t te r than the
other C4.5 system, because this information about
the surrounding context allows it to effectively
perform a shallow search of the classification
space. The TBLDT system, which also receives
a probability distribution on the chunk tags in
the left context, clearly outperforms both C4.5
systems at all rejection levels.

The second proposed measure is based on the
probability of the most likely tag. The assumption
here is that this probability is representative of
how certain the system is about the classifica-
tion. The samples are put in bins based on
the probability of the most likely chnnk tag, and
accuracies are computed for each bin (these bins
are cumulative, meaning that a sample will be
included in all the bins tha t have a lower threshold
than the probability of its most likely chnnl¢
tag). At each accuracy level, a sample will be
rejected if the probability of its most likely chnn~

Cross Entropy
T B L D T 1.2944 0.2580

DT+probs 1.4150 0.3471
D T 1.4568 0.3763

Table 3: Cross entropy and perplexities for two
C4.5 systems and the T B L D T system

is below the accuracy level. The resulting curve
is a measure of the correlation between the true
distribution probabil i ty and the probability of the
most likely chunk tag, i.e. how appropriate those
probabilities are as confidence measures. Unlike
the first measure mentioned before, a threshold
obtained using this measure can be used in an
online manner to identify the samples of whose
classification the system is confident.

Figure 4(b) displays the rejection curve for
the second measure and the same three systems.
T B L D T again outperforms both C4.5 systems, at
all levels of confidence.

In summary, the T B L D T system outperforms
both C4.5 systems presented, resulting in fewer re-
jections for the same performance, or, conversely,
bet ter performance at the same rejection rate.

4 .4 P e r p l e x i t y a n d Cro s s E n t r o p y

Cross entropy is a goodness measure for probabil-
i ty estimates tha t takes into account the accuracy
of the estimates as well as the classification accu-
racy of the system. It measures the performance
of a system trained on a set of samples distributed
according to the probabili ty distribution p when
tested on a set following a probabili ty distribution
q. More specifically, we utilize conditional cross
entropy, which is defined as

n (C l X) = - q (=) - q(cl=) • log2 pC@:)
z E X ¢EC

where X is the set of examples and C is the set of
chnnlr tags, q is the probabi l i ty d istr ibut ion on the

32

Chunk
Type

A c c u r a c y

(%)
Precisionl Recall

(%) I (%)
Overall 95.23 92.02 92.50
ADJP - 75.69 68.95
ADVP - 80.88 78.64
CONJP - 40.00 44.44
INTJ - 50.00 50.00
LST - 0.00 0.00
NP - 92.18 92.72
PP 95.89 97.90
PRT - 67.80 75.47
SBAR 88.71 82.24

VP 92.00 92.87

Fi
92.26!
72.16
79.74
42.11
50.00
0.00
92.45
96.88
71.43
85.35
92.44

Table 4: Performance of TBLDT on the CoNLL
Test Set

test document and p is the probability distribution
on the train corpus.

The cross entropy metric fails if any outcome is
given zero probability by the estimator. To avoid
this problem, estimators are "smoothed", ensuring
that novel events receive non-zero probabilities.
A very simple smoothing technique (interpolation
with a constant) was used for all of these systems.

A closely related measure is perplexity, defined
as

P = 2~(cl x)

The cross entropy and perplexity results for the
various estimation schemes are presented in Table
• 3. The TBLDT outperforms both C4.5 systems,
obtaining better cross-entropy and chunk tag per-
plexity. This shows that the overall probability
distribution obtained from the TBLDT system
better matches the true probability distribution.
This strongly suggests that probabilities generated
this way can be used successfully in system com-
bination techniques such as voting or boosting.

4.5 Chunking performance

It is worth noting that the transformation-based
system used in the comparative graphs in Figure
3 was not r, uning at full potential. As described
earlier, the TBLDT system was only allowed to
consider words that C4.5 had access to. However,
a comparison between the corresponding TBLDT
curves in Figures 2 (where the system is given
access to all the words) and 3 show that a
transformation-based system given access to all
the words performs better than the one with a
restricted lexicon, which in turn outperforms the
best C4.5 decision tree system both in terms of
accuracy and F-measure.

Table 4 shows the performance of the TBLDT
system on the full CoNLL test set, broken down
by chunk type. Even though the TBLDT results
could not be compared with other published re-
sults on the same task and data (CoNLL will
not take place until September 2000), our system
significantly outperforms a similar system trained
with a C4.5 decision tree, shown in Table 5, both
in chunk accuracy and F-measure.

Chunk
Type

Accuracy
(%)

ADVP
CONJP

IJrecision
(%)

Recall
(%)

Overall 93.80 90.02 90.26
ADJP 65.58 64.38

74.14 76.79
33.33

INTJ 50.00 50.00
LST 0.00 0.00
NP 91.00 90.93
PP 92.70 96.36
PRT 71.13 65.09
SBAR 86.35 61.50
VP 90.71 91.22

I Fz
90.14
64.98
75.44
33.33
50.00
0.00
90.96
94.50
67.98
71.83
90.97

Table 5: Performance of C4.5 on the CoNLL Test
Set

5 C o n c l u s i o n s
In this paper we presented a novel way to convert
transformation rule lists, a common paradigm in
natural language processing, into a form that is
equivalent in its classification behavior, but is
capable of providing probability estimates. Using
this approach, favorable properties of transfor-
mation rule lists that makes them popular for
language processing are retained, while the many
advantages of a probabilistic system axe gained.

To demonstrate the efficacy of this approach,
the resulting probabilities were tested in three
ways: directly measuring the modeling accuracy
on the test set via cross entropy, testing the
goodness of the output probabilities in a active
learning algorithm, and observing the rejection
curves attained from these probability estimates.
The experiments clearly demonstrate that the
resulting probabilities perform at least as well as
the ones generated by C4.5 decision trees, resulting
in better performance in all cases. This proves that
the resulting probabilistic classifier is as least as
good as other state-of-the-art probabilistic models.

The positive results obtained suggest that the
probabilistic classifier obtained from transforma-
tion rule lists can be successfully used in machine
learning algorithms that require soft-decision clas-
sifters, such as boosting or voting. Future research
will include testing the behavior of the system
under AdaBoost (Freund and Schapire, 1997). We
also intend to investigate the effects that other
decision tree growth and smoothing techniques
may have on continued refinement of the converted
rule list.

6 A c k n o w l e d g e m e n t s

We thank Eric Brill, Fred Jelinek and David
Yaxowsky for their invaluable advice and sugges-
tions. In addition we would like to thank David
Day, Ben Weliner and the anonymous reviewers
for their useful comments and suggestions on the
paper

The views expressed in this paper are those of
the authors and do not necessarily reflect the views

33

of the MITRE Corporation. I t was performed
as a collaborative effort at]both M I T R E and
the Center for Language and ',Speech Processing,
Johns Hopkins University, Balt imore, MD. I t was
supported by NSF grants numbered IRI-9502312
and IRI-9618874, as well as the MITRE-Sponsored
Research program.

References
L. Bahl, P. Brown, P. de Souza, and R. Mercer. 1989.

A tree-based statistical language model for natural
language speech recognition. IEEE Transactions on
Acoustics, Speech and Signal Processing, 37:1001-
1008.

E. BriU and P. Resnik. 1994. A rule-based approach
to prepositional phrase attachment disambiguation.
In Proceedings of the Fifteenth International Con-
ference on Computational Linguistics (COLING-
199~), pages 1198--1204, Kyoto.

E. BrllL 1995. Transformation-based error-driven
learning and natural language processing: A case
study in part of speech tagging. Computational
Linguistics, 21(4):543-565.

E. Brill, 1996. Learning to Parse with Transforma-
tions. In H. Bunt and M. Tomita (eds.) Recent
Advances in Parsing Technology, Kluwer.

CoNLL. 2000. Shared task for computational natu-
ral language learning (CoNLL), 2000. http://lcg-
ww w.uia.ac.be/conU2000/chunking.

I. Dagan and S. Engelson. 1995. Committee-based
sampling for training probabilistic classifiers. In
Proceedings of International Conference on Machine
Learning (ICML) 1995, pages 150-157.

D. Day, J. Aberdeen, L. Hirschman, R. Kozierok,
P. Robinson, and M. Vllaln. 1997. Mixed-initiative
development of language processing systems. In
Fifth Conference on Applied Natural Language Pro-
cessing, pages 348-355. Association for Computa-
tional Linguistics, March.

T. G. Dietterich and G. Bakiri. 1995. Solving multi-
class learning problems via error-correcting output
codes. Journal of Artificial Intelligence Research,
2:263-286.

S. Engelson and I. Dagan. 1996. Minlmi~.ing manual
annotation cost in supervised training fxom corpora.
In Proceedings of ACL 1996, pages 319-326, Santa
Cruz, CA. Association for Computational Linguis-
tics.

Y. Freund and R.E. Schapire. 1997. A decision-
theoretic generalization of on-fine learning and an
application to boosting. Journal of Computer and
System Sciences, 55(1):119--139.

Y. Fremad, H. S. Senng, E. Shamir, and N. Tishby.
1997. Selective sampling using the query by com-
mittee algorithm. Machine Learning, 28:133-168.

D. Lewis and J. Catlett. 1994. Heterogeneous un-
certainty sampling for supervised learning. In Pro-
ceedings of the 11th International Conference on
Machine Learning, pages 139---147.

D. Lewis and W. Gale. 1994. A sequential algorithm
for training text classifiers. In Proceedings of A CM-
SIGIR 1994, pages 3-12. ACM-SIGIR.

R. Liere and P. Tadepalli. 1997. Active learning with
committees for text categorization. In Proceedings

of the Fourteenth National Conference on Artificial
Intelligence, pages 591-596. AAAI.

L. Mangu and E. Brill. 1997. Automatic rule acquisi-
tion for spelling correction. In Proceedings of the
Fourteenth International Conference on Machine
Learning, pages 734-741, Nashville, Tennessee.

M. P. Marcus, B. Santorini, and M. A. Mareinkiewicz.
1993. Building a large annotated corpus of english:
The Penn Treebank. Computational Linguistics,
19(2):313-330.

G. Ngai and D. Yarowsky. 2000. Rule writing or
annotation: Cost-efficient resource usage for base
noun phrase chunking. In Proceedings of A CL 2000.
Association for Computational Linguistics.

C. E. Priebe, J.-S. Pang, and T. Olson. 1999. Opt lmiT.
ing mine classification performance. In Proceedings
of the JSM. American Statistical Association.

J. R. Qnlnlan. 1993. C~.5: Programs for machine
learning. Morgan Kanfmann, San Mateo, CA.

L. Ramshaw and M. Marcus, 1999. Text Chunk-
ing Using Transformation-based Learning. In S.
Armstrong, K.W. Church, P. Isabelle, S. Mauzi,
E. Tzoukermann and D. Yarowsky (eds.) Natural
Language Processing Using Very Large Corpora,
Kluwer.

E. Roche and Y. Schabes. 1995. Computational
linguistics. Deterministic Part of Speech Tagging
with Finite State Transducers, 21(2):227-253.

K. Samuel, S. Carberry, and K. Vijay-Shanker. 1998.
Dialogue act tagging with transformation-based
learning. In Proceedings of the 17th International
Conference on Computational Linguistics and the
36th Annual Meeting of the Association for Com-
putational Linguistics, pages 1150-1156, Montreal,
Quebec, Canada.

H. S. Senng, M. Opper, and H. Sompolinsky. 1992.
Query by committee. In Proceedings of the Fifth
Annual A CM Workshop on Computational Learning
Theory, pages 287-294. ACM.

M. Vilain and D. Day. 1996. Finite-state parsing
by rule sequences. In International Conference on
Computational Linguistics, pages 274-279, Copen-
hagen, Denmark, August.

34

