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For several years, chunking has been an inte- 
gral part of MITRE's approach to information 
extraction. Our work exploits chunking in two 
principal ways. First, as part of our extraction 
system (Alembic) (Aberdeen et al., 1995), the 
chunker delineates descriptor phrases for entity 
extraction. Second, as part of our ongoing re- 
search in parsing, chunks provide the first level 
of a stratified approach to syntax - the second 
level is defined by grammatical relations, much 
as in the SPARKLE effort (Carroll et al., 1997). 

Because of our ongoing work with chunking, 
we were naturally interested in evaluating our 
approach on the common CoNLL task. In this 
note, we thus present three different evaluations 
of our work on phrase-level parsing. The first 
is a baseline of sorts, our own version of the 
"chunking as tagging" approach introduced by 
Ramshaw and Marcus (Ramshaw and Marcus, 
1995). The second set of results reports the 
performance of a trainable rule-based system, 
the Alembic phrase rule parser. As a point of 
comparison, we also include a third set of mea- 
sures produced by running the standard Alem- 
bic chunker on the common task with little or 
no adaptation. 

1 Chunking as Tagging 

For this first experiment, we coerced our part- 
of-speech tagger to generate chunk labels. We 
did so in what can only count as the most rudi- 
mentary way: by training the tagger to map 
part-of-speech labels to the chunk labels of the 
common task. The learning procedure is a re- 
implementation of Brill's transformation-based 
approach (Brill, 1993), extended to cover ap- 
proximately an order of magnitude more rule 
schemata. As input, the training corpus was 
tagged with the parts-of-speech from the corn- 

N 
1000 
2000 
4000 

accuracy precision 
86 77 
89 82 
89 81 

recall FB= 1 
77 77 
82 82 
81 81 

Table 1: Performance of the brute-force re- 
tagging approach 

mon data set: these provided an initial labeling 
of the data which was then directly converted 
to chunk labels through the action of transfor- 
mation rules (Brill's so-called contextual rules). 

Because the learning procedure is none the 
swiftest, we restricted ourselves to subsets of 
the training data, acquiring rules from the first 
1000, 2000, and 4000 sentences of the training 
set. In each case, we acquired 500 transforma- 
tion rules. We measured the following perfor- 
mance of these rules on the test set. 

These results are hardly stellar, falling some 
10 points of F below the performance of previ- 
ous approaches to noun group detection. To be 
sure, the chunking task is more demanding than 
the simple identification of noun group bound- 
aries, so one would expect lower performance on 
the harder problem. But the rudimentary way 
in which we implemented the approach is likely 
also to blame. 

There are a number of clear-cut ways in which 
we could attempt to improve our performance 
using this approach. In particular, we would ex- 
pect to obtain better results if we did not oblit- 
erate the part-of-speech of a lexeme in the pro- 
cess of tagging it with a chunk label. Indeed, 
in our experiments, the learning procedure ac- 
quired transformations that simply replaced the 
part-of-speech tag with a chunking tag, thereby 
inhibiting potentially useful downstream rules 
for accessing the part-of-speech information of 
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a chunk-tagged word. 

2 C h u n k i n g  w i t h  t h e  P h r a s e  R u l e  
P a r s e r  

Our main interest in this common evaluation, 
however, was not to set new high-water marks 
with the approach of Ramshaw and Marcus, but 
to exercise our phrase rule parser. 

The Alembic phrase rule parser (Vilain and 
Day, 1996) provides the core of the system's 
syntactic processing. In our extraction appli- 
cations, the phraser (as we call it) initially tags 
named entities and other fixed-class constructs 
(like titles). The phraser also treats as atomic 
units the stereotypical combinations of named 
entities that one finds in newswire text, e.g., 
the person-title-organization apposition "U.N. 
secretary general Kofi Anan". The three com- 
ponents of the apposition axe initially parsed 
as fixed-class entities, and are then combined 
to form a single person-denoting phrase. These 
preliminary parsing steps provide part of the in- 
put to the chunker, which is itself implemented 
as a phrase rule parser. 

The architecture of the parser is based on 
Brill's approach. The parser follows a sequence 
of rules in order to build phrases out of parse is- 
lands. These islands are initially introduced by 
instantiating partial phrases around individual 
lexemes (useful for name tagging), or around 
runs of certain parts of speech (useful for both 
name tagging and chunking). It is the job of the 
phrase parsing rules to grow the boundaries of 
these phrases to the left or right, and to assign 
them a type, e.g., a name tag or a chunk la- 
bel. As with other rule sequence processors, the 
phraser proceeds in sequence through its cata- 
logue of rules, applying each in turn wherever it 
matches, and then discarding it to proceed on 
to the next rule in the sequence. 

For example, in name tagging, we seed 
initial phrases around runs of capitalized 
words. A phrase such as "meetings in Paris 
and Rome" would produce an initial phrase 
analysis of "meetings in <? >P a r i s< / ? >  and 
< ? > R o m e < / ? > " ,  where the "?" on the phrases 
are initial labels that indicate the phrase has 
not received a type. 

The patterns that are implemented by phrase 
parsing rules are similar to those in Brill's 
transformation-based p-o-s tagger. A rule can 

test for the presence of a given part of speech, of 
a lexeme, of a list of lexemes, and so on. These 
tests are themselves anchored to a specific locus 
(a phrase or lexeme) and are performed relative 
to that locus. As actions, the rules can grow the 
boundaries of a phrase, and set or modify its la- 
bel. For example, a typical name tagging rule 
would assign a LOCATION tag to any phrase 
preceded by the preposition "in". And indeed, 
this very rule tends to emerge as the very first 
rule acquired in training a phraser-based name 
tagger. We show it here with no further com- 
ment, trusting that its syntax is self-evident. 

(def-phraser-rule 
:conditions (:left-i :lex "in") 
:actions (:set-label :LOCATION)) 

In our particular example ("meetings in 
< ? > P a r i s < / ? >  and <?>Rome</?>" ) ,  this 
rule would re-label the <?>  phrase around Paris 
with the LOCATION tag. A subsequent rule 
might then exploit the coordination to infer 
that "Rome" is a location as well, implement- 
ing the transformation "LOCATION and <?>" 
--+ "LOCATION and LOCATION". This incre- 
mental patching of errors is the hallmark of 
Brill's approach. 

An interesting property of this rule language 
is that the phraser can be operated either as 
a trainable procedure, using standard error- 
driven transformation learning, or as a hand- 
engineered system. For the purpose of the com- 
mon CoNLL task, let us first present our results 
for the trainable case. 

We again approached the task in a relatively 
rudimentary way, in this case by applying the 
phrase rule learning procedure with no partic- 
ular adaptation to the task. Indeed, the proce- 
dure can be parameterized by word lists which 
it can then exploit to improve its performance. 
Since our main interest here was to see our base- 
line performance on the task, we did not harvest 
such word lists from the training data (there is 
an automated way to do this). We ran a num- 
ber of training runs based on different partitions 
of the training data, with the following overall 
performance on test data, averaged across runs. 

accuracy 89 ]precision 89 I recall 
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test data precision The constituents that were most accurately 
recognized were noun groups (F=88), with verb 
groups a close second (F=87). These were 
followed by the ostensibly easy cases of PP's 
(F=86), SBAR's (F=79), and ADVP's (F=75). 
Our lowest performing constituent for which 
the learning procedure actually generated rules 
was ADJP's (F=37), with no rules generated 
to identify CONJP's, INTJ's, LST's, or PRT's 
(F=0 in all these cases). 

In general, precision, tended to be several 
points of F higher than recall, and in the case 
of ADJP's average precision was 76 compared 
to average recall of 24! 

3 C h u n k i n g  w i t h  t h e  
H a n d - E n g i n e e r e d  S y s t e m  

As a point of comparison, we also applied our 
hand-engineered chunker to the CoNLL task. 
We expected that it would not perfbrm at its 
best on this task, since it was designed with 
a significantly different model of chunking in 
mind, and indeed, unmodified, it produced dis- 
appointing results: 

accuracy precision recall[ Ffl- 1 
84 80 75 [ 77 

The magnitude of our error term was some- 
thing of a surprise. With production runs 
on standard newswire stories (several hundred 
words in lengths) the chunker typically produces 
fewer errors per story than one can count on one 
hand. The discrepancy with the results mea- 
sured on the CoNLL task is of course due to 
the fact that our manually engineered parser 
was designed to produce chunks to a different 
standard. 

The standard was carefully defined so as to 
be maximally informative to downstream pro- 
cessing. Generally speaking, this means that it 
tends to make distinctions that are not made in 
the CoNLL data, e.g., splitting verbal runs such 
as "failed to realize" into individual verb groups 
when more than one event is denoted. 

Our curiosity about these discrepancies is 
now piqued. As a point of further investiga- 
tion, we intend to apply the phraser's training 
procedure to adapt the manual chunker to the 
CoNLL task. With transformation-based rule 
sequences, this is easy to do: one merely trains 
the procedure to transform the output required 

ADJP 
ADVP 
CONJP 
INTJ 
LST 
NP 
PP 
PRT 
SBAR 
VP 
all 

75.89% 
80.64% 
0.00% 
0.00% 
0.00% 
87.85% 
91.77% 
0.00% 

91.36% 
90.34% 
88.82% 

recall Fp=l 
24.43% 36.96 
70.21% 75.06 
0.00% 0.00 
0.00% 0.00 
0.0O% 0.00 

87.77% 87.81 
80.42% 85.72 
0.00% 0.00 

69.16% 78.72 
84.13% 87.13 
82.91% 85.76 

Table 2: The results of the phrase rule parser. 

for the one task into that required for the other. 
The rules acquired in this way are then sim- 
ply tacked on to the end of the original rule 
sequence (a half dozen such rules written by 
hand bring the performance of the chunker up 
to F=82, for example). 

A more interesting point of investigation, 
however, would be to analyze the discrepan- 
cies between current chunk standards from the 
standpoint of syntactic and semantic criteria. 
We look forward to reporting on this at some 
future point. 
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