
In: Proceedings of CoNLL-2000 and LLL-2000, pages 160-162, Lisbon, Portugal, 2000.

Phrase Pars ing wi th Rule Sequence Processors:
an Appl i ca t ion to the Shared C o N L L Task

M a r c V i l a i n and D a v i d D a y
The MITRE Corporat ion
Bedford, MA 01730, USA
{mbv, day}Omi t re , o rg

For several years, chunking has been an inte-
gral part of MITRE's approach to information
extraction. Our work exploits chunking in two
principal ways. First, as part of our extraction
system (Alembic) (Aberdeen et al., 1995), the
chunker delineates descriptor phrases for entity
extraction. Second, as part of our ongoing re-
search in parsing, chunks provide the first level
of a stratified approach to syntax - the second
level is defined by grammatical relations, much
as in the SPARKLE effort (Carroll et al., 1997).

Because of our ongoing work with chunking,
we were naturally interested in evaluating our
approach on the common CoNLL task. In this
note, we thus present three different evaluations
of our work on phrase-level parsing. The first
is a baseline of sorts, our own version of the
"chunking as tagging" approach introduced by
Ramshaw and Marcus (Ramshaw and Marcus,
1995). The second set of results reports the
performance of a trainable rule-based system,
the Alembic phrase rule parser. As a point of
comparison, we also include a third set of mea-
sures produced by running the standard Alem-
bic chunker on the common task with little or
no adaptation.

1 Chunking as Tagging

For this first experiment, we coerced our part-
of-speech tagger to generate chunk labels. We
did so in what can only count as the most rudi-
mentary way: by training the tagger to map
part-of-speech labels to the chunk labels of the
common task. The learning procedure is a re-
implementation of Brill's transformation-based
approach (Brill, 1993), extended to cover ap-
proximately an order of magnitude more rule
schemata. As input, the training corpus was
tagged with the parts-of-speech from the corn-

N
1000
2000
4000

accuracy precision
86 77
89 82
89 81

recall FB= 1
77 77
82 82
81 81

Table 1: Performance of the brute-force re-
tagging approach

mon data set: these provided an initial labeling
of the data which was then directly converted
to chunk labels through the action of transfor-
mation rules (Brill's so-called contextual rules).

Because the learning procedure is none the
swiftest, we restricted ourselves to subsets of
the training data, acquiring rules from the first
1000, 2000, and 4000 sentences of the training
set. In each case, we acquired 500 transforma-
tion rules. We measured the following perfor-
mance of these rules on the test set.

These results are hardly stellar, falling some
10 points of F below the performance of previ-
ous approaches to noun group detection. To be
sure, the chunking task is more demanding than
the simple identification of noun group bound-
aries, so one would expect lower performance on
the harder problem. But the rudimentary way
in which we implemented the approach is likely
also to blame.

There are a number of clear-cut ways in which
we could attempt to improve our performance
using this approach. In particular, we would ex-
pect to obtain better results if we did not oblit-
erate the part-of-speech of a lexeme in the pro-
cess of tagging it with a chunk label. Indeed,
in our experiments, the learning procedure ac-
quired transformations that simply replaced the
part-of-speech tag with a chunking tag, thereby
inhibiting potentially useful downstream rules
for accessing the part-of-speech information of

160

a chunk-tagged word.

2 C h u n k i n g w i t h t h e P h r a s e R u l e
P a r s e r

Our main interest in this common evaluation,
however, was not to set new high-water marks
with the approach of Ramshaw and Marcus, but
to exercise our phrase rule parser.

The Alembic phrase rule parser (Vilain and
Day, 1996) provides the core of the system's
syntactic processing. In our extraction appli-
cations, the phraser (as we call it) initially tags
named entities and other fixed-class constructs
(like titles). The phraser also treats as atomic
units the stereotypical combinations of named
entities that one finds in newswire text, e.g.,
the person-title-organization apposition "U.N.
secretary general Kofi Anan". The three com-
ponents of the apposition axe initially parsed
as fixed-class entities, and are then combined
to form a single person-denoting phrase. These
preliminary parsing steps provide part of the in-
put to the chunker, which is itself implemented
as a phrase rule parser.

The architecture of the parser is based on
Brill's approach. The parser follows a sequence
of rules in order to build phrases out of parse is-
lands. These islands are initially introduced by
instantiating partial phrases around individual
lexemes (useful for name tagging), or around
runs of certain parts of speech (useful for both
name tagging and chunking). It is the job of the
phrase parsing rules to grow the boundaries of
these phrases to the left or right, and to assign
them a type, e.g., a name tag or a chunk la-
bel. As with other rule sequence processors, the
phraser proceeds in sequence through its cata-
logue of rules, applying each in turn wherever it
matches, and then discarding it to proceed on
to the next rule in the sequence.

For example, in name tagging, we seed
initial phrases around runs of capitalized
words. A phrase such as "meetings in Paris
and Rome" would produce an initial phrase
analysis of "meetings in <? >P a r i s< / ? > and
< ? > R o m e < / ? > " , where the "?" on the phrases
are initial labels that indicate the phrase has
not received a type.

The patterns that are implemented by phrase
parsing rules are similar to those in Brill's
transformation-based p-o-s tagger. A rule can

test for the presence of a given part of speech, of
a lexeme, of a list of lexemes, and so on. These
tests are themselves anchored to a specific locus
(a phrase or lexeme) and are performed relative
to that locus. As actions, the rules can grow the
boundaries of a phrase, and set or modify its la-
bel. For example, a typical name tagging rule
would assign a LOCATION tag to any phrase
preceded by the preposition "in". And indeed,
this very rule tends to emerge as the very first
rule acquired in training a phraser-based name
tagger. We show it here with no further com-
ment, trusting that its syntax is self-evident.

(def-phraser-rule
:conditions (:left-i :lex "in")
:actions (:set-label :LOCATION))

In our particular example ("meetings in
< ? > P a r i s < / ? > and <?>Rome</?>") , this
rule would re-label the <?> phrase around Paris
with the LOCATION tag. A subsequent rule
might then exploit the coordination to infer
that "Rome" is a location as well, implement-
ing the transformation "LOCATION and <?>"
--+ "LOCATION and LOCATION". This incre-
mental patching of errors is the hallmark of
Brill's approach.

An interesting property of this rule language
is that the phraser can be operated either as
a trainable procedure, using standard error-
driven transformation learning, or as a hand-
engineered system. For the purpose of the com-
mon CoNLL task, let us first present our results
for the trainable case.

We again approached the task in a relatively
rudimentary way, in this case by applying the
phrase rule learning procedure with no partic-
ular adaptation to the task. Indeed, the proce-
dure can be parameterized by word lists which
it can then exploit to improve its performance.
Since our main interest here was to see our base-
line performance on the task, we did not harvest
such word lists from the training data (there is
an automated way to do this). We ran a num-
ber of training runs based on different partitions
of the training data, with the following overall
performance on test data, averaged across runs.

accuracy 89]precision 89 I recall

161

test data precision The constituents that were most accurately
recognized were noun groups (F=88), with verb
groups a close second (F=87). These were
followed by the ostensibly easy cases of PP's
(F=86), SBAR's (F=79), and ADVP's (F=75).
Our lowest performing constituent for which
the learning procedure actually generated rules
was ADJP's (F=37), with no rules generated
to identify CONJP's, INTJ's, LST's, or PRT's
(F=0 in all these cases).

In general, precision, tended to be several
points of F higher than recall, and in the case
of ADJP's average precision was 76 compared
to average recall of 24!

3 C h u n k i n g w i t h t h e
H a n d - E n g i n e e r e d S y s t e m

As a point of comparison, we also applied our
hand-engineered chunker to the CoNLL task.
We expected that it would not perfbrm at its
best on this task, since it was designed with
a significantly different model of chunking in
mind, and indeed, unmodified, it produced dis-
appointing results:

accuracy precision recall[Ffl- 1
84 80 75 [77

The magnitude of our error term was some-
thing of a surprise. With production runs
on standard newswire stories (several hundred
words in lengths) the chunker typically produces
fewer errors per story than one can count on one
hand. The discrepancy with the results mea-
sured on the CoNLL task is of course due to
the fact that our manually engineered parser
was designed to produce chunks to a different
standard.

The standard was carefully defined so as to
be maximally informative to downstream pro-
cessing. Generally speaking, this means that it
tends to make distinctions that are not made in
the CoNLL data, e.g., splitting verbal runs such
as "failed to realize" into individual verb groups
when more than one event is denoted.

Our curiosity about these discrepancies is
now piqued. As a point of further investiga-
tion, we intend to apply the phraser's training
procedure to adapt the manual chunker to the
CoNLL task. With transformation-based rule
sequences, this is easy to do: one merely trains
the procedure to transform the output required

ADJP
ADVP
CONJP
INTJ
LST
NP
PP
PRT
SBAR
VP
all

75.89%
80.64%
0.00%
0.00%
0.00%
87.85%
91.77%
0.00%

91.36%
90.34%
88.82%

recall Fp=l
24.43% 36.96
70.21% 75.06
0.00% 0.00
0.00% 0.00
0.0O% 0.00

87.77% 87.81
80.42% 85.72
0.00% 0.00

69.16% 78.72
84.13% 87.13
82.91% 85.76

Table 2: The results of the phrase rule parser.

for the one task into that required for the other.
The rules acquired in this way are then sim-
ply tacked on to the end of the original rule
sequence (a half dozen such rules written by
hand bring the performance of the chunker up
to F=82, for example).

A more interesting point of investigation,
however, would be to analyze the discrepan-
cies between current chunk standards from the
standpoint of syntactic and semantic criteria.
We look forward to reporting on this at some
future point.

R e f e r e n c e s
J. Aberdeen, J. Burger, D. Day, L. Hirschman,

P. Robinson, and M. Vilain. 1995. Mitre: De-
scription of the alembic system used for muc-6.
In Proc. 6th Message Understanding Conference
(MUC-6). Defense Advanced Research Projects
Agency, November.

E. Brill. 1993. A Corpus-based Approach to Lan-
guage Learning. Ph.D. thesis, U. Pennsylvania.

J. Carroll, T. Briscoe, N. Calzolari, S. Fed-
erici, S. Montemagni, V. Pirrelli, G. Grefen-
stette, A. Sanfilippo, G. Carroll, and M. Rooth.
1997. SPARKLE work package 1, specifica-
tion of phrasal parsing, final report. Avail-
able at http://www, i l c . pi. cnr. i t / s p a r k l e / -
sparkle, htm, November.

L. Ramshaw and M. Marcus. 1995. Text chunking
using transformation-based learning. In Proc. of
the 3rd Workshop on Very Large Corpora, pages
82-94, Cambridge, MA, USA.

M. Vilain and D. Day. 1996. Finite-state phrase
parsing by rule sequences. In Proceedings of the
16th Intl. Conference on Computational Linguis-
tics (COLING-96).

162

