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1 I n t r o d u c t i o n  

In the shared task for CoNLL-2000, words and 
tags form the basic multi-valued features for 
predicting a rich phrase segmentation code. 
While the tag features, containing WSJ paxt-of- 
speech tags (Marcus et al., 1993), have about 
45 values, the word features have more than 
10,000 values. In our study we have looked at 
how memory-based learning, as implemented in 
the TiMBL software system (Daelemans et al., 
2000), can handle such features. We have lim- 
ited our search to single classifiers, thereby ex- 
plicitly ignoring the possibility to build a meta- 
learning classifier architecture that could be ex- 
pected to improve accuracy. Given this restric- 
tion we have explored the following: 

1. The generalization accuracy of TiMBL 
with default settings (multi-valued fea- 
tures, overlap metric, feature weighting). 

2. The usage of MVDM (Stanfill and Waltz, 
1986; Cost and Salzberg, 1993) (Section 2), 
which should work well on word value pairs 
with a medium or high frequency, but may 
work badly on word value pairs with low 
frequency. 

3. The straightforward unpacking of feature 
values into binary features. On some tasks 
we have found that splitting multi-valued 
features into several binary features can en- 
hance performance of the classifier. 

4. A heuristic search for complex features on 
the basis of all unpacked feature values, and 
using these complex features for the classi- 
fication task. 

2 M e t h o d s  a n d  D a t a  

The data used for this shared task is compa- 
rable to the dataset used in (Buchholz et al., 
1999), who found an optimal windowing context 
size of five words and POS tags to the left, the 
word itself, and three words and POS tags to 
the right. We also used this window size, and 
have applied TiMBL to the shared task data 
using default TiMBL settings. TiMBL and the 
abovementioned feature metrics are introduced 
in the following sections. 

I B I - I G  The default TiMBL setting, IBI-IG, 
(Daelemans et al., 1997) is a memory-based 
learning algorithm that builds a database of 
instances (the instance base) during learning. 
An instance consists of a fixed-length vector of 
n feature-value pairs, and an information field 
containing the classification of that particular 
feature-value vector. After the instance base 
is built, new (test) instances axe classified by 
matching them to all instances in the instance 
base, and by calculating with each match the 
distance between the new instance X and the 
memory instance Y. 

The most basic metric for patterns with sym- 
bolic features is the Ove r l ap  m e t r i c  given in 
equation 1; where A(X, Y) is the distance be- 
tween patterns X and Y, represented by n fea- 
tures, wi is a weight for feature i, and 5 is the 
distance per feature. The k-NN algorithm with 
this metric, and equal weighting for all features 
is called IB1 (Aha et al., 1991). Usually k is set 
to 1. 

rt 

= wi (1) 
i = 1  

where: 5(xi, Yi) = 0 i f  xi = Yi, else 1 
This distance metric simply counts the num- 

ber of (mis)matching feature values in both pat- 
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method k II AdjP AdvP ConjP Intj NP PP PRT SBAR VP II tot 
IBI-IG 1 60.9 75.3 17.6 66.7 91 .0  95 .9  65.4 78.2 91.6 90.5 
IBI-IG 3 64.3 76.8 38.5 66.7 91 .5  95 .8  61.4 79.6 91.7 91.0 
IBI-IG 5 65.4 76.5 38.5 66.7 91 .6  95 .8  63.7 78.6 91.6 91.0 
IBI-IG 7 66.1 76.5 41.7 66.7 91 .2  95 .4  63.7 76.8 91.4 90.7 

MVDM-all 1 58.3 73.9 34.5 0 90.2 95 .6  54.6 78.1 89.7 89.6 
MVDM-all 3 60.0 77.0 30.8 0 91.0 96 .2  6 0 . 6  80.0 91.6 90.9 
MVDM-all 5 61.0 76.8 30.8 0 91.3 96 .1  60.1 79.5 91.9 91.0 
MVDM-all 7 62.4 76.5 40.0 0 91.4 96 .0  59.8 78.8 91.9 91.1 

MVDM-POS 1 59.3 76.6 12.5 50.0 89 .6  96 .0  69.5 78.3 91.1 89.8 
MVDM-POS 3 65.9 77.4 26.7 66.7 91 .8  96 .6  74.1 81.6 92.3 91.5 
MVDM-POS 5 63.7 76.6 37.0 66.7 92.1  96 .4  71.4 79.8 92.1 91.5 
MVDM-POS 7 65.2 77.2 41.7 66.7 92 .0  96 .3  70.7 79.6 92.0 91.5 

Unpacked features 1 ][ 49.4 72.9 47.1 0 88.7 95 .8  59.1 79.3 89.1 [[ 88.8 [ 
Complex features 1 [[ 58.8 75.8 0 66.7 91 .0  94 .7  74.6 87.8 94.3 1[ 91.3 I 

Table 1: Results  on the shared task dataset,  in the top row the best  performing metric is shown. 

terns. In the absence of information about  
feature relevance, this is a reasonable choice. 
However, Information Theory gives us a useful 
tool for measuring feature relevance (Quinlan, 
1986; Quinlan, 1993). I n f o r m a t i o n  G a i n  (IG) 
weighting looks at each feature in isolation, and 
measures how much information it contributes 
to our knowledge of the correct class label. The 
Information Gain of feature f is measured by 
computing the difference in uncertainty (i.e. en- 
tropy) between the situations without  and with 
knowledge of the value of that  feature. The re- 
sulting IG values can then be used as weights in 
equation 1. 

M o d i f i e d  V a l u e  D i f f e r e n c e  M e t r i c  The 
Modified Value Difference Metric (MVDM) (Cost 
and Salzberg, 1993) est imates the distance be- 
tween two values of a feature by comparing the 
class distr ibution of both  features. ~¢[VDM can 
give good estimates if there are enough occur- 
rences of the two values, but  for low-frequent 
values unreliable values of MVDM can occur. For 
this da ta  we can expect that  this sparseness ef- 
fect hinders the word features more than the 
POS features. 

U n p a c k i n g  F e a t u r e s  Unpacking features 
implies that  all feature values receive individ- 
ual weights. (Van den Bosch and Zavrel, 2000) 
warn that  this operat ion forces feature weights 
to be  based on less observations, which could 
make the weights unrealistic in view of test 
data. Moreover, the k nearest neighbors can 
be expected to contain less instances with a 
fixed k when unpacking features; this is usu- 

ally not beneficial for generalization accuracy 
(Van den Bosch and Zavrel, 2000). 

C o m p l e x  F e a t u r e s  In the previously dis- 
cussed versions of memory-based learning, fea- 
tures are t reated as independent.  However, 
sometimes combinations of features or feature 
values may be very good predictors. Since there 
are many possible combinations,  search strate- 
gies are needed to select the best.  Such strate- 
gies have been developed for rule induction algo- 
r i thms (Clark and Niblett ,  1989; Quinlan, 1993; 
Cohen, 1995), and they can be  used to find com- 
plex features for memory-based learning as well. 
We followed the following procedure: 

1. apply Ripper  (Cohen, 1995) to the training 
set, and collect the set of induced rules; 

2. recode the instances in the training and test 
set, by setting binary features denoting the 
rules that  apply to them; 

3. apply memory-based learning to the re- 
coded training set, and classify the recoded 
test set. 

3 E x p e r i m e n t s  a n d  R e s u l t s  

In Table 2 we give an overview of the exper- 
iments with different metrics and settings. In 
the first block of rows we give the results of the 
default setting with IBI-IG and with a varying k 
parameter  (number of nearest neighbours). We 
can see that  a larger k improves performance to 
a certain extent. 

In the second series of experiments we have 
used the MVDM metric. Here, we also varied the 
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value of k. We found that a larger k yielded bet- 
ter results. In a variant on this series we applied 
MVDM only to the POS features. As expected 
this variant gave slightly better results. 

In the third series we unpacked the features. 
Compared to the previous experiment the re- 
sults were worse. Apparently, sparseness results 
in bad feature weights. This negative effect ap- 
pears to have outweighted any positive effect of 
informative individual features. 

In the last experiments we used Ripper to 
generate 390 complex features. The results are 
comparable to the best TiMBL settings. 

In Table 2 we give an overview of the preci- 
sion, recall and Ff~ = 1 of one of the best scoring 
setting: IBi-IG with k -- 3 

4 D i s c u s s i o n  

We found in the experiments that minor im- 
provements on the default settings of TiMBL 
can be obtained by applying MVDM, particu- 
larly to the POS tags. A larger k generally 
improved accuracy to a certain extent. Un- 
packing the features did not give the expected 
improvement. Complex features, however, did, 
and seem a promising alley to go. 
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SBAR 
VP 
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