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A b s t r a c t  

Morphosyntactic Disambiguation (Part of 
Speech tagging) is a useful benchmark problem 
for system comparison because it is typical 
for a large class of Natural Language Process- 
ing (NLP) problems that  can be defined as 
disambiguation in local context. This paper 
adds to the literature on the systematic and 
objective evaluation of different methods to 
automatically learn this type of disambiguation 
problem. We systematically compare two 
inductive learning approaches to tagging: MX- 
P O S T  (based on maximum entropy modeling) 
and MBT (based on memory-based learning). 
We investigate the effect of different sources 
of information on accuracy when comparing 
the two approaches under the same conditions. 
Results indicate that  earlier observed differ- 
ences in accuracy can be at tr ibuted largely to 
differences in information sources used, rather 
than to algorithm bias. 

1 C o m p a r i n g  T a g g e r s  

Morphosyntactic Disambiguation (Part of 
Speech tagging) is concerned with assigning 
morpho-syntactic categories (tags) to words in 
a sentence, typically by employing a complex 
interaction of contextual and lexical clues to 
trigger the correct disambiguation. As a con- 
textual clue, we might for instance assume that  
it is unlikely that  a verb will follow an article. 
As a lexical (morphological) clue, we might 
assign a word like better the tag comparative if 
we notice that  its suffix is er. 

POS tagging is a useful first step in text anal- 
ysis, but also a prototypical benchmark task for 
the type of disambiguation problems which is 
paramount in natural language processing: as- 

signing one of a set of possible labels to a linguis- 
tic object given different information sources de- 
rived from the linguistic context. Techniques 
working well in the area of POS tagging may 
also work well in a large range of other NLP 
problems such as word sense disambiguation 
and discourse segmentation, when reliable an- 
notated corpora providing good predictive in- 
formation sources for these problems become 
available. 

Finding the information sources relevant for 
solving a particular task, and optimally inte- 
grating them with an inductive model in a dis- 
ambiguator has been the basic idea of most of 
the recent empirical research on this type of 
NLP problems and part of speech tagging ] in 
particular. 

It is unfortunate, however, that this line of re- 
search most often refrains from investigating the 
role of each component proper, so that it is not 
always clear whether differences in accuracy are 
due to inherent bias in the learning algorithms 
used, or to different sources of information used 
by the algorithms. 

This paper expands on an empirical compar- 
ison (van Halteren et al., 1998) in which TRI- 
GRAM tagging, BRILL tagging, MAXIMUM EN- 
TROPY and MEMORY BASED tagging were com- 
pared on the LOB corpus. We will provide a 
more detailed and systematic comparison be- 
tween MAXIMUM ENTROPY MODELING (aatna- 

parkhi, 1996) and MEMORY BASED LEARNING 
(Daelemans et al., 1996) for morpho-syntactic 
disambiguation and we investigate whether ear- 
lier observed differences in tagging accuracy can 
be attributed to algorithm bias, information 
source issues or both. 

1See van Halteren (ed.) (1999) for a comprehensive 
overview of work on morphosyntactic disambiguation, 
including empirical approaches. 
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After a brief introduction of the 2 algorithms 
used in the comparison (Section 2), we will 
outline the experimental setup in Section 3. 
Next we compare both algorithms on respec- 
tively typical MSW-features (Section 4) and typ- 
ical MXPOSW-features (Section 5), followed by 
a brief error analysis and some concluding re- 
marks. 

2 A l g o r i t h m s  a n d  I m p l e m e n t a t i o n  

In this Section, we provide a short description 
of the two learning methods we used and their 
associated implementations. 

2.1 M e m o r y - B a s e d  Learning 

Memory-Based Learning is based on the as- 
sumption that new problems are solved by 
direct reference to stored experiences of pre- 
viously solved problems, instead of by refer- 
ence to rules or other knowledge structures 
extracted from those experiences (Stanfill and 
Waltz, 1986). A memory-based (case-based) 
approach to tagging has been investigated in 
Cardie (1994) and Daelemans et al. (1996). 

I m p l e m e n t a t i o n  

For our experiments we have used TIMBL 2 
(Daelemans et al., 1999a). TIMBL includes a 
number of algorithmic variants and parameters. 
The base model (ISl) defines the distance be- 
tween a test item and each memory item as 
the number of features for which they have a 
different value. Information gain can be intro- 
duced ( IB i - IG)  to  weigh the cost of a feature 
value mismatch. The heuristic approximation 
of computationally expensive pure MBL vari- 
ants, (IGTREE), creates an oblivious decision 
tree with features as tests, ordered according 
to information gain of features. The number of 
nearest neighbors that are taken into account 
for extrapolation, can be determined with the 
parameter K. 

For typical symbolic (nominal) features, val- 
ues are not ordered. In the previous variants, 
mismatches between values are all interpreted 
as equally important, regardless of how similar 
(in terms of classification behavior) the values 
are. We adopted the modified value difference 
metric (MVDM) to assign a different distance be- 
tween each pair of values of the same feature. 

2TIMBL is available from: http://ilk.kub.nl/ 

For more references and information about 
these algorithms we refer to Daelemans et al. 
(1999a). 

2.2 M a x i m u m  Entropy 
In this classification-based approach, diverse 
sources of information are combined in an expo- 
nential statistical model that computes weights 
(parameters) for all features by iteratively max- 
imizing the likelihood of the training data. The 
binary features act as constraints for the model. 
The general idea of maximum entropy model- 
ing is to construct a model that meets these 
constraints but is otherwise as uniform as pos- 
sible. A good introduction to the paradigm of 
maximum entropy can be found in Berger et al. 
(1996). 

MXPOST (Ratnaparkhi, 1996) applied maxi- 
mum Entropy learning to the tagging problem. 
The binary features of the statistical model are 
defined on the linguistic context of the word 
to be disambiguated (two positions to the left, 
two positions to the right) given the tag of 
the word. Information sources used include the 
words themselves, the tag of the previous words, 
and for unknown words: prefix letters, suffix 
letters, and information about whether a word 
contains a number, an upcase character, or a 
hyphen. These are the primitive information 
sources which are combined during feature gen- 
eration. 

In tagging an unseen sentence, a beam search 
is used to find the sequence of tags with the 
highest probability, using binary features ex- 
tracted from the context to predict the most 
probable tags for each word. 

I m p l e m e n t a t i o n  
For our experiments, we used MACCENT, a n  
implementation of maximum entropy modeling 
that allows symbolic features as input. 3 The 
package takes care of the translation of sym- 
bolic values to binary feature vectors, and im- 
plements the iterative scaling approach to find 
the probabilistic model. The only parameters 
that are available in the current version are the 
maximum number of iterations and a value fre- 
quency threshold which is set to 2 by default 
(values occurring only once are not taken into 
account). 

aDetails on how to obtain MACCENT can be found on: 
http://www.cs.kuleuven.ac.be/-ldh/ 
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3 E x p e r i m e n t a l  S e t u p  

We have set up the experiments in such a way 
that neither tagger is given an unfair advantage 
over the other. The ou tpu t  of the actual taggers 
(MBT and MXPOST) is not suitable to s tudy the 
proper effect of the relevant issues of informa- 
tion source and algorithmic parameterisation, 
since different information sources are used for 
each tagger. Therefore the taggers need to be 
emulated using symbolic learners and a prepro- 
cessing front-end to translate the corpus data  
into feature value vectors. 

The tagging experiments were performed on 
the LOB-corpus (Johansson et al, 1986). The 
corpus was divided into 3 partitions: an 80% 
training partition, consisting of 931.062 words, 
and two 10% partitions: the VALIDATION SET 
(114.479 words) and the TEST SET (115.101 
words) on which the learning algorithms were 
evaluated. 

The comparison was done in both  direc- 
tions: we compared bo th  systems using infor- 
mation sources as described in Daelemans et al. 
(1996) as well as those described in Ratnaparkhi  
(1996). 

C o r p u s  P r e p r o c e s s i n g  

Since the implementations of bo th  learning al- 
gorithms take proposit ional da ta  as their input 
(feature-value pairs), it is necessary to translate 
the corpora into this format first. This can be 
done in a fairly straightforward manner, as is il- 
lustrated in Tables 1 and 2 for the sentence She 
looked him up and down. 

word d 
She * 
looked PP3A 
him VBD 
up PP30 
and RP 
down CC 

RP 

f a 
PP3A VBD-VBN 
VBD-VBN PP30 
PP30 RP-IN 
RP-IN CC 
CC RP 
RP SPER 
SPER * 

value 
PP3A 
VBD 
PP30 
RP 
CC 
RP 
SPER 

Table 1: Contextual  features 

The disambiguation of known words is usu- 
ally based on contextual  features. A word is 
considered to be known when it has an ambigu- 
ous tag (henceforth ambitag) at t r ibuted  to it in 
the LEXICON, which is compiled in the same way 

as for the MBT-tagger (Daelemans et al., 1996). 
A lexicon entry like telephone for example car- 
ries the ambitag NN-VB, meaning that  it was 
observed in the training da ta  as a noun or a 
verb and that  it has more often been observed 
as a noun (frequency being expressed by order). 
Surrounding context for the focus word (fi are 
disambiguated tags (a 0 on the left-hand side and 
ambiguous tags (a) on the right-hand side. 

In order to avoid the unrealistic situation that 
all disambiguated tags assigned to the left con- 
text of the target word are correct, we simulated 
a realistic si tuation by tagging the validation 
and test set with a trained memory-based or 
maximum entropy tagger (trained on the train- 
ing set), and using the tags predicted by this 
tagger as left context tags. 

word p s s s c h 
She S S h e T F 
looked 1 k e d F F 
him h h i m F F 
up u * u p F F 
and a a n d F F 
down d o w n F F 

• * F F 

Table 2: Morphological features 

Unknown words need more specific word-form 
information to trigger the correct disambigua- 
tion. Prefix-letters (p), suffix-letters (s), the oc- 
currence of a hyphen (h) or a capital (c) are all 
considered to be relevant features for the dis- 
ambiguation of unknown words. 

4 U s i n g  M B T - t y p e  f e a t u r e s  

This section describes tagging experiments for 
both  algorithms using features as described in 
Daelemans et al. (1996). A large number of 
experiments were done to find the most suitable 
feature selection for each algorithm, the most 
relevant results of which axe presented here. 

V a l i d a t i o n  P h a s e  

In the validation phase, bo th  learning algo- 
ri thms iteratively exhaust  different feature com- 
binations on the VALIDATION SET, as well as 
leaxner-specific parameterisations.  For each al- 
gorithm, we t ry  all feature combinations that  
hardware restrictions allow: we confined our- 
selves to a context of maximum 6 surrounding 
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Known Words % f df fa dfa ddfaa dddfaaa 
TIMBL IGTREE 92.5 95.1 95.9 97.2 97.2 97.2 
TIMBL IB1 92.5 95.1 95.9 97.2 97.4 97.3 
TIMBL IBi K----5 92.5 95.1 95.6 93.8 96.4 97.0 
TIMBL IB1 K----10 92.5 95.1 95.6 93.4 93.7 96.1 
TIMBL MVDM 92.5 95.1 95.9 97.4 97.4 97.2 
TIMBL MVDM K=5 92.5 95.1 95.2 97.5 97.5 97.4 
TIMBL MVDM K----10 92.5 95.1 94.9 97.5 97.5 97.3 
MACCENT 92.5 94.5 95.8 97.5 97.6 97.4 
Unknown Words % ddaap ddaas ddaaps ddaapss ddaapsscn ddaapsshcn 
TIMBL IGTREE 42.1 65.9 65.2 65.8 68.6 70.0 
TIMBL ml 53.8 63.7 66.3 68.3 68.8 70.7 
TIMBL IB1 K----5 54.2 61.6 66.7 71.4 72.5 774.3 
TIMBL IB1 K----10 49.5 55.3 64.2 68.4 70.3 72.7 
TIMBL MVDM 58.1 72.0 70.9 75.1 71.0 73.3 
TIMBL MVDM K----5 61.2 72.0 75.6 79.7 75.5 77.6 
TIMBL MVDM K----10 61.7 72.7 76.0 '79.7 77.1 77.9 
MACCENT 61.8 67.0 74.8 '78.6 75.3 77.0 

Table 3: Validation Phase Results 

tags or less, since we already noticed perfor- 
mance degradation for both  systems when us- 
ing a context of more than  5 surrounding tags. 
For unknown words, we have to discern between 
2 different tuning phases. First, we find the 
optimal contextual feature set, next the opti- 
mal morphological features, presupposing both 
types of features operate independently. 

We investigate seven of the variations of 
Memory-Based Learning available in TIMBL (see 
Daelemans et al. (1999b) for details) and one 
instantiat ion of maccent, since the current ver- 
sion does not implement many variations. 

A summary  of the most relevant results of 
the validation phase can be found in Table 3. 
The result of the absolute optimal feature set 
for each algorithm is indicated in bold. For 
some contexts, we observe a big difference be- 
tween IGTREE and IBi-IG and IB1-MVDM. For 
unknown words, the abstraction made by the 
mWREE-algorithm seems to be quite harmful 
compared to the true lazy learning of the other 
variants (see Daelemans et al. (1999b) for a pos- 
sible explanation for this type of behaviour). 

Of all algorithms, Maximum Entropy has the 
highest tagging accuracy for known words, out- 
performing TIMBL-algorithms however by only 
a very small margin. The overall optimal con- 
text for the algorithms turned out to be dfa and 
ddfaa respectively, while enlarging the context 
on either side of the focus word resulted in a 
lower tagging accuracy. 

Overall, we noticed a tendency for T I M B L  to 

perform bet ter  when the information source is 
rather limited (i.e. when few features are used), 
while MACCENT seems more robust when deal- 
ing with a more elaborate feature space. 

Tes t  P h a s e  

The Test Phase of the experiment consists of 
running the optimised subalgori thm paired with 
the optimal feature set on the test set. TIMBL, 
augmented with the Modified Value Difference 
Metric and k set to 5, was used to disambiguate 
known words with a dfa feature value, unknown 
words with the features ddaapss. MACCENT 
used the same features for unknown words, but 
used more elaborate features (ddfaa) to disam- 
biguate known words. The results of the opti- 
mised algorithms on the test set can be found 
in Table 4. 

TIMBL MACCENT 

Known Words 97.6 97.7 
Unknown Words 77.3 78.2 
Total 97.2 97.2 
Sentence 62.7 63.5 

Table 4: Test results with MBT features 

Overall tagging accuracy is similar for both 
algorithms, indicating tha t  for the overall tag- 
ging problem, the careful selection of optimal 
information sources in a validation phase, has 
a bigger influence on accuracy than  inherent 
properties or bias of the two learning algorithms 
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Algorithm Accuracy (%) on test set 

IGTREE K----1 94.3 

T I M B L M V D M K : 5  92.8 

Maccent 94.3 

Maccent Beam(n=5) 94.3 

Table 5: Test results with MXPOST features 

tested. 

B e a m  Search 

Note that MACCENT does not include the beam 
search over N highest probability tag sequence 
candidates at sentence level, which is part of 
the MXPOST tagger (but not part of maximum 
entropy-based learning proper; it could be com- 
bined with MBL as well). To make sure that 
this omission does not affect maximum entropy 
learning adversely for this task, we implemented 
the beam search, and compared the results with 
the condition in which the most probable tag 
is used, for different beam sizes and different 
amounts of training data. The differences in 
accuracy were statistically not significant (beam 
search even turned out to be significantly worse 
for small training sets). The beam search very 
rarely changes the probability order suggested 
by MACCENT, and when it does, the number of 
times the suggested change is correct is about 
equal to the number of times the change is 
wrong. This is in contrast with the results of 
Ratnaparkhi (1996), and will be investigated 
further in future research. 

5 U s i n g  MXPOST-type f e a t u r e s  

In order to complete the systematic compari- 
son, we compared maximum entropy (again us- 
ing the MACCENT implementation) with MBL 
when using the features suggested in (Ratna- 
parkhi, 1996). Due to the computational ex- 
pense of the iterative scaling method that is in- 
herent to maximum entropy learning, it was not 
tractable to incorporate an extensive validation 
phase for feature selection or algorithmic vari- 
ant selection. We simply took the features sug- 
gested in that paper, and 2 different settings for 
our MBL implementation, IGTREE and MVDM 
K----5, the latter being the optimal algorithm for 
the previous experiments. The results on the 
test set are shown in Table 5. 

B e a m  search 

Notice that again, the sentence level beam 
search does not add significantly to accuracy. 
Also note that the results report in Table 5 dif- 
fer significantly from those reported for MXPOST 

in (van Halteren et al., 1998). The difference in 
tagging accuracy is most likely due to the prob- 
lematic translation of MXPOST'S binary features 
to nominal features. This involves creating in- 
stances with a fixed number of features (not just 
the active features for the instance as is the 
case in MXPOST) ,  resulting in a bigger, less 
manageable instance space. When IGTREE com- 
presses the elaborate instance space, we conse- 
quently notice a significant improvement over a 
MVDM approach. 

6 E r r o r  A n a l y s i s  

The following table contains some more detailed 
information about the distribution of the er- 
rors 4: 

Known Unknown 
Both wrong - same tag 1384 335 
Both Wrong - different tag 117 130 
Only MACCENT Wrong 1008 181 
Only TIMBL Wrong 1103 193 

In 87% of the cases where both algorithms are 
wrong, they assign the same tag to a word. This 
indicates that about 55% of the errors can either 
be attributed to a general shortcoming present 
in both algorithms or to an inadequate informa- 
tion source. We can also state that 97.8% of the 
time, the two algorithms agree on which tag to 
assign to a word (even though they both agree 
on the wrong tag 1.7% of the time). 

We also observed the same (erroneous) tag- 
ging behavior in both algorithms for lower- 
frequency tags, the interchanging of noun tags 
and adjective tags, past tense tags and past par- 
ticiple tags and the like. 

Another issue is the information value of the 
ambitag. We have observed several cases where 
the correct tag was not in the distribution spec- 
ified by the ambitag, which has substantial in- 
formation value. In our test set, this is the 
case for 1235 words (not considering unknown 
words). 553 times, neither algorithm finds the 
correct tag. Differences can be observed in the 

4The error analysis described in this Section, is based 
on the first set of experiments in which MBT-features 
were used to disambiguate the test set. 
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way the algorithms deal with the information 
value of the ambitag, with Maximum Entropy 
exhibiting a more conservative approach with 
respect to the distribution suggested by the am- 
bitag, more reluctant to break free from the am- 
bitag. It only finds the correct part-of-speech 
tag 507 times, whereas TiMBL performs better 
at 594 correct tags. There is a downside to this: 
sometimes the correct tag is featured in the am- 
bitag, but the algorithm breaks free from the 
ambitag nevertheless. This happens to TiMBL 
267 times, and 288 times to MACCENT. 

In any case, the construction of the ambitag 
seems to be a problematic issue that needs to be 
resolved, since its problematic nature accounts 
for almost 40% of all tagging errors. This is 
especially a problem for MBT as it relies on am- 
bitags in its representation. 

7 Concluding Remarks 

A systematic comparison between two state- 
of-the-art tagging systems (maximum entropy 
and memory-based learning) was presented. By 
carefully controlling the information sources 
available to the learning algorithms when used 
as a tagger generator, we were able to show that, 
although there certainly are differences between 
the inherent bias of the algorithms, these differ- 
ences account for less variability in tagging ac- 
curacy than suggested in previous comparisons 
(e.g. van Halteren et al. (1998)). 

Even though overall tagging accuracy of both 
learning algorithms turns out to be very similar, 
differences can be observed in terms of accuracy 
on known and unknown words separately, but 
also in the differences in the (erroneous) tagging 
behaviour the two learning algorithms exhibit. 

Furthermore, evidence can be found that 
given the same information source, different 
learning algorithms, and also different instan- 
tiations of the same learning algorithm, yield 
small, but significant differences in tagging ac- 
curacy. This may be in line with theoretical 
work by Roth (1998);Roth (1999) in which both 
maximum entropy modeling and memory-based 
learning (among other learning algorithms) are 
shown to search for a decision surface which is a 
linear function in the feature space. The results 
put forward in this paper support the claim 
that, although the linear separator found can 
be different for different learning algorithms, the 

feature space used is more important. 
We also showed that which information 

sources, algorithmic parameters, and even algo- 
rithm variants are optimal depends on a com- 
plex interaction of learning algorithm, task, and 
data set, and should accordingly be decided 
upon by cross-validation. 
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