


new york to washington national 

4 BOB: TEN A.M. 

5 SYSTEM: i see a few flights from new 
york to washington national which depart 
about ten A M on january twenty seventh. 
do you prefer to depart from newark, J F 
K, or la guardia. 

6 BOB: LA GUARDIA 

7 SYSTEM: there are several flights from 
la guardia, you can fly on delta 
departing at nine thirty A M or ten 
thirty A M, or on U S air at ten A M. 
please specify an airline or time. 

8 BOB: U.$= AIR 

9 SYSTEM: U S - a i r  f l i g h t  63 57 depar ts  l a  
guardia at ten A M on Thursday, january 
twenty seventh and arrives in washington 
national at eleven seventeen A M. Is 
this flight okay? 

i0 BOB: YES 

Excerp t  2: The second excerpt regards a flight 
~om New York to Melbourne, Australia. The ex- 
cerpt is the system response after the user has re- 
stricted his New York departure to La Guardia ai~ 
port, similarly to (Excerpt 1, Line 6): 

SYSTEM: i see a couple of flights 
from la guardia, both of them are on 
american and make connections in chicago 
o'hare and los angeles, the first 
flight departs at nine thirty A M and 
arrives at eight twenty five A M. the 
second flight departs at nine thirty A M 
and arrives at eight twenty five A M. 

Note: The two flights differ only in the second of 
three segments of the trip, Mthough the user would 
only discover this rather unusual coincidence upon 
asking for detMls about the individual flights. The 
difficulty in this case arises because the mechanism 
for generation for a very short list of flights has 
not yet been subsumed as part of the aggregation 
mechanism (described below) which would have au- 
tomaticMly determined that the two flights should 
be grouped. 
Excerpt  3: 

i SYSTEM: I will book this leg. Do you 
want to continue with another leg? 
Please say yes or no. 

2 JANE: YES I NEED TO CONTINUE BUT I NEED 

TO HAVE FLIGHT COMING BACK 

3 SYSTEM: Okay, continuing with leg two. 
flying from phoenix to newark on what 
date? 

4 JANE: 0KAY THAT WOULD BE FINE JUNE THIRD 

5 SYSTEM: what time would you like to 
leave on june third? 

6 JANE: OF THE TWO O'CLOCK IN THE 
AFTERNOON 

7 SYSTEM: america west flight 7 74 
departs phoenix at one thirty six P 
M on Saturday, june third and arrives 
in las vegas at two thirty eight P M, 
connecting to continental flight 12 
82 departing at three fifteen P M and 
arriving in newark at ten forty one P M. 

Is this flight okay? 

8 JANE: NO IS THERE A DIRECT FLIGHT 
FROM PHOENIX TO NEWARK I ON JUNE THIRD 
ANYTIME TO THIRD 

9 SYSTEM: pardon me, what time would you 
like to leave? 

I0 JANE: TIME TEN O'CLOCK IN THE MORNING 

11 SYSTEM: i can't find any nonstop flights 
from phoenix to newark on america west 
which depart about ten A M on june 
third, you may want to try changing the 
departure time to seven twenty five A M, 
eight fifty nine A M, twelve seventeen P 
M, or three oh five P M. 

4 Deep Generation 
In this section we will focus on some tasks han- 
dled by our deep generation module, emphasiz- 
ing the role of constraint functions as a unifying 
theme. Although the notion can be developed more 
broadly in various ways, we will consider a con- 
straint function here to be a function on a single 
data record consisting of information about a par- 
ticular flight from one location to another, possibly 
making connections. Examples of a constraint func- 
tion are: t lmeDepVal ,  giving the departure time 
of the flight; t |meAr rClas s ,  giving the class of the 
arrival time (before six A.M., between six A.M. and 
noon, etc); and connVal giving the list of connec- 
tion cities. A constraint on a data record is the 
condition that some given constraint function has 
a given value. 

In a typical turn a user may modify the list of 
Constraints imposed on the flights under discussion 2. 
How the system interprets the user input, searches 
for flights satisfying the constraints, and decides 
what to say about them are all affected by the 

shared conversational context between system and 

2For brevity, we focus in this section on system response to 
user input whose content consists solely of constraints modi- 
fications. Processing of other kinds of input such as questions 
(e.g. "when does the nine A.M. flight arrive?") is handled 
similarly. 
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user. Specifically, we have found the following most 
useful to keep track of: 

1. the constraints the user has imposed on the 
flights; 

2. what information about the user input con- 
straints the system has repeated back to the 
user; 

3. the flights the system has conveyed information 
about to the user; and 

4. the constraints on flights that  the system has 
discovered and whether those constraints have 
been conveyed to the user or can be deduced by 
the user. 

In this section we  focus on two particular cases 
that  need to be handled by any dialog system in 
which the user and system negotiate to find a suit- 
able record from a source of data: the under- 
constrained case and the over-constrained case. 

4.1 G r o u p i n g  o f  I n f o r m a t i o n  

In this section we discuss how the system decides 
what to say in the under-constrained case when there 
are many flights satisfying the user request. Exam- 
ples of the system response in this case can be found 
in (Excerpt 1, Turn 5), (Excerpt 1, Turn 7), and 
Excerpt 2. The following example occurred when a 
user requested a departure after 10:00 A.M., after 
having previously imposed the constraints of flying 
from Chicago to Miami on March third. The system 
responded as follows: 

(I) there are several flights which depart 
after ten A M. 

(2) all of them leave from chicago o'hare 
and arrive in the afternoon. 

(3) do you prefer to fly on american or 
united. 

Part  (i) of the system response summarizes the 
most salient constraints of the user input using the 
summary script of section 5 s. Part  (2) is a specifi- 
cation of the significant information common to all 
flights. In part  (3), the system has decided which 
under-specified constraint is most likely relevant to 
the user, grouped the flights according to the values 
of the constraints, and prompted the user by speci- 
fying the possible values of the constraint. 

The significant common information in part (2) 
and the most relevant grouping in part (3) are com- 

B Some readers may have noticed that, in (Excerpt 1, Turn 
5), the system unnecessarily reviewed constraints that have 
recently been reviewed. This is because the generation mech- 
anism used before enough constraints have been satisfied to 
query the data base has not yet been fully unified with the 
mechanism discussed in this paper. 
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simple node ~ 

1) ORD... 1230 ... american 1) ORD ... 1310 ... united 
2) ORD... 1420 ... american 2) ORD ... 1520 .. united 

depArp timeArr air dephrp timeArr air 

Figure 1: Example of an Aggregation 

puted by what we call the aggregation algorithm 4. 
The principal domain dependent data  needed by 
the algorithm consists of utility functions for each 
constraint telling how high a priority it is to go 
into detail about that  constraint. The output  is a 
tree structure which represents the hierarchy of con- 
straint information that  is deemed most useful to 
convey to the user. 

More specifically, the inputs to t h e  aggregation 
algorithm consist of a flat list of data records (e.g. 
a table of flights) together with a list of aggrega- 
tion specifications. An aggregation specification is 
a triple consisting of: (1) a constraint function by 
which data may be grouped, (2) a sort function 
which orders the groups according to their constraint 
value, and (3) a utility function to determine how 
useful this grouping is (which may depend both on 
conversational context as well as when in the algo- 
r i thm the grouping is at tempted).  The utility func- 
tions also have the ability to return codes that  con- 
trol the search for the best tree. For example, a 
utility function can declare itself to be the high- 
est priority, thus pruning the search. The output  
is a tree with non-terminal nodes labeled by lists of 
constraint functions, edges labeled by values taken 
by the constraint functions labeling the node above, 
and terminal vertices labeled by a list of the data  
records satisfying the constraints specified by the la- 
belings of all its ancestor nodes and edges. 

For the example discussed above, the output  of 
the aggregation algorithm is depicted in Figure 1. 
The top node and the edge below it indicate that  
all the flights leave from Chicago O'Hare in the af- 
ternoon (i.e. the constraint d e p A r p V a l  takes o n  

4The term "aggregation" is sometimes used within the gen- 
eration community referring to a process of combining groups 
of linguistically similar phrases. One might say the aggrega- 
tion here is occurring on a semantic level, i.e. the internal 
representations of the flights are being grouped. 



the SABRE code "0RD" for Chicago O'Hare and 
the constraint t imeArrClass  takes on the value 
"morning"). We call this node a simple node be- 
cause there is only one edge emanating from it. By 
contrast, the node below is a complex node since 
the constraint function at that node airVal can 
take on more than one value (either "american" or 
"united"). The box on the lower left contains those 
input flights which are on American Airlines and de- 
part from Chicago O'Hare in the morning, and sim- 
ilarly for the box on the lower right. 

For our application we have found it best to use 
the same kind of utility function for all constraints. 
When only this type of utility function is used the 
behavior of the aggregation algorithm is quite simple 
and always l:~od~uces a tree similar to the one in 
Figure 1, namely~rm with two nodes: a simple one 
above a complex one. Corresponding to the notion of 
simple node and complex node, we call a constraint 
function (chosen from the aggregation specification) 
simple if it yields the same value when applied to 
all of the data records and complex otherwise. The 
simplified aggregation algorithm effectively proceeds 
as follows: 

(1) For each simple constraint function (whose 
value is not known to the user based on the 
conversational history) apply a significance test. 
Place those constraints functions that pass the 
test (if there are any) in the top node of the 
tree. 

(2) Pick the complex constraint function of maxi- 
mum positive utility and place that in the node 
below the top. If all utilities are negative, the 
node remains empty. 

As an example, when depArpVal  is a simple con- 
straint it is deemed significant if it is not the only 
airport serving the departure location the user re- 
quested. In our example, since Chicago is served 
by both O'Hare and Midway airports, the fact that 
all flights land in O'Hare is deemed significant to 
tell the user. As our airline travel system develops 
we expect to have available more expert knowledge 
about the airline travel domain. For example, the 
significance test for depArpVal  may be modified 
in the future if the system has a way of knowing 
that Chicago O'Hare is the airport the user would. 
naturally expect in many circumstances. 

4.2 Re laxa t ion  
In this section, we consider the over-constrained case 
in which no suitable flights can be found that sat- 
isfy the user request. One example of the system 
response in such a case occurs in (Excerpt 3, line 
11). Another example is the following: 

(i) there don't seem to be any nonstop 
flights from san francisco to newark 

new jersey on united which serve 
breakfast and depart after nine A M 
on february tenth. 

(2) you may want to try changing your 

choice of meal, the airline to 

Continental, or the departure time 

to seven oh five A M or eight twenty A 
M. 

In part (I), the system first reviews detailed in- 
formation about what it believes the current user 
request is. This is particularly useful to help alert 
the user to any previous conversational error. In 
part (2), the system suggests possible relaxations 
that may be of interest to the user. A relaxation 
here is just a change of a single constraint in the 
user request which would allow flights to be found. 
For example, the system response (2) above indi- 
cates that there ar~ flights on united which satisfy 
all of the other user constraints listed in (1) above. 

5 S u r f a c e  G e n e r a t i o n  

There are many approaches to generating text from 
an underlying semantic representation. Simple tem- 
plates are adequate for many purposes, but result 
in a combinatorial explosion in the number of tem- 
plates required to produce output for all possible 
circumstances. There are also several powerful gen- 
eration packages available. One package in partic- 
ular that we found it insightful to experiment with 
was FUF(Elhadad, 1989), which is short for "Func- 
tional Unification Framework"(Elhadad and Robin, 
1992). FUF comes available with a reusable gram- 
mar of English(Elhadad and Robin, 1996). Al- 
though we found the sophisticated linguistic frame- 
work of FUF/SURGE difficult to adapt to our needs, 
we have found it helpful to include analogues of some 
elements of that framework in the approach we now 
describe. 

After our initial experiments, we decided to 
"evolve" a surface generation module starting with 
the straight forward model of template filling and 
procedure calls provided by the programming lan- 
guage tel. To overcome the problem of combina- 
torial explosion in program size, our surface gen- 
eration makes use of an exception catching mecha- 
nism which allows sub-phrases within a complicated 
phrase to be "turned on" if the semantic input re- 
quired for them is present. This can be done re- 
cursively. This approach has a side benefit of being 
very robust because detailed error catching is built 
in. Even if the script writer makes an unintentional 
error in part of a script (and no alternatives for gen- 
erating the information in the erroneous part are 
available) only that part will fail to be generated. 

Our system makes available to the developer sev- 
eral useful domain independent constructs. In addi- 
tion to these basic constructs, our surface generation 
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[opt-s  {[DoStops Sstops]}] [opt-s  {$rtow}] [Noun f l i g h t s  
[opt-s {from [DoArp $1ocFr]} ] [opt-s {to [DoArp $1ocTo]} ] 
[opt-s {on [DoAir Sair]} ] 
[opt-s { which 

[NonEmptyConjunct ion [I ist 
[opt-s {[Verb cost] [DoPriceRange Sprice]}] 
[opt-s {[Verb have] flight number SfltNum}] 
[opt-s {[Verb serve] Smeal}] 
[opt-s {[subst $::Script(VPDep)]} ] 
[opt-s {[subst $: :Script(VPConnect)]} ] 
[opt-s {[subst $::Script(VPArr)]} ] ]] } ] 

Figure 2: Fragment from summarization script (generating text after vertical bar in examples in Table 1). 

has a morphology module (giving the correct form of 
a word based on number, tense, etc.) and a library 
of routines for generating simple phrases. To give 
the reader a flavor of our approach, we discuss the 
example of the script which generates phrases such 
as those in Table 1. 

1. There are I several flights. 

2. I can't find any I roundtrip flights from New 
York to Chicago. 

3. There don't seem to be any I nonstop flights 
which serve breakfast and make a connection in 
Dallas. 

4. There is only one I flight on American which de- 
parts between six p m and nine p m on February 
second and arrives in the morning on February 
third. 

5. I see quite a few ] flights which cost less than 
$1000 and arrive in the morning. 

Table 1: Sample output from summarization script. 
(The vertical bar has been added to demarcate the 
separation between parts generated by separate sub- 
scripts.) 

Phrases such as the ones above are generated by 
surface generation when it is asked by deep genera- 
tion to summarize some of the constraints on what 
kind of flight the user is looking for and the approx- 
imate number of flights found. The script fragment 
in Figure 2 generates phrases like the ones after the 
vertical bar in the above examples. Variables such as 
locFr, da teDep,  and air correspond to user spec- 
ified constraints on departure location, departure 
date, airline, and so on. Only those variables will 
be set which deep generation has decided should be 
summarized. Since there are thirteen variables re- 
ferred to in the short script below and the (even 
shorter) subscripts it refers to, they are capable of 
generating 213 different kinds of phrases expressing 
the desired content. It is perhaps a fortunate prop- 

erty of the airline travel domain we are restricting to 
that this approach allows fairly simple scripts to be 
used in circumstances where an inordinate number 
of templates would h~ve been required. 

We offer a few words of explanation of the script in 
Figure 2. First, the "morphology" procedure Verb 
provides the appropriate morphological form of a 
verb (depending on the current setting of number, 
tense, etc.). The procedure subst  is used for ex- 
panding the subscripts referred to. The procedures 
DoAir,  DoArp  DoPr lceRange ,  and DoStops  
are from the "phrase library". They generate ap- 
propriate phrases associated with an airline, an air- 
port, a price range, or whether or not a flight is 
nonstop. One may think of these as rules for con- 
verting the semantic information, previously deter- 
mined by deep generation and stored in variables 
such as air and price, into a surface realization. For 
example, "[DoAir Sai r ]"  returns "American" and 
"[DoPrice SPr i te ]"  returns " less  than $1000". 

The construct opt-s  (short for op__t)onal 
substitution) includes the text generated by 
expanding its argument if that expansion is suc- 
cessful, or else catches and ignores any errors if 
the expansion was not successful. The construct 
N o n E m p t y C o n j u n e t i o n  is used to adjoin a list 
of phrases. (The separators between phrases are 
optional arguments.) If the input list is empty, 
however, an error is generated. In such a case (e.g. 
examples 1 and 2 above), the error is caught by 
the enclosing opt-s, so the entire "which" clause is 
omitted. 

Another example of a construct is SayOnce.  This 
is used when generating a list of phrases, so that 
a particular script fragment will only be expanded 
and included the first time it is encountered. For 
example, SayOnce has been used to omit the sec- 
ond occurrence of the word "departing" in (Excerpt 
1, Turn 7). Similarly, in the following response to 
a user query about the arrival times of the flights 
under discussion, the second occurrence of the word 
"flights" has been omitted by a simple application 
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of SayOnce:  

i see at  l e a s t  3 f l i g h t s  which a r r i v e  
between two P M and s ix  P M, and 4 
which a r r i v e  between s ix  P M and ten  P 

6 C o n c l u s i o n  

In developing our deep and surface generation mod- 
ules we have followed a strategy of starting with a 
simple approach and adding basic building blocks as 
they are warranted, for example the generation con- 
structs described in section 5 and the utility func- 
tions of sections 4.1. This strategy has helped us 
develop generation modules which are flexible, ro- 
bust, and interact well with the other components 
of our system. Also, the tools presented here tend 
to reduce the growth in code size with complexity (as 
measured by the number of possible constraints). 

We are optimistic that these methods can be ap- 
plied to other domains, although certainly additional 
features would have to be added. For instance, in 
Excerpt 2, we gave an example of a shortcoming 
of our system that arose when we summarized de- 
tails about a very short list of flights. This problem 
could be fixed either by subsuming the case of a 
very short list of flights into the general aggregation 
mechanism or by adding an additional mechanism 
to handle this separate case better. Since the prob- 
lem seemed insignificant enough in the airline travel 
domain we have not yet resolved it, but we expect 
that experience with other domains will dictate the 
best approach. 

We consider it to be an advantage of this ap- 
proach that it is not tied to a particular linguis- 
tic framework and affords rather straight forward 
development. This certainly seems appropriate for 
our application so far, where the summary script of 
Figure 2 represents the typical level of complexity 
of the scripts we have had to develop. It is pos- 
sible that this could become a limiting factor as 
the complexity, scope, and variety of domains in- 
creases. However, we expect other limitations to be- 
come more pressing. For example, we plan to inves- 
tigate additional building blocks which will be useful 
as we begin to delve into issues such as improving 
our help messages or adding emphasis to particular 
parts of the information we want to convey, either 
via prosody or more finely crafted text. 
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