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Abstract 

Word Sense Disambiguation (WSD) is a 
central task in the area of Natural 
Language Processing. In the past few years 
several context-based probabilistic and 
machine learning methods for WSD have 
been presented in literature. However, an 
important area of research that has not 
been given the attention it deserves is a 
formal analysis of the parameters affecting 
the performance of the learning task faced 
by these systems. Usually performance is 
estimated by measuring precision and 
recall of a specific algorithm for specific 
test sets and environmental conditions. 
Therefore, a comparison among different 
learning systems and an objective 
estimation of the difficulty of the learning 
task is extremely difficult. 
In this paper we propose, in the framework 
of Computational Learning theory, a 
formal analysis of the relations between 
accuracy of a context-based WSD system, 
the complexity of the context 
representation scheme, and the 
environmental conditions (e.g. the 
complexity of language domain and 
concept inventory ) . 

1 Introduction 

In the literature (see Computational Linguistics 
(1998) for some recent results), there is a rather 
vast repertoire of supervised and unsupervised 
learning algorithms for WSD, most of which 
are based on a formal characterization of the 
surrounding context of a word or linguistic 

concept 1, and a function f to compute the 
membership of a word to a category, given its 
context in running texts. 
Despite the rich literature, none of these 
algorithms exhibit an "acceptable" 
performance with reference to the needs of 
real-world computational task (e.g. 
Information Retrieval, Information Extraction, 
Machine Translation etc.), except for 
particularly straightforward cases. 
A very interesting WSD experiment is 
Senseval (1998), a large:-scale exercise in 
evaluating WSD programs. One of the 
objectives of this experiment was to identify 
correlations between performance of the 
various systems and the parameters of the 
WSD task. Though the scoring of systems 
appears sensitive to certain factors, such as the 
degree of polysemy and the entropy of sense 
distributions, these correlations could not be 
consistently observed. There are words with 
fewer senses (e.g. bet, consume, generous) 
causing troubles to most systems, while there 
are words with a very high polysemy and 
entropy (e.g. shake) on which all systems 
obtain good performance. The justification that 
the Senseval coordinator Adam Kilgariff 
provides for shake is very interesting in the 
light of what we will discuss later in this paper: 
"The items (means contexts) for shake involve 
multi-word expressions, such as shake one's 
head. (...) Over 50% of the items for shake 
involve some multi-word expression or other." 
In other words, the contexts for shake are very 

1 The inventory of linguistic concepts is usually 
extracted from on-line resources like WordNet, the 
Longman dictionary (LDOCE), or HECTOR. 
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repetitive in the training set, therefore all 
systems could easily learn a sense 
discrimination model. 
Furthermore, in Senseval (but also in other 
reported evaluations experiments) it appears 
that performances for individual 
words/concepts are extremely uneven within 
the same system. This scarce homogeneity of 
results suggests that performance is not solely 
related with the "cleverness" of a given 
learning algorithm. 
Clearly, the performances of WSD systems are 
related to a variety of parameters, but the 
formal nature of these dependencies is not fully 
understood. 

The Senseval experiment highlighted the 
necessity of a more accurate analysis of the 
correlations between performance of WSD 
systems and the parameters that may affect this 
task. In absence, a comparison of the various 
WSD algorithms and an estimation of their 
performance under different environmental 
conditions is extremely difficult. 
In the next sections we briefly present a 
computational model of learning, called PAC 
theory (Anthony and Biggs (1997), Kearns and 
Vazirani (1994), Valiant (1984)), and we then 
show that this theory may be used to determine 
the formal relations between performance of 
context-based WSD models and environmental 
conditions, such as the complexity of the 
context representation scheme, and the the 
complexity of language domain and concept 
inventory. 

2 A relation between sample size and 
complexity of learning task 

Formally, the problem of example-based 
learning of WSD models can be stated as 
follows: 
1 Given a class C of concepts Cl (where C 

is either a hierarchy or a "flat" concept 
inventory), 

2 Given a context-based representadon 
class H for a concept class C, where H: 
~*--~C and ~ is a finite alphabet of 
symbols (e.g. words or word tags), 

3 Given an input space X ~ *  of 
encodings of instances in the learner's 
world, e.g. feature vectors representing 

contexts around words wj, where wj is a 
member of Ct, 
Given a training sample S of length m: 
S=((xl,bl)...(xm,bm)) xi eX,  ~ e{O,l} 

where bl=l if xi is a positive example of Cl, 

characterize formally a function h (C~)e H that 
assigns a word w to a concept Cl, given the 
sentence context x of w. The hypothesis may 
have the form of a Hidden Markov Model with 
estimated transition probabilities, a decision 
list, a cluster of points in a representation 
space, a logic formula, etc. 
The complexity of this learning task is related 
to several aspects, such as selecting an 
appropriate representation space H, an 
appropriate grain for the concept inventory C, 
and finally, a sufficiently representative 
training sample S. 
As first, H must be a "reasonable" 
representation space for C. Quite intuitively, if 
we represent a linguistic concept as the set of 
possible morphologic tags pairs in a ±1 
window, we will not be able to predict much, 
simply because surrounding morphologic tags 
are not sufficient to determine the semantic 
category of a word. 
On the opposite, if we select an overly 
complex representation model, including 
irrelevant features, we run through the so 
called overfitdng problem. 
Thirdly, some of the features used in a 
representation may be dependent from other 
features, and again the model would result 
unnecessarily complex. 
The problem of noise and overfitting are well 
known in the area of Machine Learning 
(Russell and Norvig (1999)), therefore we will 
not discuss the matter in detail here. An 
analysis of this issue as applied to probabilistic 
WSD learners may be found in Bruce and 
Wiebe (1999). 
For the purpose of this paper, we assume that 
the representation space H is optimized with 
respect to the choice of the relevant model 
parameters. Our objective will be to determine 
the size of S, given H and C, and given certain 
performance objectives. 
As we said, the aim of a WSD learning 
process, when instructed with a sequence S of 
examples in X, is to produce an hypothesis h 
which, in some sense, "corresponds" to the 
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concept under consideration. Because S is a 
finite sequence, only concepts with a finite 
number of positive examples can be learned 
with total success, i.e. the learner can output an 
hypothesis h= C~ . In general, and this is the 
case for linguistic concepts, we can only hope 
that h is a good approximation of Ci.. In our 
problem at hand, it is worth noticing that even 
humans may provide only approximate 
definitions of linguistic concepts ! 
The theory of Probably Approximately Correct 
(PAC) learning, a relatively recent field at the 
borderline between Artificial Intelligence and 
Information Theory, states the conditions 
under which h reaches this objective, i.e. the 
conditions under which a computer derived 
hypothesis h 'probably' represents Ct 
'approximately'. 

Definition 1 (PAC learning). Let C be a 
concept class over X. Let D be a fixed 
probability distribution over the instance space 
X, and EX(Ci,D) be a procedure reflecting the 
probability distribution of the population we 
whish to learn about. We say that C is PAC 
learnable if there exists an algorithm L with 
the following property: For every Ci~C, for 
every distribution D on X, and for all 0<e<l/2 
and 0<8<1/2, if L is given access to EX(C~,D) 
and inputs e and 8, then with probability at 
least (1-8), L outputs a hypothesis h for 
concept Cl, satisfying error(h)<e. The 
parameters e and 5 have the following 
meaning: e is the probability that the learner 
produces a generalization of the sample that 
does not coincide with the target concept, 
while 5 is the probability, given D, that a 
particularly unrepresentative (or noisy) training 
sample is drawn. The objective of PAC theory 
is to predict the performance of learning 
systems by deriving a lower bound for m, as a 
function of the performance parameters e and 
6. 

Figure 1 (from Russell and Norvig (1999)) 
illustrates the "intuitive" meaning of PAC 
definition. After seeing m examples, the 
probability that Hbad includes consistent 
hypotheses is: 

P(Hbad~Hco.s)-<[ Hbad [(l-l~)m-<lH[(l-~) m 

H 

Hbad @ 
Figure I : e-sphere around the "true" 

function Ci 

And we want this to be: 

IHl(1-e)m_<6 
we hence obtain a lower bound for the number 
of examples we need to submit to the learner in 
order to obtain the required accuracy: 

(1) m_>~(ln~ +1 ~ I~ 

The inequality (1) establishes a sort of worst- 
case general bound, relating the size of the 
learning set with the complexity of the 
representation space [HI. Unfortunately this 
bound turns out to have limited utility in 
practical applications. 
For example, if the hypothesis space for a 
linguistic concept Ci is the classic "bag of 
words", i.e. a set of at least k "typical" context 
words selected by a probabilistic learner, after 
observing m samples of the ±n words around 
words we Cl 
(e.g. x = (W.n,W.n+l,.. W . . . .  Wn-l,Wn) ) 
then H is any choice of _<k_<lV[ words over IVI 
elements, where [V[ (--10 s) is the size of the 
vocabulary. We then have: 

the above expression, used in inequality (1), 
produces an overly high bound for m, that can 
be hardly pursued especially in case the 
learning algorithm is supervised! 
In PAC literature, the bound for m is often 
derived "ad hoc" for specific algorithms, in 
order to exploit knowledge on the precise 
learning conditions. 
It is also worth noticing that PAC literature has 
mostly a theoretical emphasis, and most 
applications concentrated on the field of neural 
networks and natural learning systems 
(Hanson, Petsche, Kearns, Rivest (1994)). To 
the knowledge of the authors, the utility of this 
theory in the area of computer learning of 
natural language has not been explored. 
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In the following, we will derive a probabilistic 
expression for m in the track of (1), for the 
case of a context-based WSD probabflistic 
learner, a learning method that includes a 
rather wide class of algorithms in the area of 
WSD. We believe that adapting our analysis to 
other example-based WSD systems will not 
require a significant effort. This relation allows 
it to establish, upon an a-priori analysis of the 
chosen conceptual model and of the language 
domain, a more precise relation between 
performance, complexity of the learning 
algorithm, and environmental conditions (e.g. 
complexity of the language domain). 
Our objective is to show that an a-priori 
analysis of the learning model and language 
domain may help to tune precisely a WSD 
experiment and allows a more uniform 
comparison between different WSD systems. 

3. A formal estimate of accuracy for 
context-based probability WSD models 

A probabilistic context-based WSD learner 
may be described as follows: 
Let X be a space of feature vectors: 

fk=( f(all=vl,a21=v2 . . . .  ani=Vn)e ~n, bik)), 

b[ =1 if fk is a positive example of Ct under H. 

Each vector describes the context in which a 
word we Cl is found, with variable degree of 
complexity. For examples, arguments may be 
any combination of plain words and their 
morphologic, syntactic and semantic tags. 
We assume that arguments are not statistically 
independent (in case they are, the 
representation of a concept is more simple, see 
Bruce and Wiebe, (1999)). 
An example (Cucchiarelli, Luzi and Velardi 
(1998)) is the case in which fk represents a 
syntactic relation between we C~ and another 
word in its context. For example, given the 
compound district banks the following feature 
is generated as an example of the category 
organization: 

((N_N district bank), organization(bank)) 

We further assume that observations of 
contexts are noisy, and the noise may be 
originated by several factors, such as tags 

ambiguity, and semantic ambiguity of the word 
whose context is observed. 
In the above feature vector, the syntactic tag 
(first argument) could be wrong because of 
syntactic ambiguity and limited coverage of 
available parsers, and the ambiguous word 
bank could not be, in a specific context, an 
instance of the category organization, though it 
is in the example above. 
Probabilistic learners usually associate to 
uncertain information a measure of the 
confidence the system has in that information. 
Therefore, we assume that each feature fk is 
associated to a concept Cl with a confidence 
qb(i,k). 
The confidence may be calculated in several 
ways, depending upon the type of selected 
features for fk. For example, the Mutual 
Information measures the strength of a 
correlation between co-occurring arguments, 
and the Plausibility (Cucchiarelli, Luzi and 
Velardi (1998)) assigns a weight to a feature 
vector, depending upon the degree of 
ambiguity of its arguments and the frequency 
of its observations in a corpus. We assume here 
that ~ is adjusted to be a probability, i.e. 
~l~(i,k)=l. The factor ~(i,k) represents hence 
an estimate of the probability that fk. is indeed 
a context of Ci. 
Under these hypotheses, a representation he H 
for a concept Ct is the following: 
h(Cl):{fll..flm,} 
(2) fk-~h(Cl ) iff qb(i,k) > y 
A concept is hence represented by a set of 

features with associated probabilities 2. Policy 
(2) establishes that only features with a 
probability higher than a threshold y are 
assigned to a category model. 
Given an unknown word w' occurring in a 
context represented by f'k, the WSD algorithm 
assigns w' to the category in C that maximizes 
the similarity between f'k and one of its 
members. Again, see Cucchiarelli, Luzi and 
Velardi (1998) and Bruce and Wiebe, (1999) 
for examples of similarity functions. 

2 Note that in case of statistical independence 
among the features in a vector, a model for a 
concept would be a set of features, rather than 
feature vectors, but most  o f  what  w e  discuss in this 
section would still apply with simple changes. 
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Given the above, the probabilistic WSD model 
for a category Ct may fail because: 
1 Cl includes falsepos#Jves (fp), e.g. feature 

vectors erroneously assigned to Cl 
2 There are false negatives (fn), i.e. feature 

vectors erroneously discarded because of a 
low value qb(i,k) 

3 The context f'k of the word w' has never 
been observed around members of Ct, nor 
it is similar (in the precise sense of 
similarity established by a given 
algorithm) to any of the vectors in the 
contextual models. 

We then have3: 
(3) P(w' is misclassified on the basis of 
f'k)= 
P(f'kE fp in C0+P(f'kE fn outside C0+P(f'kis 
unseen in C O 

Let: 
m be the total number of feature vectors 
extracted from a corpus 
m k the total number of occurrences of a feature 
fk 

k the number of times the context fk occurred m i 
with a word w' member of Cl 

Notice that ~irnik~m k, since, because of 
i 

ambiguity, a context may be assigned to more 
than one concept (or to none). 
We can then estimate the three probabilities in 
expression (3) as follows: 

L 

(3.1) ~ (fp in Ct)= E -~-(l-dp(i, k) 
~( i, k~? 

m. k 
(3.2) ~ (fn outside C~)= X 1 0(i,k) 

¢(i, k~y m 

(3.3) ~ (unseen in CO= 

(1 ~mk).(~ Emik ).(~(i)) =~m Emik,(i, k 
m Vm =l k k 

The third probability is computed as the 
product of three estimated factors: the 

probability ~ of unseen contexts 4 in the 

3 In the expression 3) the three events are clearly 
mutually exclusive. 

4 We here assume for simplicity that the similarity 
function is an identity. A multtnomial or a more 

corpus, the probability of extracting contexts 
around members of Cl, and the average 
confidence of a feature vector in Cl. 
Classic methods such as Chernoff bounds may 
be applied to obtain good approximations for 
the three probabilities above. Notice however 
that in order to obtain a given accuracy of 
estimate, Chernoff bounds (and other methods) 
again impose a bound on the number of 
observed examples (Kearns and Vazirani 
(1994)) 
Since in (3.1) (1-~(i,k))<y, in (3.2) ~(i,k))>y, 
and in (3.3) ~(i,k))_<l, we obtain the bound: 

P(w' is misclassified on the basis of f'k)= 

<_ Mi m -Ni (l-y)+_~ty +l~m ~m 

The expression (3) establishes interesting 
dependencies between the accuracy of a 
context-based probabilistic WSD model and 
certain environmental conditions. 

3.1 Dependency upon the corpus and 
linguistic concepts 

In a complex language domain (e.g. newspaper 
articles) linguistic phenomena are far less 
repetitive than in a restricted language (e.g. 
airline reservations). However, even in a 
relatively unrestricted domain certain 
categories are used in a more narrow sense. 
Let us consider the probabilistic context-based 
algorithm in Cucchiarelli, Luzi and Velardi 
(1998), where a feature is defined by: 
fk: (syntactic_relation, wl, wi) (e.g. (N_N 
district bank)) 
fk ~C~ if w i reaches the hyperonym C~ in the 
WordNet on-line taxonomy, and ~(i,k) > y 
Using the 1 million word Wall Street Journal 
corpus, we estimated the following 
probabilities (3.3) of unseen feature vectors (m 
in this experiment is O(105)): 
P(unseen in artifact)=0,7692 
P(unseen in person)= 0,7161 
P(unseen in psychological feature)=0.8598 

complex function must be used in case contexts are 
considered similar if, for example, co-occurring 
words have some common hyperonym. See 
Cucchiarelli, Luzi and Velardi (1998) for 
examples. 
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The linguistic concepts artifact, person and 
psychological feature are three hyperonyms of 
the on-line WordNet taxonomy. The above 
figures show that the more "vague" concept 
psychological feature occurs in more variable 
contexts, though the distribution of words in 
the three categories is approximately even. 

3.2 Dependency  on the represen ta t ion  
model  

The representation model H also affects the 
estimates of erroneous classifications. For 
example, if we modify the contextual model by 
removing the information on wi (that is to say, 
the feature vectors in the contextual model now 
only includes the syntactic relation type and 
the co-occurring word wl), we obtain the 
following values for the probabilies (3.3): 

P (unseen in artifact) =0,1778 
P (unseen in person) = 0,1714 
P(unseen in psychological feature)=O,2139 

The probability of "unseens" in this simpler 
model is considerably lower (we removed an 
attribute, wi, that assumes values over V), but 
clearly, the probability of false positives and 
false negatives increases. 
The motivation is that we now assume that a 
context for a word belonging (also to) Ct is a 
valid context for any word in that category. 
Regardless of the specific adopted formula for 
O(i,k), the confidence ~b(i,k) in such a 
generalization depends on the number of 
different words w~ in occurring in a given 
context fk. If this number is low, or is just 1, 
then the value of dp(i,k) must be low, 
accordingly. The selected threshold y then 
determines the different contribution of false 
positives and false negatives to the total model 
accuracy. 

A preliminary experiment is illustrated in 
Figure 2. The figure computes (1-P(fp in C1) 
for the category artifact, as a function of m and 
~(i,k), evaluated on a test set of 78 words. 
The figure shows that when y is >_0,5 the 
number of false positives is rather low, after 
observing sufficient examples. 

On the other side, P(fn outside Ci) (not shown 
here for sake of space) has a specular 
behavour. For 7=0,9, the probability of false 
negative is as low as 0,6. 

4. Conclus ion 

By no means the work presented in this paper 
needs more investigation, especially on the 
experimental side. However, we believe that 
learnability analysis of WSD models has 
strong practical implications. 
The quantitative and (preliminary) 
experimental results of Section 2 put in 
evidence that : 
• In order to acquire statistically stable 

contextual models of linguistic concepts, 
the dimension of the analyzed corpora 
must be considerably high. Paradoxically, 
untrained probabilistic systems are in 
better shape in this regard. Very large 
repositories of language samples can be 
now obtained from the WWW. 

• The experimental setting (i.e. size of the 
training set) must be tuned for each 
category and language domain, because the 
variability of contextual behavior may be 
significantly different, depending on 
domain complexity, e.g. the type and grain 
of the selected category, and the more or 
less restricted language domain 

• it is possible and indeed advisable, for a 
given WSD algorithm, to determine in a 
formal way the relation between expected 
accuracy of the WSD model and the 
domain and representation complexity. 
This would allow a better comparison 
among systems, and an a-priori tuning of 
the parameters of the disambiguation 
model. 
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