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Abstract

The coarse-to-fine (coarse2fine) methods have
recently been widely used in the generation
tasks. The methods first generate a rough
sketch in the coarse stage and then use the
sketch to get the final result in the fine stage.
However, they usually lack the correction abil-
ity when getting a wrong sketch. To solve
this problem, in this paper, we propose an
improved coarse2fine model with a control
mechanism, with which our method can con-
trol the influence of the sketch on the final re-
sults in the fine stage. Even if the sketch is
wrong, our model still has the opportunity to
get a correct result. We have experimented
our model on the tasks of semantic parsing
and math word problem solving. The results
have shown the effectiveness of our proposed
model.

1 Introduction

The coarse-to-fine (coarse2fine) methods have
been applied in many generation tasks such as
machine translation (Xia et al., 2017) , abstract
writing (Wang et al., 2018b) and semantic pars-
ing (Dong and Lapata, 2018). They have shown
excellent performances but still have many disad-
vantages. Traditional coarse2fine models usually
tackle one task in two stages. In the first stage
(coarse stage), a low-level seq2seq model is used
to generate a rough sketch, which makes the data
more compact and alleviates the problem of data
sparsity. Some examples of sketches are shown in
Table 1. Besides, Sketches in this stage are also
easier to generate. Then, in the fine stage, both
text and previous sketches will be input to another
high-level seq2seq model to predict the final result
so that the high-level model can produce a precise
output.

In the coarse2fine models, the concept of tem-
plate sketch provides a new view of compiling a

rough template, but how to guarantee its quality
is still a problem. Meanwhile, details from the
fine stage will be filled into sketches to produce
the final result, so the quality of sketches serves an
essential influence on the result. If the generated
sketches are in high quality, the coarse2fine model
performs well. Otherwise, we fail to get an excel-
lent output. The main reason is that the sketch is
misleading and has no possibility to be corrected
once it is wrong.

In this paper, we propose an improved
coarse2fine model to solve this problem. It has a
similar framework which consists of two levels of
seq2seq models. First, the model predicts a rough
sketch in the coarse stage. In the fine stage, com-
pared with traditional coarse2fine model, we use
the generated sketches in the coarse stage as as-
sistant information to help the decoder. Besides,
We set a weight to control the degree of how
the sketch affects the fine stage. Higher weight
means that the fine stage is strictly guided by the
sketch. Lower weight will decrease the impact of
the sketch on the final output and give the model
more flexibility to generate the result which does
not rely on the sketch. For different tasks, we will
tune the weights by experience and make a bal-
ance between the sketch guidance and the model’s
correction ability.

Our model is a universal framework which can
apply on many generation tasks. In this work, we
apply it on two semantic parsing tasks (text2logic
and text2code) and math word problem (MWP)
solving task. Experimental results show that our
model achieves a better performance than some
baseline models in these tasks.

2 Related Work

In this section, we briefly introduce the tasks
where we experimented our model and also the



Tasks Type Example

Text2logic
logic (argmin $0 (and (place:t $0) (loc:t $0 s0)) (elevation:i $0))
sketch (argmin #1 (and place:t @1 loc:t @2) elevation:i @1)
text what is the lowest point in s0 ?

Text2code
code decode = curry( proxy method, method=bytes.decode)
sketch NAME = NAME(NAME, NAME=NAME.NAME)
text call the function curry with 2 arguments: proxy method and method

set to bytes.decode[bytes.decode], substitute the result for decode.

MWP
equation x = 150 + 2− 50
sketch x = 〈num〉+ 〈num〉 − 〈num〉
text There are 150 science books, and the storybooks are 50 books less than

the science books. How many books are there in the storybooks?

Table 1: Examples of text, sketches and generating goals in different datasets.

method we applied.

2.1 Semantic Parsing

Semantic parsing is a task of translating natu-
ral language into computer executable language
such as logic form, code in computer language
and SQL query. Traditional semantic parsing usu-
ally adopts rule based method Tang and Mooney
(2000); Wong and Mooney (2007); Andreas et al.
(2013). Recently, with the development of neu-
ral network techniques, there are many new se-
mantic parsing models with neural methods. Of
them, Seq2seq models have been widely applied
in semantic parsing tasks. The encoder encodes
the text and the decoder predicts the logic sym-
bols (Dong and Lapata, 2016). The seq2tree
model encodes inputs by LSTM and generates the
logic form by conditioning the output sequences
or trees on the encoding vectors.(Dong and Lap-
ata, 2016). Abstract syntax networks (ASN) repre-
sent the output as the abstract syntax trees (ASTs)
(Rabinovich et al., 2017). Its decoder uses a
dynamically-determined modular structure paral-
leling the structure of the output tree.

2.2 Math Word Problem

Math word problem (MWP) aims to teach comput-
ers to read the questions in natural language and
generate the corresponding math equations. The
methods of solving math word problems can be
mainly classified into two categories. The first cat-
egory is the template-based models which summa-
rize some templates through locating similar ques-
tions from a given dataset and then fill the con-
crete numbers into the templates to solve prob-
lems (Huang et al., 2017; Wang et al., 2017).

Some cases of math word problems, math equa-
tions, templates and sketches are shown in Ta-
ble 2 These methods are intuitive, but it is diffi-
cult to obtain high-quality templates due to data
sparsity and transfer them to other datasets. The
second category of methods mainly exploits the
seq2seq framework to generate the solution equa-
tions (Wang et al., 2018a). Recently this kind
of methods have shown outstanding performance
without manual feature engineering, but they are
prone to generate wrong numbers due to its gen-
eration flexibility. Some researches have applied
reinforcement learning (Huang et al., 2018) or a
stack (Chiang and Chen, 2018) to improve the de-
coding process.

2.3 Coarse-to-fine method

Generalized coarse-to-fine method divides prob-
lems into different stages and solves them from
coarse to fine. This method is widely applied in
computer vision (Gangaputra and Geman, 2006;
Pedersoli et al., 2011; Wen et al., 2019) and natu-
ral language process (Mei et al., 2016; Choi et al.,
2017). The special coarse-to-fine method in this
paper is based on end-to-end framework. It has
two seq2seq models, generating target data from
a coarse stage to a fine stage. Xia et al. (2017)
proposed polish mechanism with two levels of de-
coders. The first decoder generates a raw sequence
and the second decoder polishes and refines the
raw sentence with deliberation. Their model per-
forms excellently on machine translation and text
summarization, which is also the first time to use
this kind of coarse-to-fine model. Wang et al.
(2018b) used a similar framework to write pa-
per abstracts. In the fields of semantic pars-



Question Woodpeckers can eat 645 pests per day, and frogs can eat 608 pests in 8 days. How
many insects do woodpeckers eat more than frogs every day?

Equation x = 645− 608/8
Template x = 〈num1〉 − 〈num2〉/〈num3〉
Numbers {〈num1〉 : 645, 〈num2〉 : 608, 〈num3〉 : 8}
Question The garment factory originally planned to make 1080 sets of suits, which would be

completed in 20 days. Actually they finished 72 sets per day, How many sets they
produced everyday more than the original plan?

Equation x = 72− 1080/20
Template x = 〈num3〉 − 〈num1〉/〈num2〉
Numbers {〈num1〉 : 1080, 〈num2〉 : 20, 〈num3〉 : 72}
Question The shirt factory produced 640 shirts in the past 4 days, but now it produces 350

shirts per day. How many shirts it produces each day more than it used to ?
Equation x = 350− 640/4
Template x = 〈num3〉 − 〈num1〉/〈num2〉
Numbers {〈num1〉 : 640, 〈num2〉 : 4, 〈num3〉 : 350}
Sketch x = 〈num〉 − 〈num〉/〈num〉

Table 2: Examples of math word problems with different equations but same sketches.

ing, Dong and Lapata (2018) applied a two-level
coarse-to-fine model in text2logic, text2python
and text2SQL. This framework also shows signif-
icant improvement in these parsing tasks.

3 Problem Formulation

In this work, we aim at generating structured lan-
guages. Each instance contains a piece of text in
natural language withmwords {wi}m1 , generating
the target output {ei}|e|1 . We learn sketches {si}|s|1
from {wi}m1 . We decompose the probability distri-
bution p(e|w) into a combination of sketch’s con-
ditional probability:

p(e|w) = p(e|s, w)p(s|w) (1)

In this paper, we compute p(e|s, w) and p(s|w)
step by step:

p(s|w) =
|s|∏
t=1

p(st|s1,...,t−1, w) (2)

p(e|s, w) =
|e|∏
t=1

p(et|e1,...,t−1, s, w) (3)

3.1 Framework
The coarse2fine model consists of four main com-
ponents: text encoder, sketch decoder, sketch en-
coder, and final decoder.

During the coarse stage, the text encoder and
sketch decoder predicate sketch by computing

p(s|w) step by step. Then, in fine stage, the sketch
encoder will encode the sketch and the decoder
takes the text encoder’s output and sketch to com-
pute the probability distribution. The framework
is shown in Figure 1.

3.2 Coarse Stage

In the coarse stage, a basic seq2seq architecture is
used to generate sketches. Firstly, question text is
split into tokens and sent into an embedding layer.
Then, a two-layer bidirectional LSTM (Hochreiter
and Schmidhuber, 1997) will read the embedded
word one-by-one and produce a sequence of hid-
den states {qi}m1 :

qfi = LSTM(emb(wi), q
f
i−1) (4)

qbi = LSTM(emb(wi), q
b
i+1) (5)

qi = [qfi , q
b
i ] (6)

Each decoding step, the embedding vector of
previously symbol and previous hidden state are
sent to LSTM. Then, we calculate the probability
distribution of the sketch through attention mech-
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Figure 1: Improved Coarse-to-Fine Model framework.

anism:

hj = LSTM(emb(sj−1), hj−1)

(7)

aji = softmax(qihj) (8)

cj =
m∑
i=0

ajihj (9)

p(sj |s1,...,j−1, w) = softmax(U [tanh(

W [cj ;hj ] + battn)] + b)
(10)

hj is the decoder hidden state in j step, aji is the
attention score, cj is the context vector. Beyond
that, U,W, battn and b are model’s parameters.

3.3 Fine Stage

In this stage, the fine decoder uses the sketch as
assistant information to predict the final result.
At the beginning of the fine stage, a bidirectional
LSTM is used as sketch encoder to encode the
sketch. After taking the encoded sketch as a part
of the input, the fine decoder has perceptions of
the whole sketch in low-level meaning. The pro-
cess of sketch encoding is similar to question en-
coding, while the difference is that the input of (4)
and (5) are changed to sketch symbols {si}|s|1 .

Then, the fine decoder will use the encoded
sketch to help its decoding process. As shown in
Figure 1, fine decoder shares the same common
text encoder with sketch decoder. The decoding
process of fine stage is also similar to sketch de-
coding (7)-(10), but the input of LSTM is designed

as follows:

it =


λ · vt−1 + (1− λ)emb(et−1),

et−1is determined byst−1
emb(et−1), otherwise

(11)

ht = LSTM(it, ht−1) (12)

If et−1 is determined by st−1, the input is the com-
bination of the embedding of et−1 and the sketch
encoder’s output vt−1. Otherwise, it is set as the
embedding of et−1. We assume the number of
sketch decoding outputs is the same shape as the
ones from fine decoding. So the et and the st are
aligned one by one. λ is a hyper parameter that
controls the combination of vt−1 and emb(et−1),
ranging from 0 to 1. It indicates how much the fine
decoder is guided by sketches. If λ is 1, the pro-
cess of fine decode will be strictly guided by the
sketch. Once the sketch is wrong, the fine decoder
has little possibilities to generate a correct result.
On the contrary, if λ is 0, the coarse stage will
become useless and our model will degrade into
one stage model. Like equations (7)-(10), we com-
pute the final probability distribution according to
w and s step by step. And p(et|e1,...,t−1, s, w) is
calculated analogously equation (10).

3.4 Model Training

As shown in equation (1), our goal is to maximize
the likelihood of sketches and optimize the final
results. It can be trained in a supervised way with
gold sketches and results. The objective function



aims to maximize L:

L = Lske + Lres (13)

Lske =
∑
(s,w)

log p(s|w) (14)

Lres =
∑

(s,w,e)

log p(e|s, w) (15)

(s, w, e) belongs to training pairs. When the
model is in testing mode, the final result is com-
puted according ŝ = argmaxs′ p(s

′ |w) and ê =

argmaxe′ p(e
′ |w, s). s′ and e

′
are sketch candi-

dates and result candidates.

4 Experiments

4.1 Dataset

Text-to-Logic In this task, we conduct our model
on GEO dataset, which contains 880 sentences
and their corresponding logical queries. Follow-
ing Dong and Lapata(2018)’s work, we extract
the sketches from λ-calculus-based meaning rep-
resentations. These sketches ignore the arguments
and variables and concentrate on operators and
logic structures. ”$” means an ignored argument
and ”#” represents an omitted token.
Text-to-Code We chose the Django dataset which
has 18805 pairs of natural language expression
texts and python codes. We get the sketches by re-
placing the objects, numbers, functions, and vari-
ables with their type names. The symbols of the
basic framework are reversed, such as keyword
and operators.
MWP Math23k is one of the most popular math
word problem datasets which has 23,162 Chinese
algebra problems. Each item contains a ques-
tion in Chinese, a math equation and a answer to
the question. To get sketches, we use a place-
holder 〈num〉 to replace the detail numbers in
math equations, so sketches only include operators
(”+-*/”) and 〈num〉. Another large-scale MWP
dataset is Dolphin23K, but its authors just release
a construction tool, so we can’t get the standard
data. All the experiments on it are finished by the
dataset’s author and they never release the code.
Because we can’t evaluate the result fairly, we give
up conducting our experiment on Dolphin23K.
Examples of original data and sketches of these
three datasets are shown in Table 1.

Dataset Train Dev Test
GEO 600 100 180

Django 16000 1000 1805
Math23k 21162 1000 1000

Table 3: Statics of datasets

Task Emb Hidden Epoch LR
Text2logic 150 250 50 0.005
Text2code 200 300 150 0.005

MWP 128 512 150 0.01

Table 4: Model parameters and training settings

4.2 Preprocess

To compare the result equally, we made our
preprocessing in accord with Dong and Lapata
(2018)’s experiment as much as possible. For
GEO, we followed Dong and Lapata’s work, trans-
forming all words into lower type and replacing
the entity mentions with a sign and a counting
number. And for Django, we chosed to use the
processed data given by Yin and Neubig (2017).
They tokenized and POS tagged sentences using
NLTK. In MWP, we followed Wang et al.’s work.
To reduce the influence of OOV, we normalized
numbers as the order of their appearance. Ex-
amples of some processed cases of Math23k are
shown in Table 2, who have same sketches.

4.3 Results

We has compared our improved coarse2fine model
with different published models. The optimizer is
Adam and many details of training and testing are
shown in Table 3 and Table 4. To compare the re-
sult equally, we chose the same model parameters
as Dong and Lapata (2018) in semantic parsing
tasks. Accuracy in this paper (except the MWP) is
calculated by comparing the generated result to the
gold result(sketches, logic expressions and Python
codes), while, in MWP, the accuracy means that
whether the math formula predicated by our model
it is equal to the given answer.

The results of text2logic are presented in Table
5. Dong and Lapata has experimented the seq2seq
and seq2tree method in this task. Seq2tree is a
novel framework that has the ability to generate a
sequence in hierarchical tree structure. It has an
excellent performance in semantic parsing tasks.
And Rabinovich et al. has used an abstract syn-
tax tree to generate logic expressions. In our ex-



Model Acc
Seq2seq (Dong and Lapata, 2016) 84.6%
Seq2tree (Dong and Lapata, 2016) 87.1%
Asn (Rabinovich et al., 2017) 85.7%
Asn+supatt (Rabinovich et al., 2017) 87.1%
One stage 85.0%
Coarse2fine (Dong and Lapata, 2018) 88.2%
Improved coarse2fine 88.6%

Table 5: Results of text2logic on GEO

Model Acc
Seq2seq+unk replacement 45.1%
Seq2tree+unk replacement 39.4%
Lpn+copy (Ling et al.) 62.3%
Snm+copy (Yin and Neubig, 2017) 71.6%
One stage 69.5%
Coarse2fine (Dong and Lapata, 2018) 74.1%
Improved coarse2fine 76.1%

Table 6: Results of text2code on Django

periment, the sketch decoder can get 89.3% accu-
racy and the highest accuracy of logic expression
is 88.6% when λ is 0.9. Compared to Dong and
Lapata’s model, our accuracy rise by 0.4%.

Table 6 reports the results of text2code task.
The accuracy of sketches in this task is 77.4%.
First two lines are Dong and Lapata’s experiments
with seq2seq model and seq2tree model. In ad-
dition, Ling et al. has designed Latent-Predictor-
Network with copy mechanism. And a syntac-
tic neural model also shows good performance
in code generation (Yin and Neubig, 2017). As
we can see, our model has an outstanding perfor-
mance in Django dataset. We achieve 76.1% ac-
curacy when λ is 0.6.

The results of MWP are shown in Table 7. As
mentioned in Section 2.2, models can be classi-
fied into various categories according to the way
they get the equation. Classification models get
templates through classifier based on Bi-LSTM or
Self-Attention (Robaidek et al., 2018). Generation
models get equations based on seq2seq models.
They are improved with many assistant compo-
nents. Chiang and Chen (2018) has used a stack,
so they could build a tree structure math formula
by pushing and popping generated items. Wang
et al. (2019) has designed a template-based model
which could predict the tree structure formula
from bottom to up. In our experiment, sketches
have 68.3% accuracy, whereas the accuracy of our

Model Acc
Self-Attention (Robaidek et al., 2018) 56.8%
Bi-LSTM (Robaidek et al., 2018) 57.9%
Seq2seq+stack (Chiang and Chen, 2018) 65.8%
T-RNN (Wang et al., 2019) 66.9%
Coarse2fine 66.7%
Improved coarse2fine 67.9%

Table 7: Result of MWP on Math 23K.

model reaches 67.9% when λ is 0.3.

4.4 Further Test and Analysis

We present the performance with different hyper
parameter λ in Table 8. For semantic parsing
tasks, our model has a more obvious improvement
in text2code. When λ is 1, the model is equal to
Dong and Lapata’s model and it has 74.9% ac-
curacy. With the decrease of λ, the influence of
sketch declines. In the range of (1, 0.6), the lower
λ gives the fine decoder more chances to generate
a correct result. When λ is lower than 0.6, correct
sketches’ help will be decreased, which leads to
a poor result . The model should keep λ in a ap-
propriate value, so it can take coarse2fine model’s
advantage and have chances to predict a correct
result even the sketch is wrong.

We are the first one to apply coarse2fine method
in MWP task. To check whether using sketches
makes a good contribution to this task, we sus-
pend the coarse stage and give gold sketches to
sketch encoder1. The hyper parameter λ is set to 1
so the equation generation will be strictly guided
by the sketch. We compared it with one stage
model (Wang et al., 2018a). As shown in Fig-
ure 2, our model can improve its accuracy highly
and shows faster convergence speed after applying
gold sketches. Also, its accuracy hits 77.0% under
such circumstances.

5 Conclusions

We propose an improved coarse-to-fine generating
model in this paper, which takes the advantages
of using sketches to help the generating process.
When the sketches have mistakes, our model still
has a chance to generate a correct result, which
will be conducive to the final accuracy. Besides,
it is a general framework for many tasks and easy

1Giving gold sketches to the sketch encoder in the former
two tasks has been accomplished by Dong and Lapata. The
accuracies are 93.9% and 83.0%



Task λ 1 0.8 0.6 0.4 0.2
Text2logic 88.2% 88.5% 87.8% 86.5% 85.2%
Text2django 74.9% 76.0% 76.1% 75.2% 74.9%
MWP 66.7% 66.9% 67.4% 67.8% 67.8%

Table 8: Accuracy of three tasks with different hyper parameters.
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Figure 2: Training record of coarse2fine model and
seq2seq model.

to follow. We have conducted our model in many
generation tasks (text2logic, text2code, MWP). As
a result, compared with the basic model, our accu-
racy has increased by 0.4%, 2.0%, 1.2% respec-
tively in these three tasks.
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