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Abstract

One key challenge for building a semantic
parser in new domains is the difficulty to an-
notate new datasets. In this paper, we pro-
pose a sequential transfer learning method as
a domain adaptation method to tackle this is-
sue. We show that we can obtain a model
with better generalisation on a small dataset
by transferring network parameters from a
model trained with a bigger dataset with sim-
ilar meaning representations. We evaluate our
model with different datasets as well as ver-
sions of the datasets with different difficulty
levels.

1 Introduction

Semantic parsing maps natural language sentences
into meaning representations, for example, logical
formulae, SQL queries, or executable codes. The
successful implementation of the encoder-decoder
architecture in the machine translation (Kalch-
brenner and Blunsom, 2013; Sutskever et al.,
2014) has driven researchers to apply this model
into semantic parsing task (Dong and Lapata,
2016; Jia and Liang, 2016; Ling et al., 2016; Dong
and Lapata, 2018). These neural semantic parsing
models have achieved impressive results.

Semantic parsing datasets are usually domain
and meaning representation dependent, thus mak-
ing it difficult to re-use existing datasets for build-
ing general semantic parsers or semantic parsers in
new domains. The process of annotating sentences
with their meaning representations for modeling
new domains or augmenting the existing datasets
is expensive. Prior works proposed several strate-
gies to tackle this issue, such as paraphrasing (Su
and Yan, 2017), decoupling structure and lexicon
(Herzig and Berant, 2018), and multi-task learning
(Susanto and Lu, 2017; Herzig and Berant, 2017).

Our method aims to provide an alternative to
the previous work. We perform transfer learning
by training a model for one task using a dataset

and fine-tuning the model using another related
dataset. The idea of transfer learning is to utilize
features, weights, or other knowledge acquired
for one task to solve another related task. It has
been extensively used for domain adaptation and
building models to solve problems where only
limited data is available (Pan and Yang, 2010).
The fine-tuning transfer learning procedure has
been successfully implemented in the encoder-
decoder architecture for Neural Machine Transla-
tion Task (NMT) (Luong and Manning, 2015; Sen-
nrich et al., 2016; Servan et al., 2016). In contrast
with the multi-task learning, which jointly trains
several tasks together, we perform transfer learn-
ing by training the first and second tasks in se-
quence.

Compared to models without transfer learn-
ing, our experiments shows that transfer learn-
ing gives a good prior for models trained with
small datasets, hence improving model perfor-
mance when only limited amounts of data are
available.

Neural semantic parsing models are usually
trained and tested using datasets in which vari-
ables are identified and anonymised before hand,
thus considerably reducing the difficulty of the se-
mantic parsing task (Finegan-Dollak et al., 2018).
In this work, we use the un-anonymised versions
of two semantic parsing datasets, as well as differ-
ent data splits to provide extensive evaluation of
our model.

To summarise, the contributions of this paper
are as follows:

- Evaluation of transfer learning as domain
adaptation for low-resource neural semantic
parsing with different datasets and difficulty
levels.

- Compilation and release of un-anonymised
versions of ATIS and GeoQuery datasets for



semantic parsing in lambda calculus formu-
lae.1

2 Related Work

Encoder-decoder architectures based on neural
networks have been successfully applied to se-
mantic parsing (Dong and Lapata, 2016; Jia and
Liang, 2016; Ling et al., 2016; Dong and Lapata,
2018). Since then, several ideas such as including
attention mechanism (Dong and Lapata, 2016),
multi-task learning (Susanto and Lu, 2017; Herzig
and Berant, 2017; Fan et al., 2017), data augmen-
tation (Jia and Liang, 2016; Kočiský et al., 2016)
and two-steps (coarse-to-fine) decoder (Dong and
Lapata, 2018) have been applied to semantic pars-
ing models with the aim of boosting performance.

Similar to our work, others tried to over-
come the lack of annotated data by leveraging
existing datasets from related domains. Previ-
ous works from Herzig and Berant (2017) and
Fan et al. (2017) used a multi-task framework to
jointly learn the neural semantic parsing model
and encourage parameter sharing between differ-
ent datasets. The model proposed by Herzig and
Berant (2017) used multiple knowledge bases in
different domains to enhance the model perfor-
mance. On the other hand, the work from Fan et al.
(2017) leveraged access to a very large labeled
dataset to help a small one. However, their models
are trained using proprietary datasets, which are
not publicly available, thus making model compar-
ison unfeasible. The work proposed by Damonte
et al. (2019) investigates the possibility of trans-
fer learning to tackle the issue of lacking anno-
tated data on neural semantic parsing. They used
more complex model and data sets compared to
our work.

Our work focuses on training a model using a
larger dataset and fine-tune using another related
low-resource dataset rather than multi-task learn-
ing. We also evaluate how additional training ex-
amples impact transfer learning models.

3 Methodology

3.1 Transfer Learning as Domain Adaptation
We adapt the formal definition of transfer learning
from Pan and Yang (2010) to the neural seman-
tic parsing problem involving a question q and a
meaning representation f . A domain D consists

1The code and datasets are available from https://
github.com/akennardi/Semantic-Parsing

of input space Q and marginal probability P (Q),
where Q = {q1, q2, ..., qn} ⊆ Q. A domain can
be denoted by D = {Q, P (Q)}. Given a do-
mainD = {Q, P (Q)}, a task T consists of output
space F and conditional probability P (F |Q). A
task can be denoted as T = {F , P (F |Q)}. In
the semantic parsing problem, we want to learn
conditional probability P (F |Q) from the training
set with training data (qi, fi), where qi ∈ Q and
fi ∈ F .

Suppose we have a source domain DS , with
source task TS and a target domainDT with target
task TT where 0 < nT << nS . Transfer learn-
ing uses the knowledge from DS and TS to im-
prove the performance of TT , where DS 6= DT ,
or TS 6= TT (Pan and Yang, 2010).

Our transfer learning method starts by training
a model in the source domainDS to solve a source
task TS . Subsequently, we transfer the knowledge
(i.e network parameters) to the model aimed to
solve target task TT and fine-tune the model us-
ing the target domain DT .

3.2 Model
In this work, we adopt the sequence-to-sequence
with neural attention method from Dong and Lap-
ata (2016). The model aims to map a question in-
put q = 〈x1, x2, ..., x|q|〉 to a meaning representa-
tion f = 〈y1, y2, ..., y|f |〉. We want to compute the
conditional probability of generating the meaning
representation f given a question q as follows:

p(f |q) =
|f |∏
t=1

p(yt|y<t, q) (1)

The question input q is encoded using an en-
coder, and then a meaning representation f is gen-
erated using an attention decoder. The encoder
hidden state ht and cell state ct at time step t can
be computed as follows:

ht, ct = LSTM(ht−1, ct−1,E(xt)) (2)

where LSTM refers to a LSTM function described
by Zaremba et al. (2014) and E(.) is an embed-
ding layer that returns a word vector representa-
tion of xt. The hidden and cell state of the last
encoder step are used to initialize the LSTM cell
on the first decoder step, hence giving the context
to the decoder. The LSTM encoder and decoder
have different parameters.

The attention layers aim to include the encoder
information to a meaning representation at each

https://github.com/akennardi/Semantic-Parsing
https://github.com/akennardi/Semantic-Parsing


decoder step (Bahdanau et al., 2015; Luong et al.,
2015). In an attention layer, we compute an at-
tention score sk,t between the k-th encoder hidden
state hk and a decoder hidden state ht. The context
vector ct is a weighted sum of all encoder hidden
vectors. We use the context vector ct and the de-
coder hidden state ht, to obtain an attention hidden
state vector hatt

t using equations as follows:

sk,t =
exp{hk · ht}∑|q|
j=1 exp{hj · ht}

ct =

|q|∑
k=1

sk,thk

hatt
t = tanh(W1ht +W2ct)

(3)

The conditional probability of generating token yt
at time step t can be expressed as:

p(yt|y<t, q) = (softmax(Woh
att
t ))Te(yt) (4)

where e(yt) is a one-hot vector with value 1 in the
element of index yt in the embedding layer and 0
otherwise.

We train our model to minimise the negative
log-likelihood function over questions and formu-
lae in the training set T . The optimisation problem
can be written as follows:

minimise −
∑

(q,f)∈T

log(p(f |q)) (5)

Given a question q, we used the model to gen-
erate the most probable sequence f̃ as follows:

f̃ = argmaxf ′p(f
′ |q) (6)

The model performs a greedy search to gener-
ate one token at a time to construct a sequence in
lambda calculus.

4 Experiments

4.1 Datasets
For evaluation we used two semantic parsing
datasets, namely ATIS and GeoQuery. The mean-
ing representation of the datasets is lambda calcu-
lus. There are two types of dataset splits: question-
split and query-split. In question-split, the training
and test examples are divided based on the ques-
tions (Finegan-Dollak et al., 2018), thus based on
the input sequence. Meanwhile, in query-split, the
training and test examples are divided according
to the similarity of their meaning representations

ATIS
Question : cheapest fare from ci0 to ci1
Formula : ( min $0 ( exists $1 ( and ( from $1 ci0 ) ( to $1
ci1 ) ( = ( fare $1 ) $0 ) ) ) )
ATIS Un-anonymised
Question : cheapest fare from Indianapolis to Seattle
Formula : ( min $0 ( exists $1 ( and ( from $1 indianapolis
) ( to $1 seattle ) ( = ( fare $1 ) $0 ) ) ) )
GeoQuery
Question : what is the capital of s0
Formula : ( capital:c s0 )
GeoQuery Un-anonymised
Question : what is the capital of Georgia
Formula : ( capital: georgia )

Table 1: Example of natural language questions and
their meaning representation in lambda calculus.

Data Set Train Dev. Test
ATIS 4,434 491 448
ATIS un-anonymised 4,029 504 504
GeoQuery 600 0 280
GeoQuery un-anonymised 583 15 279
GeoQuery un-anonymised
+ query-split

543 148 186

Table 2: Number of training (Train), development
(Dev.), and testing (Test) instances for each dataset.

(Finegan-Dollak et al., 2018), thus based on the
output sequences. Therefore, the query-split is
more appropriate to evaluate the model’s capabil-
ity of composing output sequences, in this case,
lambda calculus expressions.

The ATIS dataset (Price, 1990; Dahl et al.,
1994; Zettlemoyer and Collins, 2007) consists of
queries from a flight booking system. We obtained
the un-anonymised version of ATIS by preprocess-
ing the non-SQL ATIS dataset (Finegan-Dollak
et al., 2018). Question variables in this dataset
are not anonymised, but the formulae have vari-
able identifiers. We removed the variable identi-
fiers in logical formulae. The ATIS dataset split is
question-split.

The GeoQuery dataset (Zelle and Mooney,
1996; Zettlemoyer and Collins, 2005) consists
of queries about US geographical information.
We annotated the un-anonymised version of Geo-
Query based on non-SQL GeoQuery dataset
(Finegan-Dollak et al., 2018), which has different
meaning representations. We compared the ques-
tion with the anonymised version and annotated
lambda calculus formulae on the non-SQL Geo-
Query dataset. We ran a script to put the variable
back into the questions-formulae pairs, and split
them into training, development and test sets based
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Figure 1: Learning curves from different transfer learning setups.

Source Domain Target Domain
ATIS GeoQuery
ATIS un-anonymised GeoQuery un-anonymised
ATIS un-anonymised GeoQuery un-anonymised

with query-split

Table 3: Transfer learning experiments with ATIS and
GeoQuery datasets.

on Finegan-Dollak et al. (2018). We also divided
the GeoQuery un-anoymised dataset using query-
split as proposed by Finegan-Dollak et al. (2018).
Table 2 shows the details of each dataset.

4.2 Setup
We considered ATIS as a Source Domain dataset
and GeoQuery as a Target Domain dataset. We
believe that ATIS training samples are less simi-
lar, since it could only achieve a good model per-
formance using more training samples. Thus it is
more beneficial to use ATIS as Source Domain.
We evenly divided the GeoQuery into 10 subsets
of {10%, 20%,...,100%} fraction of the training
set. With this setup, we simulate the situation
where we have limited data in the target domain.
This setup also allowed us to evaluate the effec-
tiveness of transfer learning with sufficient train-
ing data. Details about the experiments setups are
depicted in Table 3.

We set the model hyper-parameters following
Dong and Lapata (2016) for GeoQuery. We op-
timised the objective function in Equation 5 us-
ing RMSProp algorithm (Tieleman and Hinton,
2012) with a decay rate of 0.95. The batch size
was 20. We randomly initialised parameter from
the uniform distribution U(−0.08, 008). The hid-
den unit size was 150, and the dropout rate was
0.5. We used 15 epoch to obtain a model from
ATIS. We increased the number of epochs after
transferring all network parameters to 150 and 180
for anonymised and un-anonymised GeoQuery, re-

spectively. Source and target models were trained
with their own vocabularies to handle differences
of vocabularies between two datasets. The eval-
uation metric was accuracy. We evaluated each
model with inference described in Equation 6 on
the full GeoQuery test set for every bucket. We
reported exact match accuracy computed using
equation as follows:

Accuracy =
# of correct formulae

# test examples in the test set
(7)

4.3 Evaluation on Transfer Learning
We compared our transfer learning framework
with the original target model (i.e. without trans-
fer learning) in three different setups described in
Section 4.2. Figure 1 shows the learning curves
of those setups. The results from small Geo-
Query subsets confirmed our hypothesis that the
source model gives a stronger prior to the tar-
get model. The model obtained from transfer
learning has 13.93%, 3.58%, and 2.15% accu-
racy improvement on the 10% fraction of Geo-
Query, GeoQuery Un-anonymised, and GeoQuery
Un-anonymised with Query-Split datasets respec-
tively. Figure 1(a) and (b) clearly shows how the
transfer learning improves the performance of the
target models trained with small subsets. In Fig-
ure 1(c), the performance of the model with trans-
fer learning are comparable to the original target
model. However, the performance of original tar-
get model drops with additional training examples
from 40% to 50% subset. On the other hand, the
model with transfer learning does not have a sud-
den drop. A possible explanation to this result may
be due to the difficulty of the original target model
to learn from difficult training samples. The learn-
ing curves of the transfer learning models show
smoother changes with additional training data as



No. Question Transfer Learning Original Target Model
1 river in s0 ( lambda $0 e ( and ( river:t $0 )

( loc:t $0 s0 ) ) )
( lambda $0 e ( and ( river:t $0 )
( loc:t $0 s0 ) ) ( size:i $0 ) )

2 what is the capital of the
smallest state

( capital:c ( argmin $1
( state:t $1 ) ( size:i $1 ) ) )

( capital:c ( argmax $1
( state:t $1 ) ( size:i $1 ) ) )

3 how many rivers does col-
orado have

( count $0 ( and ( river $0 ) ( loc $0
colorado ) ) )

( count $0 ( and ( state $0 ) ( loc $0 usa ) ) )

4 how large is texas ( size texas ) ( argmax $0 ( river $0 ) ( density $0 ) )
5 how many states does mis-

souri border
( count $0 ( and
( state $0 ) ( next to $0 missouri ) ) )

( count $0 ( and
( state $0 ) ( next to $0 delaware ) ) )

6 how many states does the
missouri river run through

( count $0 ( and
( state $0 ) ( loc $0 missouri ) ) )

( lambda $0 e ( and
( state $0 ) ( loc $0 missouri ) ) )

Table 4: Examples of Meaning Representations generated by the model trained with transfer learning and original
target model using 10% fraction of various GeoQuery datasets.

compared to the original target model, indicating
better model generalisation when the training data
is small. With bigger subset (i.e 70% and more),
the results from transfer learning models are com-
parable to the original models, indicating that the
out-of-domain data does not impair the model per-
formance. We show that our transfer learning
method helps the target model to have a better per-
formance when the training data is very small.

4.4 Error Analysis on Transfer Learning

We also looked into samples generated from the
transfer learning models and original target mod-
els. Table 4 presents six samples from three dif-
ferent setups described in Table 3 with the target
model trained with 10% subset of training exam-
ples. The first two samples are obtained from the
models trained with GeoQuery. In the first ex-
ample, the model trained with transfer learning
can identify correct meaning representation, while
the original target model generates wrong mean-
ing representation due to the generation of extra
tokens. The second example shows the model
trained with transfer learning correctly identified
the token ”smallest” to generate ”argmin” instead
of ”argmax”.

The third and fourth samples show examples of
meaning representations generated by the model
trained with un-anonymised GeoQuery. In the
third examples, the model with transfer learning
correctly identified the entity ”river”. On the other
hand, the model without transfer learning gener-
ates ”state”, which is more common in the train-
ing set. On the fourth example, the original target
model generates an irrelevant meaning representa-
tion.

The last two samples are obtained from mod-
els trained with un-anonymised GeoQuery with

query-split. The fifth example shows how the
original target generates a wrong entity name
”delaware” instead of ”missouri”. Similarly, the
sixth example shows original target model pro-
duces a token ”lambda” instead of ”count”. This
error may be due to the fact that the original target
model tends to generate the token they are familiar
with in the training set. Examples described above
shows how the model trained with transfer learn-
ing has a better ability to generate tokens that are
different with training examples, thus improve the
performance of the model.

5 Conclusion and Future Work

We proposed a transfer learning method by train-
ing a model using a larger dataset and fine-tuning
with another related low-resource dataset. With
this method, we can use a bigger dataset with a
similar composition to improve the performance
of a model trained with a smaller dataset.

For future work, it would be interesting to com-
bine transfer learning and data selection methods
so that the source model is trained only with the
most similar instances in respect with the target
domain. Another direction would be to explore
transfer learning on a more complex model such as
sequence-to-tree, which has a better performance
than sequence-to-sequence models when trained
with large datasets.
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