
Does an LSTM forget more than a CNN?
An empirical study of catastrophic forgetting in NLP

Gaurav Arora Afshin Rahimi
School of Computing and Information Systems

The University of Melbourne
gaurava@student.unimelb.edu.au
{arahimi,tbaldwin}@unimelb.edu.au

Timothy Baldwin

Abstract
Catastrophic forgetting — whereby a model
trained on one task is fine-tuned on a second,
and in doing so, suffers a “catastrophic” drop
in performance over the first task — is a hur-
dle in the development of better transfer learn-
ing techniques. Despite impressive progress
in reducing catastrophic forgetting, we have
limited understanding of how different archi-
tectures and hyper-parameters affect forgetting
in a network. In this paper, we aim to un-
derstand factors which cause forgetting dur-
ing sequential training. Our primary finding
is that CNNs forget less than LSTMs. We
show that max-pooling is the underlying op-
eration which helps CNNs alleviate forgetting
compared to LSTMs. We also found that cur-
riculum learning (Bengio et al., 2009), placing
a hard task towards the end of task sequence,
reduces forgetting. We analysed the effect of
fine-tuning contextual embeddings on catas-
trophic forgetting, and found that using fixed
word embeddings is preferable to fine-tuning.1

1 Introduction

Transfer learning — transferring knowledge from
a source task to a target task — has become an
essential technique in both computer vision and
NLP. Earlier attempts at transfer learning were
limited in their applicability (Mou et al., 2016), as
the transfer only worked for very similar tasks: if
the source and target tasks were not very similar,
training on the target task resulted in catastrophic
forgetting (Ratcliff, 1990; McCloskey and Cohen,
1989), whereby the neural network abruptly for-
gets previously-acquired knowledge during train-
ing on a new task, limiting inductive transfer.
ULMFit (Howard and Ruder, 2018) developed
specialised techniques to reduce forgetting dur-
ing the fine-tuning process, resulting in successful

1All code associated with this paper is available at
https://github.com/gauravaror/catastrophic forgetting

transfer learning. A general finding of this work
was that uncovering underlying causes of catas-
trophic forgetting can result in improved architec-
tures for transfer learning.

Previous studies found that using dropout
(Goodfellow et al., 2014) and sharp activation
functions (French, 1991) help reduce catastrophic
forgetting. Sharp activation functions effectively
distribute each task to different parts of the net-
work. It is unknown if increasing the capacity of
the network will also have a similar effect. An-
other study found that using a max operation (Sri-
vastava et al., 2013) in the network reduces forget-
ting. There hasn’t been a study comparing forget-
ting for different architectures to test if networks
with the max operation have less forgetting. Task
complexity (Nguyen et al., 2019) is positively cor-
related with total error observed, but it is unknown
how we should arrange tasks in sequence to reduce
forgetting. We conduct an empirical study to un-
derstand how factors like network architecture and
capacity affect forgetting.

In this work, we design experiments to empiri-
cally address the following research questions:

RQ1: Do some neural architectures forget more
than others?

RQ2 Should we fine-tune pre-trained embeddings
in a continual learning setup?

RQ3 Do networks with more capacity forget less?

RQ4 Do networks forget more during/after train-
ing over a difficult task?

Our experimental setup consists of studying for-
getting for various neural architectures and hyper-
parameter configurations in a continual learning
setup. We train the network without access to data
from the previous tasks, and measure how much
of the knowledge learned in previous tasks is for-
gotten. After performing initial experiments, we

https://github.com/gauravaror/catastrophic_forgetting


conduct further experiments to understand the un-
derlying reason for the differences in forgetting.

We found that CNNs forget less than LSTMs,
because of max pooling. Max-pooling decreases
forgetting as the gradient doesn’t update all the
shared parameters. Further, adding contextual
word embeddings such as ELMo (Peters et al.,
2018a) with either an LSTM or a CNN as the
top layer, reduces the forgetting for both architec-
tures. Surprisingly, the LSTM forgets less when
the ELMo embeddings are frozen, and fine-tuning
performs worse than randomly initialised embed-
dings in a continual learning setup. We also found
that, contrary to common wisdom, more network
capacity doesn’t always result in less forgetting.
For CNNs, sequence forgetting increases as we in-
crease the number of layers, whereas for the di-
mensionality of hidden layers, the degree of for-
getting depends on the task sequence: the choice
of which task to train first has more impact on for-
getting than the number of hidden units in the net-
work, and placing difficult tasks towards the end
of the task sequence reduces overall forgetting.

2 Background

2.1 Catastrophic forgetting

Our work is similar to early work on catastrophic
forgetting (Ratcliff, 1990; McCloskey and Cohen,
1989), which studied factors affecting forgetting
like the width of the network or amount of train-
ing. The amount of new learning was found to be
directly proportional to the amount of forgetting in
previous tasks. They also found that lowering the
learning rate decreases forgetting, but impairs the
ability of the network to learn. Recent empirical
work (Goodfellow et al., 2014) studied the effect
of the activation function and different training al-
gorithms. They found that training with dropout is
always better, and the choice of activation is task-
dependent and should be cross-validated.

Both earlier empirical studies focused on only
two-task sequences, whereas we use four-task se-
quences, based on Nguyen et al. (2019) who stud-
ied the effect of total sequence complexity and se-
quential heterogeneity. They found that error rates
do not correlate with the sequential heterogeneity
of tasks.

Rebuffi et al. (2017) and Li and Hoiem (2018)
found that training on a subsequent task doesn’t
update the classification layer of the previous task,
and only updates the encoder layer, increasing

catastrophic forgetting. Knowledge distillation
loss (Hinton et al., 2015) is a commonly used tech-
nique to avoid dramatic changes in the encoder
layer, while adapting the classification layer for
the new task.

Yogatama et al. (2019) found catastrophic for-
getting while fine-tuning ELMo and BERT (De-
vlin et al., 2019) embeddings, similar to our find-
ings. They also found that sampling examples
from a different task (with uniform probability)
enables a network to learn all tasks reasonably
well; this requires access to all task simultane-
ously, which is different from our setup. We
consider whether to fine-tune embeddings or not,
which is similar to the question posed by Peters
et al. (2019), who focused on various types of task.
In contrast, we address the same question in a con-
tinual learning setup.

2.2 Transfer Learning

ULMFit (Howard and Ruder, 2018) was an effort
to enable transfer learning in a pre-trained LSTM
network. The authors utilised specialised tech-
niques such as layer-wise fine-tuning, concat pool-
ing (concatenation of final hidden state), and max
and mean pooling of all hidden states to alleviate
catastrophic forgetting during fine-tuning. In this
work, we argue and empirically support the use
of max pooling, as opposed to using only average
pooling, as a means to reduce catastrophic forget-
ting. It would be interesting to further study the
individual architectural design choices that enable
successful transfer learning, which we leave to fu-
ture work.

2.3 Evaluation metrics for Catastrophic
forgetting

GEM (Lopez-Paz et al., 2017) proposed Aver-
age, Backward, and Forward Transfer to measure
catastrophic forgetting. Backward Transfer mea-
sures the influence task t has on the previous task
k < t, and Forward Transfer measures the influ-
ence on future task k > t. Since we are only
concerned with forgetting in the network, we use
Backward Transfer with a slight modification to
measure catastrophic forgetting in a task sequence.

The amount of absolute drop in task perfor-
mance is not a good measure of forgetting because
tasks have different state-of-the-art (SOTA) per-
formance and difficulty level (e.g. majority class
performance). The forgetting ratio (Serra et al.,



2018) is a normalised measure of forgetting across
multiple tasks which we also adapt in this work.

3 Method

We study catastrophic forgetting by training tasks
sequentially. During sequential task training, net-
works suffer from forgetting knowledge acquired
in previous tasks because of overfitting to new
tasks, and also lack of access to the training data
of the old tasks. Our setup is very similar to fine-
tuning in transfer learning. Various tasks and task
sequences used in our study are described in Sec-
tion 4. Task sequences are trained using neural
architectures with fixed hyper-parameters, as de-
scribed in Section 6. We performed experiments
to find how forgetting changes for different ar-
chitectures (Section 7), ways to use embeddings
(Section 8), network configurations (Section 9),
and task sequences (Section 10). We compare the
amount of forgetting of various architectural de-
sign choices using the evaluation metric proposed
in Section 5.

4 Tasks

We selected four text classification tasks of differ-
ent nature, each targeting different language learn-
ing tasks for English.

• Stanford Sentiment Treebank (“SST”):
fine-grained sentiment classification over five
classes (Socher et al., 2013).

• Subjectivity (“SUBJ”): binary classification
of Subjectivity vs. Objectivity in IMDB re-
views (Pang and Lee, 2004).

• TREC Question classification (“TREC”):
coarse-grained classification of questions,
based on 6 classes (Voorhees and Tice, 1999).

• Corpus of Linguistic Acceptability
(“CoLA”): prediction of whether a sentence
is grammatical or not (Warstadt et al., 2018).

Table 1 contains state-of-the-art (SOTA), majority
class voting, and single-task performance using a
CNN for all four tasks.

We consider a task difficult for our setup if we
cannot attain performance close to SOTA with a
simple architecture like an LSTM or CNN. SST
is the most challenging task in our setup: achiev-
ing SOTA performance requires large pre-trained
contextual embeddings like ELMo (Peters et al.,

2018a). Socher et al. (2013) proposed recur-
sive neural networks for SST based on an explicit
constituency parse tree, and results for standard
LSTMs are well below SOTA. CoLA is a mod-
erately difficult task as it also requires specialised
techniques to perform reasonably well. For TREC
and Subjectivity, on the other hand, it is possi-
ble to reach performance close to SOTA with sim-
ple architectures. We intentionally selected tasks
of varying difficulty to see if forgetting increases
with more complicated tasks.

4.1 Task Sequence

We formed various task sequences with length
four using the tasks detailed in Table 1. We used
all 24 task sequences possible. A selection of
task sequences is listed in Table 6, wherein the
code name indicates the order of the tasks during
training (e.g. “TREC SUBJ CoLA SST” = train
on TREC first, then SUBJ, CoLA and SST).

5 Evaluation

We used accuracy as our metric for evaluation,
except for CoLA where we used Mathews corre-
lation (Matthews, 1975) as the dataset is unbal-
anced. All results are averaged over five runs with
different random seeds.

After training a sequence, we calculate the per-
formance score for each component task (over
held-out test data). Because absolute metrics are
not comparable between tasks, we normalise the
raw performance score for each task to get a
roughly uniform metric, disregarding task diffi-
culty. Further, we use normalised performance
scores to calculate forgetting for each task and the
whole task sequence, as detailed below.

5.1 Normalisation

Direct comparison of forgetting between TREC
and SST, e.g., is not ideal, as the absolute differ-
ence in accuracy could be up to 40%. Normali-
sation enables fairer comparison of forgetting, as
it incorporates a measure of task difficulty based
on SOTA and majority class performance. This
normalisation is similar to the forgetting ratio pro-
posed by Serra et al. (2018).

We normalise performance metric based on: (a)
SOTA for the task PERSOTA; and (b) majority
class performance PERMAJ. PERi,j refers to per-
formance measured for the task at position i after
training the task at position j (where i ≤ j). Pi,j



Tasks SOTA Majority Class CNN #Training Instances #Classes

TREC 0.98 0.19 0.91 5452 6
Cer et al. (2018)

SUBJ 0.96 0.50 0.92 9000 2
Cer et al. (2018)

CoLA 0.34 0.00 0.25 8551 2
Warstadt et al. (2018)

SST 0.55 0.25 0.38 8544 5
Peters et al. (2018a)

Table 1: The tasks targeted in this work, with state of the art (SOTA) performance, majority class performance,
and performance when trained individually using a single-layer CNN. We used Mathew’s Correlation Coefficient
(Matthews, 1975) for CoLA, and accuracy as the performance measure for all other tasks.

refers to the normalised performance of the task
at position i after training the task at position j.
Negative values for Pi,i indicate accuracy is below
majority classifier accuracy.

Pi,j =
PERi,j − PERMAJ

PERSOTA − PERMAJ
∀i ≤ j (1)

5.2 Forgetting of a Sequence
We use this normalised performance to measure
forgetting for an entire task sequence. Our forget-
ting metric is similar to Backward Transfer pro-
posed by Lopez-Paz et al. (2017). We track forget-
ting of the task sequence, which is a scaled version
of Backward Transfer.

Sequence forgetting (FSeq) is the sum over the
individual task forgetting values Fi. Individual
task forgetting is the scaled performance drop for
each task, indexed based on the position at which
the task was trained. The difference between per-
formance when the task was first trained and the
end of the sequence, is considered to be perfor-
mance drop:

Fi =
Pi,i − Pi,T∣∣Pi,i

∣∣ (2)

FSeq =

i=T∑
i=1

Fi (3)

where T refers to the position of the last trained
task. We also refer to Fi as FTASK when TASK is
trained at position i (e.g. when TREC is trained as
the first task, F1 = FTREC). Lower forgetting is
better.

6 Neural Models

Our network consists of an encoder and a classifi-
cation layer. The encoder learns to extract useful

Optimiser Adam
Learning Rate 0.001

Patience 10
Batch size 128

dropout 0.5
Embedding dimension 128

ELMo hidden size 1024

Table 2: Hyper-parameters used for training.

features for the task automatically. The classifi-
cation layer uses the encoder output to label in-
stances, which is dependent on the task and ac-
tual label set. We use the same encoder but dif-
ferent classifier layers for all tasks. Our architec-
ture is similar to the one used by Li and Hoiem
(2018). The AllenNLP library (Gardner et al.,
2018) was used to build our neural models. We
used Mathew’s Correlation as the early stopping
criteria for CoLA, and loss for the other tasks. Un-
less otherwise stated, we train networks with the
hyper-parameters listed in Table 2.

7 RQ1: Do LSTMs forget more than
CNNs?

CNN-based architectures (Krizhevsky et al.,
2012) have been widely used for transfer learn-
ing, whereas LSTM-based architectures need
specialised techniques to transfer successfully
(Howard and Ruder, 2018). This difference mo-
tivated us to compare forgetting between LSTMs
and CNNs.

We used the standard LSTM encoder imple-
mentation from AllenNLP. The CNN encoder in
AllenNLP is single-layered, which we adapted to



multi-layer with max-pooling applied after the fi-
nal layer. We used a single n-gram filter with
width two for the CNN. We ran experiments using
LSTM and CNN encoders with all task sequences
and network configurations.

7.1 Results: CNN vs. LSTM

Table 3 and Figure 1 compare the main results
for forgetting between LSTMs and CNNs on
task sequence TREC SUBJ SST CoLA. Single-
layered CNN networks forget considerably less
than LSTM networks. The lowest Sequence For-
getting value of FSeq = 1.52 for LSTMs is more
than double the lowest FSeq of 0.71 observed for
CNNs. CNNs perform substantially better with
single-layered networks, and forgetting starts in-
creasing with higher numbers of layers. With
higher numbers of CNN layers, forgetting is only
slightly lower than LSTM networks. We also per-
formed experiments with bi-directional LSTMs
and observed very small-scale reductions in for-
getting, which could be due to slightly better mod-
elling of the task; because of the marginal dif-
ference in performance, we omit results for bi-
directional LSTMs from the paper.

We conducted further experiments to under-
stand what makes single-layered CNNs special in
reducing forgetting. Convolution and pooling op-
erations are two distinctive features of CNNs. We
ran experiments replacing max-pooling with aver-
age pooling.

7.2 Results: max pooling vs. average pooling

Table 4 and Figure 2 compare the main results for
forgetting between max pooling and average pool-
ing on task sequence TREC SUBJ SST CoLA.
Replacing max pooling with average pooling re-
sulted in a slight increase in FSeq, indicating max-
pooling helps in reducing forgetting.

A network with max pooling can train on dif-
ferent input distributions with less interference,
as different sub-networks (paths created by max-
pooling) can be used for each input distribution.
Srivastava et al. (2013) also report less forgetting
using a max operation in their proposed networks.
We observe that even with average pooling, for-
getting in CNNs is not as severe as in LSTMs.

8 RQ2: Should we fine-tune pre-trained
embedding in continual learning
setup?

Contextual embeddings like ELMo (Peters et al.,
2018b) and BERT (Devlin et al., 2019) have be-
came a standard component in recent NLP ar-
chitectures. The embeddings used in these pre-
trained architectures encode latent linguistic fea-
tures from a large corpus, thus improving sample
efficiency and generalisability of models, which
could change the forgetting dynamics of the net-
work. We used ELMo embeddings in a contin-
ual learning setup, and compared the model’s for-
getting in two scenarios: (a) embeddings are fine-
tuned during each task’s training; and (b) embed-
dings are fixed. Our experiments using fine-tuned
and fixed ELMo embeddings are referred to as
“CNNFix” and “CNNFT ” respectively, in the case
of the CNN.

8.1 Results: fixed ELMo

Table 3 presents results with fixed ELMo. Freez-
ing ELMo’s parameters in continual learning re-
duces the forgetting, e.g. for a single-layered
LSTM with 400 hidden dimensions, forgetting
was reduced from 2.57 to 0.58, which is the
least forgetting overall. The impact of fixed em-
beddings is similar for both LSTMs and CNNs.
Surprisingly, LSTMs perform slightly better than
CNN’s, contrary to results when embeddings are
not used. We hypothesise that this is due to the
LSTM sharing a similar structure to the underly-
ing model used by ELMo.

8.2 Results: ELMo with fine-tuning

Table 3 compares results using fixed and fine-
tuned ELMo embeddings. While fixed ELMo
helps the networks reduce forgetting, fine-tuning
catastrophically degrades the networks’ ability to
retain previous knowledge. Most of the gain from
using contextual embeddings is lost if we fine-
tune the embeddings: our results show that fine-
tuning increases forgetting from 0.58 to 2.57 in a
single-layer LSTM network with 400 hidden di-
mensions. These results highlight the importance
of specialised fine-tuning techniques like grad-
ual unfreezing and discriminative fine-tuning in
ULMFit (Howard and Ruder, 2018). Interestingly,
the CNN performs better with fine-tuning, but the
LSTM performs better with fixed ELMo embed-
dings.



#Layers Hdim CNN LSTM CNNR LSTMR CNNFix LSTMFix CNNFT LSTMFT

1 100 0.71 1.52 0.97 1.78 0.77 0.71 1.90 2.63
1 400 0.76 2.24 0.98 2.57 0.63 0.58 1.46 2.57
2 100 1.51 2.23 1.94 1.92 1.02 0.85 2.28 2.81
2 400 1.74 2.11 1.95 2.30 1.01 0.95 2.08 2.19
3 100 2.03 2.04 2.02 2.13 1.83 1.53 2.16 2.33
3 400 2.04 1.81 2.45 1.79 1.18 1.47 2.28 2.33

Table 3: Sequence Forgetting (FSeq) of TREC SUBJ SST CoLA using CNN and LSTM for various network
configurations. We denote the experiment with regularisation as “CNNR”, fixed ELMo as “CNNFix”, and ELMo
with fine-tuning as “CNNFT ”. Similar notation is used for the LSTM, and “Hdim” denotes the dimensionality of
the given hidden layer.

Figure 1: Performance of the LSTM and CNN on task sequence TREC SUBJ SST COLA, with one layer and
hidden dimensionality 100.

#Layers Hdim max pool avg pool

1 100 0.71 0.97
1 400 0.75 0.97
1 900 0.72 0.90
2 100 1.66 1.61
2 400 1.72 1.83
2 900 1.58 2.18

Table 4: Sequence Forgetting (FSeq) of
TREC SUBJ SST CoLA using max pooling and
average pooling for a different configuration.

9 RQ3: Do networks with more capacity
forget less?

A lot of work in the catastrophic forgetting litera-
ture has focused on freezing the weights of the net-
work (Mallya and Lazebnik, 2018; Fernando et al.,
2017). Here, we ask whether increasing the capac-
ity of the network would encourage the network to
use different sub-networks for different tasks. An-
other thought was that increasing capacity would

drive the network to over-fit, which could further
increase forgetting.

We considered neural networks up to four lay-
ers deep, with hidden dimensions of 100, 400, 900,
and 1400. We trained each task sequence on six-
teen different network configurations formed us-
ing four different layers and hidden dimensionali-
ties. The hidden dimensionality refers to the num-
ber of features in the hidden state in an LSTM, or
the number of output channels in a CNN.

Since networks with greater capacity are more
vulnerable to over-fitting, we also studied the ef-
fect of regularising the network. We also ran
all experiments using L2 regularisation by setting
weight decay to 0.0001 during training. LSTMR

and CNNR denote results for experiments with L2
regularisation.

9.1 Results: Layers

Table 3 lists results for different layers for both
CNNs and LSTMs, and their regularised versions.
Both CNNs and LSTMs have the least forgetting



Figure 2: Performance of Max and Average pooling on task sequence: TREC SUBJ SST CoLA, with Layer 1 and
Hidden Dimension 100.

for the single-layered network. By increasing the
number of layers in the network, forgetting also
increases. For CNNs, there is a huge degrada-
tion when changing the network from one layer
to two layers. This steep increase could be be-
cause we are using max-pooling only after the fi-
nal layer. We might be able to reduce forgetting
in a multi-layered CNN by having a pooling op-
eration after every layer. We found that regularis-
ing using weight decay didn’t help in reducing for-
getting. Our finding differs that of previous work
on dropout (Goodfellow et al., 2014), which found
that it helps in reducing forgetting. However, the
results are not comparable due to the different type
of regularisation.

9.2 Results: Hidden Dimensionality

Table 5 shows forgetting for hidden dimensionali-
ties 100 and 900 for four task sequences. We limit
our analysis to single-layered CNNs without em-
beddings. We find that the hidden dimensionality
with least forgetting is dependent on the arrange-
ment of tasks in the task sequence. We observe
that task sequences starting with TREC and CoLA
have lower forgetting with hdim = 100 (the first
and fourth task sequences in Table 5). In contrast,
task sequences starting with SST and Subjectivity
have less forgetting with hdim = 900 (the sec-
ond and third task sequence in Table 5). Increas-
ing the dimensionality reduces forgetting for some
tasks, but increases forgetting for others. For task
sequence CoLA SST TREC SUBJ in Table 5, in-
creasing the dimensionality from 100 to 900 in-
creases forgetting for CoLA by 0.61, whereas for-
getting for SST is reduced by 0.33. Out of the

24 tasks sequences considered, only four have
|F 900

Seq − F 100
Seq | > 0.3.2

10 RQ4: Do networks forget more when
training a difficult task?

From our experiments on task sequences of length
four, we observed FSeq varies from 0.63 to 1.81
on different task sequences. The task ordering has
a substantial impact on FSeq. To understand the
forgetting behaviour for tasks individually, we ran
an experiment with two tasks. We train two tasks
sequentially, and report the forgetting observed on
the first task after training the second task, aver-
aged over five runs. We train all twelve possible
configurations using four tasks.

10.1 Results: Two-task Sequence

Table 7 lists the results of forgetting on sequence
lengths two with a single-layered network and hid-
den dimensionality of 100. We observed training
a difficult task causes overall less forgetting for
the previous task. Training TREC after Subjectiv-
ity results in forgetting of 0.46, whereas training
hard tasks like SST only results in forgetting of
0.17. We also observe TREC suffers distinctively
less forgetting by training SST and CoLA, which
is also observable in our results for the four-task
sequence.

To further understand why training a difficult
task leads to less forgetting, we recorded the to-
tal number of epochs used in training each task.
Table 8 shows the number of epochs used for the
second task in training two-task sequences. TREC

2The superscript on FSeq here indicates the dimension-
ality.



Code Hdim FTOTAL FTREC FCoLA FSST FSUBJ

TREC SUBJ SST CoLA 100 0.77 0.40 0.0 0.23 0.12
900 +0.32 +0.215 0.0 +0.02 +0.08

SST CoLA TREC SUBJ 100 1.36 0.12 0.58 0.65 0.0
900 −0.41 −0.02 −0.22 −0.18 0.0

SUBJ CoLA SST TREC 100 1.81 0.0 0.61 0.61 0.59
900 −0.59 0.0 −0.35 −0.21 −0.03

CoLA SST TREC SUBJ 100 0.99 0.15 0.31 0.54 0.0
900 +0.23 −0.04 +0.61 −0.33 0.0

SST TREC SUBJ COLA 100 0.93 0.19 0.0 0.61 0.12
900 −0.10 +0.10 0.0 −0.16 −0.04

Table 5: FSeq and individual task forgetting for four task sequences on a single-layered network with hidden di-
mensionality 100 and 900. The actual forgetting value is reported for dimensionality 100 and increment/decrement
from reference value at 100 dimensionality is reported for 900 dimensionality, with red indicating an increase in
forgetting and green indicating a decrease in forgetting from 100 dimensionality.

generally requires more epochs than other tasks,
accounting for the large drop in performance when
training TREC later in the sequence.

10.2 Results: Forgetting when training a
difficult task

Table 6 lists the top and bottom task sequences
based on minimum FSeq across all considered di-
mensionalities. Results are in line with our obser-
vation from the two-task sequence, that training a
difficult task causes less forgetting to tasks trained
earlier. Having a difficult task like SST towards
the end of a sequence reduces overall forgetting.
In Table 6, all the top task sequences end with
difficult task SST or CoLA, whereas all bottom
tasks ends in TREC. This finding is similar to the
findings from curriculum learning (Bengio et al.,
2009): training a hard task later in a sequence has
overall less error, and leads to better generalisa-
tion. Forgetting of a task is inversely proportional
to its difficulty level, resulting in CoLA and SST
having the least forgetting when added to the end
of the sequence.

11 Discussion and Limitations

In our study, we used a very loose definition of
what makes a task difficult, mainly comparing
single-task performance on a simple CNN/LSTM
model with SOTA. Our current analysis shows that
task and task sequencing plays a pivotal role in for-
getting observed in the network. To establish what
quantifies a difficult task in a continual learning

Task Sequence min(F 100,400,900
Seq )

TREC SUBJ CoLA SST 0.63
TREC SUBJ SST CoLA 0.78
SST TREC SUBJ CoLA 0.81
CoLA SUBJ SST TREC 1.3
SST CoLA SUBJ TREC 1.4
CoLA SST SUBJ TREC 1.4

Table 6: The top three (green) and bottom three (red)
task sequences with FSeq for Layer = 1. For each
task sequence, minimum FSeq was considered across
dimensionalities 100, 400, 900. Most of the top task
sequences finish with SST or CoLA, and bottom ones
with TREC.

setup would require extensive experiments with a
large number of varied tasks.

For task sequence TREC SUBJ CoLA SST,
CoLA’s performance improves after training on
SST, resulting in negative FCoLA and a slight drop
in FSeq. This task sequence and network with
hdim = 900 is the only instance where we ob-
served Fi < 0. Our two-task experiments saw
forgetting of 0.16 when training SST after CoLA.
This observation could be a consequence of train-
ing on TREC or SUBJ beforehand. It would be
interesting to gain more insights on what enabled
improvement on CoLA while training SST in this
task sequence.

Our results with contextual ELMo embeddings
are intriguing, as the amount of forgetting is vastly



Second Task→ CoLA SST SUBJ TREC
First Task ↓

CoLA — 0.16 0.38 0.39
SST 0.36 — 0.40 0.57

SUBJ 0.35 0.17 — 0.46
TREC 0.09 0.08 0.15 —

Table 7: Forgetting on sequentially training two tasks;
Layer= 1, Dimensionality = 100.

Second Task→ CoLA SST SUBJ TREC
First Task ↓

CoLA — 10.6 11 16.4
SST 16.2 — 11.8 16.2

SUBJ 17.8 10.6 — 14.6
TREC 15.2 11.0 11.8 —

Table 8: Number of epochs used for training the second
task in the sequence; Layer = 1, Dimensionality = 100.

different when ELMo’s parameters are fixed, ver-
sus when they are fine-tuned for each task. Our
experiments favour using fixed embeddings. This
finding also points at the importance of develop-
ing new specialised fine-tuning approaches simi-
lar to the one introduced in ULMFit (Howard and
Ruder, 2018). When fine-tuning ELMo embed-
dings, CNNs have less forgetting than LSTMs,
and contrastingly LSTMs have less forgetting
when ELMo embeddings are fixed.

12 Conclusion

We carried out an empirical study on catastrophic
forgetting, observing that LSTMs forget more
than CNNs. Further experimentation provided
the insight that max-pooling helps CNNs alleviate
abrupt forgetting. Our findings with pre-trained
embeddings suggest one should avoid fine-tuning
pre-trained embeddings in a continual learning
setup. We also observed that more capacity
doesn’t help in reducing catastrophic forgetting,
and that training a difficult task towards the end
of a task sequence is beneficial.
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