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Abstract

With the advent of neural models, there has
been a rapid move away from feature engineer-
ing, or at best, simplistically combining hand-
crafted features with learned representations
as side information. We propose a method
that uses hand-crafted features to guide learn-
ing by explicitly attending to feature indica-
tors when learning the relationship between
the input and target variables. In experiments
over two different tasks — quality assessment
of Wikipedia articles and popularity predic-
tion of online petitions— we demonstrate that
the proposed method yields neural models that
consistently outperform those that simply use
hand-crafted features as side information.

1 Introduction and Background

Text classification/regression is a fundamental
problem in natural language processing. Tradi-
tional methods make use of hand-crafted features,
such as the length of a document, to represent a
document. A classifier/regressor is built on top of
such features to learn a model (Wang and Man-
ning, 2012; Warncke-Wang et al., 2013, 2015;
Dang and Ignat, 2016). Recently, neural mod-
els such as LSTMs (Hochreiter and Schmidhuber,
1997) and convolutional neural networks (CNNs:
Kim (2014); Kalchbrenner et al. (2014)) have be-
come the de facto for text classification/regression
tasks, with one oft-cited advantage being that they
are able to learn implicit features as part of the rep-
resentation learning.

Studies employing neural models either eschew
hand-crafted features or simplistically use hand-
crafted features as side information. For example,
Dang and Ignat (2017) propose to use a bidirec-
tional LSTM (“bi-LSTM”) to classify Wikipedia
articles by their quality classes, and Shen et al.
(2017) concatenate structural features (e.g., arti-
cle length) and readability scores with bi-LSTM-

learned document representations for the same
task. Subramanian et al. (2018) hand-engineer a
set of features (e.g., the ratio of indefinite and def-
inite articles), and concatenate them with CNN-
learned document representations to predict the
popularity of online petitions. Wu et al. (2018)
explore the utility of hand-crafted features in NER
by concatenating these features with character rep-
resentations learned via an CNN and word embed-
dings. These representations are then fed into a bi-
LSTM to identify named entities (with the help of
a CRF) and re-construct the hand-crafted features
in the output simultaneously, which is achieved
by combining an auto-encoder loss with the NER
loss.

The motivation underlying this work is that
when hand-crafted features are represented by nu-
merical vectors and concatenated with neural net-
work representations, there is no information on
what kind of feature each value represents. To
make better use of hand-crafted features, we pro-
pose a feature-guided neural training method that
guides the network to map feature indicators onto
(explicit or implicit) features in the document. We
evaluate the effectiveness of the proposed method
over two datasets for two different tasks: (1) qual-
ity assessment of Wikipedia articles, and (2) pop-
ularity prediction of online petitions. Taking state-
of-the-art approaches for the respective tasks, we
achieve consistent improvements when using our
model.

The closest work to our approach is the label-
guided model training of Wang et al. (2018). They
embed words and labels in the same embedding
space, and compute a label-based attention score
between a word and all possible labels, which is
used to weight word embeddings in obtaining doc-
ument representations. Our work differs in two
aspects: (1) Wang et al. (2018) capture direct as-
sociations between labels and words, while we use



the proxy of (potentially much higher-level) hand-
crafted features to guide network learning; and (2)
our method does not rely on the target variable be-
ing closely related to the semantics of a document,
leading to better generalisability.

2 Methodology

Figure 1 is an illustration of our proposed ap-
proach, in the context of a stacked bi-LSTM,
where two bi-LSTMs are applied to obtain the
sentence and document level representations, re-
spectively. Note that our method is not limited to
LSTMs, as we show in Section 3.

A hand-crafted feature can consist of multiple
feature indicators. For example, having level 3+
headings is one of the features in quality assess-
ment of Wikipedia articles. This hand-crafted fea-
ture consists of two feature indicators (tokens)
{“===”, “====”}. We embed the document and
feature indicators into a shared space. Then, as
indicated in Figure 1, for each feature indicator,
we compute cosine similarity between the fea-
ture indicator and word embeddings, followed by
average-pooling to obtain a sentence score:

score =
1

N

N∑
j=1

FVj

‖F‖2‖Vj‖2
. (1)

Here, F and Vj are embeddings of the feature
indicator and the jth word in a sentence, respec-
tively; ‖F‖2 and ‖Vj‖2 are the `2 norms of F and
Vj , respectively; and N is the number of words
in a sentence. All scores based on the feature in-
dicator are concatenated with sentence representa-
tions Z1, which are learned through a bi-LSTM
layer (f1). Then, another bi-LSTM layer (f2) is
applied to the concatenated sentence representa-
tions to obtain document representation Z2, which
is followed by a dense layer (f3) to compute y .

The score computed in Equation 1 is for a
single-token feature indicator. If a hand-crafted
feature consists of multiple feature indicators (to-
kens, e.g., {“===”, “====”}), the score becomes:

score =
1

M

M∑
i=1

1

N

N∑
j=1

FiVj

‖Fi‖2‖Vj‖2
. (2)

Here, M is the number of feature indicators in a
hand-crafted feature, and Fi is the word embed-
ding of the ith feature indicator in the feature.

For example, the feature level 3+ headings is
one of structural features described in Shen et al.
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Figure 1: Illustration of our proposed method. Here, ⊗
denotes cosine similarity between the feature indicator
and word embeddings; f1 and f2 denote bi-LSTM lay-
ers; f3 denotes a dense layer; Z 1 and Z 2 denote sen-
tence and document representations, respectively; V
and F are the document input and feature indicators,
respectively; and y is the target output.

(2017), which consists of two feature indicators
{“===”, “====”}. To obtain the similarity score
for the feature level 3+ headings, we first compute
the similarity score between each feature indica-
tor “===”/“====” and word embeddings in the
sentence, then apply average-pooling to obtain the
similarity score for each feature indicator. We ob-
tain the similarity score of level 3+ headings by
averaging similarity scores among the feature in-
dicators at the sentence level. Finally, the feature
score is concatenated with the sentence represen-
tation, which is fed into a latter layer.

While we don’t experiment with this in this pa-
per, it is also possible to first average feature indi-
cator embeddings and then compute the sentence
score by Equation 1. This way, we can efficiently
reduce the computation of similarity scores for
hand-crafted features with a large number of fea-
ture indicators. In this paper, we use Equation 2,
as the maximum number of feature indicators in a
given hand-crated feature is less than 1, 000, and
less than 10 in most cases.

3 Experiments

To test the effectiveness of our proposed method,
we experiment with a Wikipedia document qual-
ity assessment task (Shen et al., 2019), and on-
line petition signature prediction task (Subrama-
nian et al., 2018), as detailed below. The rea-
sons we chose these particular tasks are as follows.
First, extensive domain-specific feature engineer-
ing had taken place in each case, that we could
use as the basis of our feature indicators. Second,



strong neural benchmarks have been established,
based on extensive experimentation with both neu-
ral and non-neural models. Our experiments in
this paper are based on the state-of-the-art.

We aim to explore the relative gains of our pro-
posed method relative to the current state-of-the-
art for the task, which in both cases is not based
on contextualised embeddings. For BERT (Devlin
et al., 2019) or other contextualised encoders, the
same word in different contexts will end with dif-
ferent embeddings, leading to localized represen-
tations of feature indicators. As such, the proposed
method is not directly applicable to models such
as BERT, and novel research would be required to
adapt the method to such models.

3.1 Wikipedia Document Quality Assessment

Dataset The Wikipedia dataset (Shen et al.,
2019) consists of 29,794 English Wikipedia arti-
cles and their corresponding quality labels: Fea-
tured Article, Good Article, B-class Article, C-
class Article, Start Article, and Stub Article, in de-
scending order of document quality. The dataset is
class-balanced and partitioned into training, devel-
opment, and test splits (8:1:1). Documents are rel-
atively long, and processed in a hierarchical man-
ner, by constructing sentence representations, and
composing these into a document representation.

Following Dang and Ignat (2017) and Shen
et al. (2019), we formulate the quality assessment
of Wikipedia articles as a multi-class classification
problem, and all models are trained to minimise
cross-entropy loss. We report average accuracy
and standard deviation over 10 runs.

Hand-crafted features used to guide network
learning here include: (1) references indicators;
(2) links to other Wikipedia pages indicators;
(3) citation templates indicators; (4) non-citation
templates indicators; (5) categories linked in the
article indicators; (6) image indicators; (7) in-
fobox indicators; (8) level 2 headings indica-
tors; and (9) level 3+ heading indicators. These
features are from Dang and Ignat (2016) and
Shen et al. (2017). Hand-crafted features in
Side-information are based on counting the
number of appearances of such feature indicators.

Model configuration We apply our proposed
approach (“Feature-guided”) over the four
models detailed below. In each case, we
contrast with two baselines: (1) Vanilla,
makes no use of hand-crafted features; and (2)

Side-information which uses the hand-
crafted features as side information, by concate-
nating them with learned representations in the
penultimate layer.

1. CNN BILSTM: apply convolution kernels
with width 2, 3, and 4 (32 for each width size)
to word embeddings within a sentence, and
a tanh activation function to each; pass the
output of the filters through a bi-LSTM.

2. AVERAGE BILSTM (Shen et al., 2017): av-
erage word embeddings to get the sentence
representation, and run a bi-LSTM over the
sequence of sentence representations.

3. STACKED BILSTM: feed the word embed-
dings in a sentence through a bi-LSTM, and
the output through a max-pooling layer; fi-
nally, apply another bi-LSTM over the sen-
tence representations.

4. STACKED BILSTM ATT (Yang et al., 2016):
use a hierarchical STACKED BILSTM, ex-
cept that an attention mechanism with a con-
text size of 100 is applied to the output
of each bi-LSTM to weight words/sentences
based on their importance in the sen-
tence/document.

A max-pooling layer is applied to the output of
the bi-LSTM at the sentence level for all models
except STACKED BILSTM ATT to get the docu-
ment level representation, which is followed by
two dense layers, one with a ReLU activation
and one without any activation function. For
all models, dropout layers are applied at both
the sentence and document levels with a rate of
0.5 during training. For both CNN BILSTM
and AVERAGE BILSTM, the bi-LSTM cell size
is set to 256. For STACKED BILSTM and
STACKED BILSTM ATT, the cell size is set to 32
and 256 for the sentence and document level bi-
LSTM, respectively.

We use 50-dimensional pre-trained word em-
beddings from GloVe (Pennington et al., 2014).1

For OOV words, the word embeddings are ran-
domly initialised based on sampling from a uni-
form distribution U(−1, 1). All word embeddings

1We fine-tuned hyper-parameters over the development
set for quality predictions of Wikipedia articles. 50-
dimensional embeddings were chosen because Vanilla
performs the best under this setting (meaning the baseline
without features is as strong as possible).



Model CNN BILSTM AVERAGE BILSTM STACKED BILSTM STACKED BILSTM ATT

Vanilla 57.12±0.58% 57.91±0.81% 57.60±0.65% 56.70±1.21%
Side-information 57.24±0.47% 59.04±0.33% 57.97±0.74% 57.44±0.62%
Feature-guided 58.10±0.50%† 59.90±0.45%† 58.30±0.71% 58.30±0.65%†

Table 1: accuracy over Wikipedia dataset. The best result is in bold, and marked with “†” if the improvement
is statistically significant (based on a one-tailed Wilcoxon signed-rank test; p < 0.05).

are updated in the training process. We use a
mini-batch size of 128 and a learning rate of 0.01.
We train each model for 50 epochs. To prevent
over-fitting, early stopping is adopted. All hyper-
parameters are set empirically over the develop-
ment data, and the models are optimised using
Adam (Kingma and Ba, 2015).

Results The experimental results are pre-
sented in Table 1. We can see that our
method outperforms both Vanilla and
Side-information across all four network
architectures, at a level of statistical significance
for 3 out of the 4 models. It is worth noting that
the performance of STACKED BILSTM ATT is
worse than that of STACKED BILSTM for both
Vanilla and Side-information, due to
attention in STACKED BILSTM ATT not being as
effective as max-pooling on this task. However,
the performance of STACKED BILSTM ATT is
not worsened by incorporating the attention for
our method, indicating that our feature-guided
learning can guide the network to learn better.

3.2 Online Petition Signature Prediction
Dataset The online petitions dataset (Subrama-
nian et al., 2018) consists of 10,950 UK petitions
and their corresponding signature counts. Follow-
ing Subramanian et al. (2018), we chronologically
split the data into training, dev, and test (8:1:1).

We formulate signature count prediction as a
regression problem, and all models are trained
to minimise mean squared error. For evalua-
tion, average mean absolute error (“MAE”) and
mean absolute percentage error (“MAPE”) over 10
runs are reported. Here, MAPE is calculated as
100
n

∑n
1
|ŷi − yi|

yi
, where ŷi and yi are the predicted

and ground-truth signature counts.
Hand-crafted features used to guide network

learning here include: (1) indefinite vs. definite
articles; (2) P1 singular and plural, P2, and P3
singular and plural pronouns; (3) subjective, pos-
itive, and negative words; and (4) biased words.
These features are from Subramanian et al. (2018).

Model MAE MAPE

Vanilla 1.44 38.1
Side-information 1.45 39.0
Feature-guided 1.42† 36.2†

Table 2: Results over online petitions. The best result is
indicated in bold, and marked with “†” if the improve-
ment is statistically significant (based on a one-tailed
Wilcoxon signed-rank test; p < 0.05).

Hand-crafted features in Side-information
are based on counting the number of appearances
of such feature words.

Model configuration We again compare our
proposed Feature-guided approach with
Side-information and Vanilla, in the
form of a state-of-the-art CNN with convolution
kernels of width 1, 2, and 3 (100 kernels for each
width size) over word embeddings, with a ReLU
applied to each. The outputs are passed through
two dense layers, one with a tanh activation func-
tion and one with an ELU activation function, to
obtain the final output.

A dropout layer is applied to the output of the
convolution filters at a rate of 0.5 during training.
We use a mini-batch size of 32, and a learning rate
of 1e−4. All other hyper-parameters are the same
as in the Wikipedia setting, except that the early
stopping is based on MAE.

Results Table 2 summarises our results. We ob-
serve that our approach benefits Vanilla and
Side-information once again, at a level of
significance in terms of both MAE and MAPE. It
is worth noting that Side-information per-
forms worse than Vanilla, as it over-fits to fea-
tures only present in the training data. In compari-
son, our method improves the model performance
even in this case, as it identifies words semanti-
cally related to the feature indicators. For exam-
ple, the word increase, not in the predefined list of
positive words, has a high similarity score (> 0.8)
with positive words help, hope, give, and allow.



4 Conclusion and Future Work

We proposed a method to guide network learning
by attending to feature indicators associated with
hand-crafted features. Experimental results over
two tasks (quality assessment of Wikipedia arti-
cles, and popularity prediction of online petitions)
show that our approach consistently outperforms
two baselines, across a range of neural architec-
tures. For future work, we are interested in explor-
ing hand-crafted features from external sources,
such as editor comments of a Wikipedia article.
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