
ALTA 2019

Proceedings of the 17th Workshop of the
Australasian Language Technology Association

4–6 December, 2019
UTS

Sydney, Australia

Sponsors

ALTA is extremely grateful to the following sponsors who helped make ALTA as accessible to as many NLP
researchers as possible

Platinum

Gold

Bronze

c©2019 Australasian Language Technology Association

Introduction

Welcome to the 17th edition of the Annual Workshop of the Australasian Language Technology Associa-
tion (ALTA 2019) in Sydney, Australia. The purpose of ALTA is to promote language technology research
and development in Australia and New Zealand. Every year ALTA hosts a workshop which is the key lo-
cal forum for socialising research results in natural language processing and computational linguistics,
with presentations and posters from students, industry, and academic researchers. This year ALTA 2019
is being hosted by the University of Technology Sydney and we acknowledge and pay our respects to the
Gadigal people of the Eora Nation, the Boorooberongal people of the Dharug Nation, the Bidiagal people
and the Gamaygal people upon whose ancestral lands the university stands.

In total we received 36 paper submissions. We accepted 8 long papers (of 14 submissions), 7 short
papers (of 22 submissions) to appear as oral presentations in the programme, giving a total of 15 paper
presentations (42% of submissions). Of the 36 submissions 23 were first-authored by students, with
submissions from 6 of the 8 states and territories of Australia. We are extremely grateful to the Programme
Committee members for their time and their detailed and helpful comments and reviews, both locally and
abroad. This year we had committee members from all over the globe including Sweden, Scotland, USA,
UAE, and Germany, and 16% of the committee being made up of our near neighbours in New Zealand.

Overall, there are 6 sessions of oral presentations in the programme, two of which are jointly organ-
ised with the Australasian Document Computing Symposium (ADCS 2019), starting each day with an
ALTA keynote talk. The main workshop follows a tutorial on NLP for Healthcare in the Absence of a
Healthcare Dataset guided by Sarvnaz Karimi and Aditya Joshi (CSIRO Data61). To encourage a broader
participation of the local NLP community we organised a poster session, jointly with ADCS, of which
10 papers were included. These papers have undergone the same double-blind review process as the oral
presentations. In addition, this year we also ran a shared task on sarcasm detection organised by Diego
Molla-Aliod (University of Macquarie) and Aditya Joshi (CSIRO Data61).

The talks from our keynote speakers reflect the main themes in our workshop as well as the direction
in which our field is taking us. Nicholas Evans and Ben Foley present their work on the New wings
for the Library of Babel: The transcription challenge for the world’s 7000+ languages. We face the
challenge of creating resources and adapting methodologies for the low-resource domain – which most
of the worlds languages fit into – as well as the many tasks that we undertake in the field. Mark Johnson
presents research in Building new kinds of Natural Language Understanding and Conversational AI with
Deep Learning, which reflects the continuing trend towards neural and deep learning methods in natural
language processing as well as the need to look beyond the sentence by taking into consideration context
from the discourse and document level, to develop more naturalistic language interfaces with AI agents.

ALTA 2019 is very grateful for the financial support generously offered by our sponsors, without which
the running of these events to bring together the NLP community of the Australasian region would be a
challenge.

We very much hope that you will have an enjoyable and inspiring time at ALTA 2019!

Meladel Mistica, Andrew MacKinlay and Massimo Piccardi

Sydney, December 2019

iii

Organisers:

Local Chair: Massimo Piccardi
Program Chairs: Meladel Mistica
General Chair: Andrew MacKinlay

Program Committee:

Abeed Sarker, Afshin Rahimi, Alistair Knott, Andrea Schalley, Antonio Jimeno, Ben Hachey, Ben-
jamin Boerschinger, Brian Hur, Daniel Beck, David Martinez, Diego Molla, Dominique Estival,
Gabriela Ferraro, Gholamreza Haffari, Hamed Hassanzadeh, Hanna Suominen, Hiyori Yoshikawa,
Jennifer Biggs, Jeremy Nicholson, Jey-Han Lau, Jojo Wong, Karin Verspoor, Kristin Stock, Lau-
rianne Sitbon, Lawrence Cavedon, Lizhen Qu, Mahsa Mohaghegh, Mariano Phielipp, Mark Dras,
Markus Luczak-Roesch, Michael Witbrock, Myunghee Kim, Nitika Mathur, Nitin Indurkhya, Parma
Nand, Rolf Schwitter, Sarvnaz Karimi, Scott Nowson, Sharon Gao, Shervin Malmasi, Spandana
Gella, Stephen Wan, Sumithra Velupillai, Sunghwan Mac Kim, Timothy Baldwin, Trevor Cohn,
Will Radford, Wray Lindsay Buntine, Xiang Dai, Xiuzhen Zhang, Yitong Li

Invited Speakers:

Mark Johnson, Oracle and Macquarie University
Nicholas Evans, ANU; with Ben Foley, University of Queensland

iv

Invited Talks

Mark Johnson: Building new kinds of Natural Language Understanding and Conversational AI
with Deep Learning

Deep learning provides new fundamental tools, such as contextualised word embeddings and seq2seq
models, that let us build new kinds of Natural Language Understanding apps faster, better and cheaper
than ever before. The advanced pattern-matching capabilities of deep learning enable a new approach
to app development where the system’s behaviour is learnt from training data, dramatically reducing the
need for manual scripting. This talk describes how we are using this technology in the Oracle Digital
Assistant, focusing especially on Conversational AI. The talk ends with a discussion of how research
advances in areas such as explainability, few-shot learning, data augmentation and transfer learning can
help this technology achieve its full potential.

Nicholas (Nick) Evans and Ben Foley: New wings for the Library of Babel: The transcription
challenge for the world’s 7000+ languages

There is increasing awareness that we stand on the brink of massive knowledge loss as perhaps half of the
world’s languages risk not being learnt by the next generation, and of the attendant urgency of recording
them in some form. Yet our conceptions for just how much we should record of each language, if we are to
do justice to the intellectual richness of the oral traditions they represent, remain tragically unambitious.
How much of the knowledge of English or Chinese-speaking cultures would be captured in ten hours
of text, a typical amount to be recorded in a language documentation project? Compare this to the 60
million words or so we have in corpora of Classical Greek or Sanskrit, equivalent to about 6,000 hours
of recordings. Is it inconceivable for modern day speech communities, seeking a deep abiding record of
their language, to record and transcribe that much data? After all, ten members of a speech community,
each recording three hours per day, could gather this much in a year.

The real challenge, as linguists and language community members have come to realise, is the transcrip-
tion bottleneck, the fact that writing down a transcription of one hour of recording typically takes from 40
to 100 hours (and in the early phases of work almost always at the upper end). The result of this bottleneck
is that even if we record something like the above amount, current language documentation methods of
a few people working together over three years cannot transcribe more than around 15 hours of primary
material. This does not touch the levels needed to give a rich corpus for one language, nor does it reach
the one hundred hours normally cited as a necessary minimum for a deep-learning training corpus.

In this talk we describe the TAP initiative – Transcription Acceleration Project – which is a joint en-
terprise of language documentation fieldworkers, community language users, computational linguists,
software engineers and machine learning researchers, supported by the ARC-funded Centre of Excel-
lence for the Dynamics of Language (CoEDL). This project aims to break the impasse posed by the
transcription bottleneck while maintaining the language community members’ social and cultural roles.
TAP’s semi-automated speech recognition workflow is designed as a user-in-the-loop architecture which
involves critical stakeholders in the process of creating cultural and linguistic artefacts. The tools within
TAP aim to improve the transcription experience, and support new ways of working to improve the state
of language documentation globally. For Australia and its neighbours, we will be able to secure a much
greater proportion of the region’s rich but often ignored linguistic cultural heritage – around a quarter of
the world’s languages – for the generations to come.

v

PROGRAMME

4th December (Wednesday) Tutorial, Day 1

12:30 - 1:00 Registration

13:00 - 16:30
NLP for Healthcare in the Absence of a Healthcare Dataset
Sarvnaz Karimi & Aditya Joshi (CSIRO Data61)

5th December (Thursday) Day 2

8:15 - 9:00 Registration
9:00 - 9:15 Welcome to ALTA 2019

9:15 - 10:15
Keynote: Nicholas Evans (ANU) and Ben Foley (UQ)
New wings for the Library of Babel: The transcription challenge for the world’s 7000+ languages
(Session Chair: Tim Baldwin)

10:15 - 10:45 MORNING TEA

10:45 - 12:15
Session 1 – Linguistic Diversity in NLP (Session Chair: Mark Dras)
Long papers are 20 minutes and short papers are 12 minutes.

Towards a Robust Morphological Analyser for Kunwinjku (ALTA Best Student Paper Award)
William Lane and Steven Bird

From Shakespeare to Li-Bai: Adapting a Sonnet Model to Chinese Poetry (long)
Zhuohan Xie, Jey Han Lau AND Trevor Cohn

Readability of Twitter Tweets for Second Language Learners (long)
Patrick Jacob and Alexandra Uitdenbogerd

A neural joint model for Vietnamese word segmentation, POS tagging and dependency parsing (short)
Dat Quoc Nguyen

Modelling Tibetan Morphology (short)
Qianji Di, Ekaterina Vylomova and Timothy Baldwin

12:15 - 13:15 LUNCH

13:15 - 14:15
Keynote 2: Wilson Wong (GO1)
Findability and discoverability in learning and employment

14:15 - 15:25
Session 2 – Language Use and Applications (Shared ADCS Session, Session Chair: Alistair Moffat)
ADCS papers are 25/15 mins and ALTA papers are 20/12 mins for the long/short format

Differences in language use: Insights from job and talent search (ADCS short)
Bahar Salehi, Borhan Kazimipour and Timothy Baldwin

Character profiling in low-resource language documents (ADCS short)
Tak-Sum Wong and John Lee

Towards a model for spoken conversational search (ADCS long encore presentation)
Johanne R. Trippas, Damiano Spina, Paul Thomas, Mark Sanderson, Hideo Joho and Lawrence Cavedon

A multi-constraint hinge loss for named-entity recognition (ALTA short)
Hanieh Poostchi and Massimo Piccardi

15:25 - 16:00 AFTERNOON TEA

vi

16:00 - 17:25 Session 3 – Application and Evaluation (Session Chair: Andy MacKinlay/Massimo Piccardi)

Grounding learning of modifier dynamics: an application to color naming (short abstract presentation)
Xudong Han, Philip Shultz and Trevor Cohn

Feature-guided Neural Model Training for Supervised Document Representation Learning (short)
Aili Shen, Bahar Salehi, Jianzhong Qi and Timothy Baldwin

Red-faced ROUGE: Examining the Suitability of ROUGE for Opinion Summary Evaluation
(ALTA 2nd Place Best Student Paper Award)
Wenyi Tay, Aditya Joshi, Xiuzhen Zhang, Sarvnaz Karimi and Stephen Wan

Modeling Political Framing Across Policy Issues and Contexts (short)
Shima Khanehzar, Andrew Turpin and Gosia Mikolajczak

Box Embeddings for Inferring Predicate Entailment (long abstract presentation)
Ian Wood, Mark Johnson, Stephen Wan, Javad Housseini and Mark Steedman

19:00 - late DINNER

6th December (Friday) Day 3

9:00 - 10:00
Keynote: Mark Johnson (Macquarie University and Oracle)
Building new kinds of Natural Language Understanding and Conversational AI with Deep Learning
(Session Chair: Diego Molla-Aliod)

10:00 - 11:00 MORNING TEA AND POSTER SESSION

11:00 - 12:05 Session 4 – Parsing and Sequential Modelling (Session Chair: Trevor Cohn)

Improved Document Modelling with a Neural Discourse Parser (long)
Fajri Koto, Jey Han Lau and Timothy Baldwin

Does an LSTM forget more than a CNN? (long)
Gaurav Arora, Afshin Rahimi and Timothy Baldwin

Domain Adaptation for Low-Resource Neural Semantic Parsing (short)
Alvin Kennardi, Gabriela Ferraro and Qing Wang

A Pointer Network Architecture for Context Dependent Semantic Parsing (short)
Xuanli He, Quan Tran and Gholamreza Haffari

12:05 - 13:00 LUNCH

13:00 - 14:00
ADCS Keynote: Guido Zuccon (QUT)
Better Search, Better Health? Search engines, their evaluation and the impact on health decisions

14:00 - 15:00 Session 5 – Science and Medicine (Shared ADCS Session, Session Chair: Sarvnaz Karimi)

Detecting Chemical Reactions in Patents (ALTA 2019 Best Paper Award)
Hiyori Yoshikawa, Dat Quoc Nguyen, Zenan Zhai, Christian Druckenbrodt, Camilo Thorne,
Saber A. Akhondi, Timothy Baldwin and Karin Verspoor

Identifying Patients with Pain in Emergency Departments
Using Conventional Machine Learning and Deep Learning (ALTA 2nd Place Best Paper Award)
Thanh Vu, Anthony Nguyen, Nathan Brown and James Hughes

Learning inter-sentence, disorder-centric, biomedical relationships from medical literature (ADCS encore)
Anton van der Vegt, Guido Zuccon, Bevan Koopman

15:00 - 15:30 AFTERNOON TEA

vii

15:30 - 16:00 ALTA GENERAL MEETING

16:00 - 16:45 Session 6 – Shared Task and Best Paper Presentations (Session Chair: Karin Verspoor)

Shared Task Introduction
Karin Verspoor

Overview of the ALTA 2019 Shared Task: Sarcasm Target Identification
Diego Molla-Aloid and Aditya Joshi

ALTA 2019 Shared Task Winner: Detecting Target of Sarcasm using Ensemble Methods
Pradeesh Parameswaran, Andrew Trotman, Veronica Liesaputra and David Eyers

ALTA 2019 Best Paper Awards
Closing Remarks

viii

Table of Contents

Long Papers

Towards A Robust Morphological Analyzer for Kunwinjku . 1
William Lane and Steven Bird

From Shakespeare to Li-Bai: Adapting a Sonnet Model to Chinese Poetry 10
Zhuohan Xie, Jey Han Lau and Trevor Cohn

Readability of Twitter Tweets for Second Language Learners . 19
Patrick Jacob and Alexandra Uitdenbogerd

Red-faced ROUGE: Examining the Suitability of ROUGE for Opinion Summary Evaluation . . . 28
Wenyi Tay, Aditya Joshi, Xiuzhen Zhang, Sarvnaz Karimi and Stephen Wan

Improved Document Modelling with a Neural Discourse Parser 37
Fajri Koto, Jey Han Lau and Timothy Baldwin

Does an LSTM forget more than a CNN? An empirical study of catastrophic forgetting in NLP . . 47
Gaurav Arora, Afshin Rahimi and Timothy Baldwin

Detecting Chemical Reactions in Patents . 57
Hiyori Yoshikawa, Dat Quoc Nguyen, Zenan Zhai, Christian Druckenbrodt, Camilo Thorne, Saber A.
Akhondi, Timothy Baldwin and Karin Verspoor

Identifying Patients with Pain in Emergency Departments using Conventional Machine Learning
and Deep Learning . 68

Thanh Vu, Anthony Nguyen, Nathan Brown and James Hughes

Short Papers

A neural joint model for Vietnamese word segmentation, POS tagging and dependency parsing . . 77
Dat Quoc Nguyen

Modelling Tibetan Verbal Morphology . 84
Qianji Di, Ekaterina Vylomova and Tim Baldwin

A multi-constraint structured hinge loss for named-entity recognition 90
Hanieh Poostchi and Massimo Piccardi

Feature-guided Neural Model Training for Supervised Document Representation Learning 96
Aili Shen, Bahar Salehi, Jianzhong Qi and Timothy Baldwin

Modeling Political Framing Across Policy Issues and Contexts 101
Shima Khanehzar, Andrew Turpin and Gosia Mikolajczak

Domain Adaptation for Low-Resource Neural Semantic Parsing 107
Alvin Kennardi, Gabriela Ferraro and Qing Wang

A Pointer Network Architecture for Context-Dependent Semantic Parsing 114
Xuanli He, Quan Tran and Gholamreza Haffari

Long Papers (Posters)

CNL-ER: A Controlled Natural Language for Specifying and Verbalising Entity Relationship Models120
Bayzid Ashik Hossain, Gayathri Rajan and Rolf Schwitter

ix

Measuring English Readability for Vietnamese Speakers . 130
Phuoc Nguyen and Alexandra Uitdenbogerd

Does Multi-Task Learning Always Help?: An Evaluation on Health Informatics 140
Aditya Joshi, Sarvnaz Karimi, Ross Sparks, Cecile Paris and C Raina MacIntyre

An Improved Coarse-to-Fine Method for Solving Generation Tasks 148
Wenyv Guan, Qianying Liu, Guangzhi Han, Bin Wang and Sujian Li

Short Papers (Posters)

Emerald 110k: A Multidisciplinary Dataset for Abstract Sentence Classification 156
Connor Stead, Stephen Smith, Peter Busch and Savanid Vatanasakdakul

FindHer: a Filter to Find Women Experts . 162
Gabriela Ferraro, Zoe Piper and Rebecca Hinton

Difficulty-aware Distractor Generation for Gap-Fill Items . 167
Chak Yan Yeung, John Lee and Benjamin Tsou

Investigating the Effect of Lexical Segmentation in Transformer-based Models on Medical Datasets 173
Vincent Nguyen, Sarvnaz Karimi and Zhenchang Xing

Neural Versus Non-Neural Text Simplification: A Case Study 180
Islam Nassar, Michelle Ananda-Rajah and Gholamreza Haffari

A string-to-graph constructive alignment algorithm for discrete and probabilistic language modeling 186
Andrey Shcherbakov and Ekaterina Vylomova

Shared Task (Not Peer Reviewed)

Overview of the 2019 ALTA Shared Task: Sarcasm Target Identification 192
Diego Molla and Aditya Joshi

Detecting Target of Sarcasm using Ensemble Methods . 197
Pradeesh Parameswaran, Andrew Trotman, Veronica Liesaputra and David Eyers

x

Towards A Robust Morphological Analyzer for Kunwinjku

William Lane and Steven Bird
Charles Darwin University

The Northern Institute

Abstract
Kunwinjku is a polysynthetic language spoken
in northern Australia. Members of the commu-
nity have expressed interest in co-developing
language applications which could assist in the
production of written language resources for
education and language learning. Modelling
Kunwinjku morphology is a step towards ac-
complishing these goals. We discuss some
of the modeling challenges presented by Kun-
winjku verbal morphology, and in polysyn-
thetic languages more generally. We show that
a model using standard features of the Foma
toolkit can account for much of the verb struc-
ture. Our contributions include the first mor-
phological analyzer for Kunwinjku, and a dis-
cussion of polysynthetic language features and
how they affect modelling decisions. Continu-
ing challenges include robustness in the face
of variation and unseen vocabulary, as well
as how to handle complex reduplicative pro-
cesses.

1 Introduction

Kunwinjku is an Aboriginal language of the Gun-
winyguan language family (ISO gup), spoken by
about 2000 speakers in the West Arnhem region of
northern Australia. Several Kunwinjku communi-
ties have shown interest in leveraging technology
to support the production of literacy materials and
language learning applications (Bird, 2018).

A major focus of our research group is to im-
plement language technologies that have positive
social impact, such as a morphologically-aware
dictionary which lowers the barrier to entry for
users who cannot reliably identify or spell cita-
tion forms (Hunt et al., 2019; Arppe et al., 2016),
or a tool that generates linguistic structures which
could help language learners master conjugation
and verb structure (Kazantseva et al., 2018).

One thing that these applications have in com-
mon is the need to decompose and manipulate text

at the level of morphology. In order to accom-
plish this, we must address polysynthesis, mor-
phophonemic alternations, incorporation, redupli-
cation, and long-distance dependencies. Which
aspects of morphosyntax can we model? What
are the limitations of computational approaches
for modeling polysynthetic languages more gen-
erally?

In the sections that follow, we will first give an
overview of those features of the language which
affect how we approach the modelling task (sec 2).
Next, we introduce our data sources and the met-
rics we use to evaluate performance (sec 3). This
is followed in section 4 by a detailed description
of our implementation and how we addressed the
linguistic features described in section 2. Finally,
we report accuracy and coverage on both a devel-
opment data set and a blind test set, provide an
error analysis and discussion, and conclude with
some thoughts on future directions. To our knowl-
edge, this is the first morphological analyzer for
Kunwinjku.

2 Features of Kunwinjku Verbs

We model and evaluate the morphosyntax of Kun-
winjku verbs according to Evans’ Pan-dialectal
Grammar (Evans, 2003). In this section we de-
scribe some of these features, and follow-up later
with how we account for them in the model.

2.1 Polysynthesis and Agglutination

Kunwinjku is a polysynthetic language, with verb
roots having 12 prefix slots including the sub-
ject/object/tense pronominal, directional, benefac-
tive, incorporated nominals, and comitative affixes
(Figure 1). There are 3 suffix slots for indicating
reflexivity, tense/aspect/mood, and case. (In lim-
ited cases, embedding one verb in another is al-
lowed between the −1 and 0 slots).

1

−12 −11 −10 (−9) (−8) (−7) (−6) (−5) (−4) (−3) (−2) (−1) 0 +1 +2
Tense Subject Object Directional Aspect Misc1 Benefactive Misc2 Gen.inc.nom Bod.par.inc.nom NumeroSpacial Comitative Verb Stem RR TAM

Figure 1: Verbal affix positions in Kunwinjku. Regions where indices share a cell ([−12,−10], [+1,+2]) indicate
potentially fused segments. Slot indices in parentheses indicate optionality. Adapted from (Evans, 2003, Fig 8.1).

The morphology is described as agglutinative,
almost “lego-like” (Evans, 2003; Baker and Har-
vey, 2003), though with some unusual morpho-
phonemic alternations involving glottal stop, long
distance dissimilation of peripheral nasals, and
complex types of reduplication. Additional com-
plexity can be found in the peripheral “fusion
zones” spanning slots [−12, −10] and [0, +2].

2.2 Noun Incorporation

Figure 1 shows the optional slots −4 and −3, la-
beled for the general incorporated nominal (GIN),
and the body part incorporated nominal (BPIN),
respectively. The GIN class represents a closed
set of nouns which, after losing their gender/class
and case inflections, can be injected into the verb
to satisfy valency. Consider the incorporable noun
kunrerrng “wood”, and the phrase karrimang “we
would go get.” To form the phrase “we would
go get wood” using noun incorporation, kunrerrng
loses its noun class inflection kun-, and is placed
in slot −4:

(1) a. karri-ma-ng
1pl-get-past

kun-rerrng
IV-wood

b. karri-rerrng-ma-ng
1pl-GIN.wood-get-past

‘We would go and get wood’ [E.145]

Nouns from the BPIN class perform a similar
function, with the characteristic difference of be-
ing loosely associated with the human corporal
form (an arm, a leg, your shadow, etc). Here we
see the noun kunkanj “meat,” loses its noun class
inflection kun- and is placed in the verb slot at−3:

(2) a. bi-ngu-neng
3sg.3Hsg.past-eat-past

kun-kanj
IV-meat

b. bi-kanj-ngu-neng
3sg.3Hsg.past-BPIN.meat-eat-past

‘He is eating meat’ [E.687]

Additionally, BPIN is an open class.

2.3 Valency-affecting prefixes

As can be seen in Figure 1, Kunwinjku allows for
15 morph slots to complete a verb form. Transi-
tivity of the verb is lexically defined, but there are

three morph slots which signal valency change and
affect the resulting semantic interpretation: the
benefactive (BEN), comitative (COM), and reflex-
ive (RR) (Evans, 2003; Ponsonnet, in press).

The following subsections describe the mor-
phemes which affect the valency of the verb.

2.3.1 Benefactive marne-
The benefactive prefix indicates that one of the
verb objects is the beneficiary of the action of the
verb. For example, the English verb for say in
Kunwinjku is translated as yime, and is designated
by the grammar as intransitive. Consider the case
where yime is paired with the benefactive marne-
prefix:

(3) ben-marne-yime-ng
3sg.3pl.past-BEN-say-PastPerf
‘He told them’ [E.637]

We see that this prefix opens up the intransitive
verb, in this case yime, to the possibility of taking
on the 3rd person plural object. That object can be
present in the verb itself via the pronominal or an
incorporated noun, or it could be located outside
of the verb entirely.

2.3.2 Comitative yi-
The comitative slot is located at position −1. Its
presence extends verb valency by 1. If the verb
root is intransitive, the COM indicates that the ad-
ditional object is “with” (accompaniment, not in-
strumental) the subject of the verb. For example:

(4) ben-yi-yibme-ng
3sg.3pl-COM-sink-PastPerf
‘He took them down under the water’
[E.433]

If the verb root is transitive, then it conveys the
meaning that the new argument accompanies the
object of the transitive verb. For example:

(5) nga-kole-yi-kurrme-ng
1sg.3sg-GIN.spear-COM-put.down-PastPerf
‘I left the spear with him’ [E.433]

2.3.3 Reflexive and Reciprocal -rre
Reflexivity and reciprocity are expressed using the
morph -rre in slot +1. In either case, the result is
that the valency of the verb is reduced by 1.

2

(6) bene-marne-kinjwe-rre-nj
3ua.3sg-BEN-be.jealous-RR-PastPerf

‘They were jealous of each other over
him.’ [E.430]

In this example, bene- is the 3rd person dual
subject (those two) with a 3rd person singular ob-
ject. The reflexivity occurring after the verb root
directs the action of being jealous back onto the
subject, with the indirect object (the 3sg “him”)
remaining unaffected.

2.4 Morphophonemic Considerations

Where morphs combine, there are a few mor-
phophonemic patterns to account for. The
most widespread is that of d-flapping, where
morpheme-initial d becomes rr after vowel-final
syllables. For example, the inflected form nga-
rranginj has the verb root dangen, but we see the
d has been changed to rr because it is preceded
by the syllable nga which contains a syllable-final
vowel. While this rule is fairly regular, Evans’
grammar also recognized cases where the pat-
tern doesn’t seem to apply and concludes that “a
fuller understanding of stress and prosody will be
needed before such examples can be accounted
for”. Take the verb “dirri”, “to play” for example:

(7) a. * nga-rrirri-∅
b. * nga-rridi-∅
c. nga-dirri-∅

1sg-play-nonpast

‘I play’

Another morphophonemic pattern is the dele-
tion of morpheme-initial r following apical con-
sonants rr, l, and n. In careful speech and writ-
ten Kunwinjku, this pattern is not always obliga-
tory; Evans argues that it is not evident whether
these changes should be treated as “fast-speech
phenomena” and therefore not shown in the or-
thography. The most consistent example of this
alternation that we have seen is that of r → ∅‖rr ,
which manifests itself in the example of ngarr-re
which becomes ngarre, we two go.

There are other morphophonemic changes that
occur in Kunwinjku speech, but which do not ap-
pear to be reflected in the accepted orthography.
Evans posits that since the Kunwinjku dialect has
a longer tradition of literacy (relative to other di-
alects), these changes are not usually reflected in
the written medium. Some of the phenomena that

fall into this camp are specific cases of nasal as-
similation, and peripheral dissimilation. Since the
goal of our morphological analyzer is to recog-
nize the inflected forms of written verbs, we avoid
giving a more complete description of morpho-
phonemic processes which do not impact the stan-
dard written form. It is important to note how-
ever that these processes may cause variation in
how speakers of the language write. A truly ro-
bust analyzer intended for applications like spell-
checking would need to consider such processes
as they manifest themselves in human input.

2.4.1 Reduplication

Kunwinjku has three main types of partial verbal
reduplication signalling iterative, inceptive, and
extended meaning. Moreover, each type of redu-
plication can have more than one consonant (C)
and vowel (V) reduplicative pattern, depending on
which of the 11 verb form paradigms the verb be-
longs to. See Figure 2 for details.

Computational modeling of partial reduplica-
tion in human language using finite state transduc-
ers (FSTs) has been addressed in the past (Culy,
1985; Roark et al., 2007; Dras et al., 2012), with
the general consensus being that these kinds of
partially reduplicative processes explode the state
space of the model, and are therefore highly bur-
densome to develop. More recent work addresses
these challenges using 2-way FSTs (Dolatian and
Heinz, 2018, 2019), and offers a promising future
avenue of exploration for our work with Kunwin-
jku. We include reduplication in this paper for the
sake of completeness (see Figure 2), but acknowl-
edge that a solution lies beyond the scope of this
work.

3 Data and Metrics

As mentioned previously, the grammar implemen-
tation is based on (Evans, 2003). The lexicon
was subsequently expanded using the resources
curated at kunwok.org, a website dedicated to
open sharing of content and teaching the Kunwin-
jku language (Bird and Marley, 2019), as well as
the verbs from the online Kunwinjku dictionary
at njamed.com (Garde et al., 2019). In terms of
written or digital language materials Kunwinjku is
firmly in the low-resource camp, though we are in
the favorable position of being supported by moti-
vated native speakers who work with us to clarify
questions about language data.

3

Type of reduplication Pattern(s) Unreduplicated Verb Reduplicated Verb Semantic Effect on the verb (V)

Iterative
CVC dadjke = cut dadj-dadjke = cut to pieces

Doing V over and over againCV(C)CV(h) bongu = drink bongu-bongu = keep drinking
CVnV(h) re = go rengeh-re = go repeatedly

Inceptive CV(n)(h)
yame = spear (something) yah-yame = try (and fail) to spear (something) Failed attempt to do V
durnde = return durnh-durnde = start returning Starting to do V

Extended
CVC(C) ‖ men djordmen = grow djordoh-djordmen = grow all over the place

Doing V all over the place
CVC(C) ‖ me wirrkme = scratch wirri-wirrkme = scratch all over

Figure 2: Reduplication in Kunwinjku has three forms, and each form has its own patterns defining how much of
the verb is captured and copied. In the case where we’ve used the form X ‖ Y, we mean that pattern X is the
reduplicated segment if found in the context of Y. Figure adapted from (Evans, 2003).

To construct our development corpus of in-
flected verbs, we extracted all of the Kunwinjku
examples from the reference grammar; a total of
567 glossed verbs. We further refined the list to
exclude cases of reduplication (cf 2.3.4) which left
us with 530 verbs which we used to produce a data
set to support the development of the FST.

Additionally, we glossed a small set of 114
verbs randomly sampled from the Kunwinjku
translation of the Bible, for the purpose of judging
how well the FST generalizes to another domain.
The Bible translation was recently completed in
2018, and targets the modern vernacular.

We use accuracy and coverage to measure the
effectiveness of the model on the development
data set as well as the test set.

4 Implementation

Finite state transducers are viewed as an ideal
framework to model morphology (Beesley and
Karttunen, 2003; Chen and Schwartz, 2018; Lach-
ler et al., 2018). Our FST was implemented us-
ing the Foma toolkit (Hulden, 2009) which is
a popular framework for building morphologi-
cal analyzers for polysynthetic languages (Chen
and Schwartz, 2018; Moeller et al., 2018; Littell,
2018). The definition of an FST in Foma is com-
prised of a lexicon implemented in the .lexc for-
mat, and a .foma file for defining rules covering
regular morphophonemic changes. The final FST
is produced by composing the FSTs defined in
both files.

4.1 The .lexc file

The .lexc file contains definitions of lexicon
groups corresponding to morphological units of
the language. Lexical entries of the group are
listed below the group definition. Each entry in
the lexicon is paired with its continuation class
which defines legal paths through the FST, enforc-
ing valid sequences of morphs. Figure 3 gives a

LEXICON TSOPreBase
[V] [1 sg . n o n p a s t] : nga GINPreBase ;

LEXICON GINPreBase
[GIN] : 0 IncNounBase ;
0 Pos tNomina l ;

LEXICON IncNounBase
0 : k a n j Pos tNomina l ;

LEXICON Pos tNomina l
@R. TYPE .VERB@ I n t r a n s V e r b s ;

LEXICON I n t r a n s V e r b s
ngu V 3 I r r P o s t B a s e ;

LEXICON V 3 I r r P o s t B a s e
[NonPst] : n # ;

Figure 3: Lexicon groups are defined in the .lexc file
using the LEXICON keyword. Valid paths through lex-
icons are defined on an entry-by-entry basis. Here each
lexicon only has one entry, and there is only one path
through the graph. The accept state in the graph is sig-
naled by the # character.

stripped-down example of this by implementing a
.lexc file capable of mapping the inflected Kun-
winjku verb ngakanjngun, “I am eating meat”, to
its analysis: 1sg.nonpast-GIN.meat-eat-nonpast.

In general, slot positions in the grammar map-
ping to lexicons in the implementation have a one-
to-many relationship, that is, one slot can be satis-
fied by an entry from one of many lexicon groups.
In the example of Figure 3, we show only 4 lexi-
cons filling 4 of the available 16 positions: TSO-
Prebase corresponding to the entry which fuses
the morph positions spanning indices [−12,−10],
GINPrebase corresponding to the morph position
at index −4, IntransVerbs corresponding to the
verb root at index 0, and V3IrrPostBase corre-
sponding to the suffix at index +2. Our com-
plete implementation contains 63 lexicons, each
of which map to one of the 16 slots defined in the
grammar.

4

Start

V
PreBase

N
PreBase NBase

VBase
V

PostBase

End

Figure 4: A high-level overview of the morphologi-
cal analyzer. Verbal prefix lexicons are represented by
VPreBase, verb root lexicons are represented by VBase,
and verbal suffixes are represented by VPostBase.

4.1.1 Noun Incorporation
We handle noun incorporation similarly to Chen
and Schwartz (2018): we allow transitions from
states in the verbal pre-base lexicons (specifically,
the GIN and BPIN slots) to the noun base lexicon
(see Figure 4). We use flag diacritics to enforce
constraints on word type: if the word begins with
verbal morphology and crosses into the noun base
via incorporation, it can only be recognized as a
valid string if it also ends with verbal post-base
morphology.

As described in Figure 3, we define GINPre-
Base as a lexicon which points to the IncNoun-
Base class, which enumerates the closed class of
incorporable nouns. Similarly, we define a lexicon
named BPINPreBase representing the open class
of body part nouns which can be incorporated, and
which fill the optional position at index −3.

4.1.2 Tense Agreement
The inflected Kunwinjku verb requires agreement
between tense in the pronominal prefix and the
TAM suffix. To address this we need to dis-
criminate between ambiguous paths in the FST
based on a feature value that is set at some
node in the graph and persists to enforce agree-
ment downstream. In Foma, we use flag dia-
critics to implement this. Flag diacritics take
the form of @FLAGTYPE.FEATURE.VALUE@
where FLAGTYPE defines the behavior of the flag,
selected from the set of predefined flag types, and
FEATURE and VALUE must be defined by the
user (Hulden, 2011). We make use of flag types
P and R in our implementation of tense agree-
ment. P defines the action of setting FEATURE
to VALUE and R defines the action of requiring

that FEATURE equal VALUE in order to remain a
valid path.

We define the following tags to enforce tense
agreement:

1. @P.TENSE.PAST@

2. @P.TENSE.NONPAST@

3. @R.TENSE.PAST@

4. @R.TENSE.NONPAST@

To see how this works in the .lexc format,
we update the example in Figure 3 to reflect
the enforcement of tense agreement between the
pronominal and the tense inflection on the verb
using flag diacritics (Figure 5). Notice how
@P.TENSE.PAST@ is present before the continu-
ation class transitions in the new TSOPreBase lex-
icon: this effectively labels all paths proceeding
from this point as having the attribute TENSE set
to a value of PAST, indicating that this path will
agree with any attempt to enforce agreement with
a past tense. Indeed, at the bottom of Figure 5 we
see the @R.TENSE.PAST@ diacritic on both the
up and down side of the transducer, indicating that
in either direction1 if we match the morphological
entry, the path we’ve taken must also match the
TENSE flag feature value in order for the analysis
to be valid.

4.1.3 Valency Agreement
As described in 2.3, the valency of the verb is
affected by the presence of certain prefixes: the
benefactive marne-, the comitative yi- and the re-
flexive rre-. Our initial belief was that in order to
analyze an inflected verb in Kunwinjku, it would
be necessary to model these valency changes. We
saw no reason to allow the FST to generate anal-
yses which seemed to demonstrate valency im-
balance in either the direction of over-saturation
or under-saturation. For example, the following
verbs seem to provide too many or too few argu-
ments:

(8) bi-marne-bong-yo-y
3sg.3Hsg.past-BEN-GIN.string-lie-PP

+2 −1 +1 −1 0

‘He had the string lying there for her’
[E.429]

1If you label a continuation class with a flag diacritic, it
has the same effect as if you explicitly label both sides of the
FST up/down transitions inside that continuation class with a
diacritic flag.

5

LEXICON Root
@P. TYPE .VERB@ TSOPreBase ;

LEXICON TSOPreBase
@P. TENSE .PAST@ S i n g l e I n t r a n s P a s t T S O ;

LEXICON S i n g l e I n t r a n s P a s t T S O
[V] [1 sg . p a s t] : nga GINPreBase ;

LEXICON GINPreBase
[GIN] : 0 IncNounBase ;
0 Pos tNomina l ;

LEXICON IncNounBase
0 : k a n j Pos tNomina l ;

LEXICON Pos tNomina l
@R. TYPE .VERB@ I n t r a n s V e r b s ;
@R. TYPE .NOUN@ # ;

LEXICON I n t r a n s i t i v e V e r b s
ngu V 3 I r r P o s t B a s e ;

LEXICON V 3 I r r P o s t B a s e
@R. TENSE .PAST@[NonPst] :@R. TENSE . PAST@n # ;

Figure 5: Updating our .lexc file to constrain possible
paths through the FST based on the value of the TENSE
feature. Shown also is a diacritic enforcement of word
type in the PostNominal lexicon.

(9) ∅-djare-ni
3sg.past-want-PastImperf

+1 −2 0

‘He was wanting ’ [E.229]

However, both of the above examples are valid.
In these glossed examples, we’ve added a row un-
der the morpheme analysis to mark which mor-
phemes satisfy valency (+1 if it represents 1 ob-
ject, +2 if it represents 2 objects), morphs which
increase the valency of the verb (−1 if it demands
1 object, etc), and morphs which have no effect
on valency (0). This allows us to do the simple
arithmetic to convince ourselves that (9) is over-
saturated, while (10) is under-saturated.

In (9), we have a subject (“he”) and two object
candidates (“her” and “the string”). The verb root
“yo” (“to lie”) is inherently intransitive, and the
presence of marne- opens up room for the verb
to take an additional argument as the benefactor:
“her”. In this instance, the verb appears to be sat-
urated, leaving “the string” to act rather as spec-
ification of the verb “yo”. As this case shows,
ambiguity around when an incorporated nominal
is acting as an object rather than providing refer-
ential specification impedes the attempt to model
valency based on surface form morphology alone.

In (10), the object of the transitive verb for want
is not incorporated, but exists in the wider senten-
tial context. This implies that valency cannot be
disambiguated without reference to syntactic con-
text. Indeed, a syntactic concept can be expected
to have syntactic scope, and it is not uncommon
for languages containing valence-altering morphs
to provide valence-satisfying objects outside of
the verb (Haspelmath and Müller-Bardey, 2004).
In light of this, we decided to take a permissive
stance, allowing valence-imbalanced analyses at
the level of individual verbs.

4.2 The .Foma File

The .Foma file is the place to encode
morphophonological rules in the form of
A→ B‖Γ ∆, ie “A changes to B in the con-
text Γ ∆”, where A and B are orthographic
symbols representing phonemes which alternate
in the given context. These rules define an FST
which can then be composed with the lexicon
FST defined in the .lexc file, resulting in a final
FST representing the complete grammar. Since
Kunwinjku is largely agglutinative, with relatively
little morphophonemic change to account for.
This makes the content of our .Foma file a rela-
tively simple composition of three parts: A list of
special symbols we define to make our rules more
compact, an enumeration of allophonic rules, and
finally the composition of the lexicon with the
rules to produce the final grammar.

In Figure 6 we give a Foma file that maps the
intermediate from karriˆbimˆbuˆ~om to the cor-
rect final surface form, karribimbom. First, the
DeletePrecedingVowel rule is activated by the ob-
servation of a vowel “u” followed by the mor-
pheme boundary marker “ˆ” and the “~”, which
is an arbitrary symbol we encode in the lexicon
to indicate that the TAM inflection om tends to
override any final vowel in the preceding mor-
pheme. The context is recognized, and the vowel
is deleted (changes to 0) followed by deletion of
the “~” itself. Application of this first rule now
yields karriˆbimˆbˆom. But we aren’t done yet: the
cleanup step occurs with the CleanMorphBound-
aries rule, which recognizes the “ˆ” symbol in any
context, and deletes it. We now have the final form
karribimbom; “we painted”.

6

r e a d l e x c kunwok . l e x c
d e f i n e Lexicon ;

d e f i n e V [a | e | i | o | u] ;

d e f i n e CleanMorphBoundar ies ” ˆ ” −> 0 ;

d e f i n e D e l e t e P r e c e d i n g V V −> 0 | | ” ˆ ” ” ˜ ” . o .
” ˜ ” −> 0 ;

.

.

.

d e f i n e FlapChange ” (r r) ” −> r r | | V ” ˆ ” . o .
” (r r) ” −> d ;

d e f i n e Grammar Lexicon . o .
D e l e t e P r e c e d i n g V . o .

. . o .

. . o .

. . o .
FlapChange . o .
CleanMorphBoundar ies ;

r e g e x Grammar ;

Figure 6: An example of our .Foma file. We define
phonemic rules which are applied to the Lexicon FST
by composition, which produces a new and final FST
named Grammar

5 Evaluation

The final FST implements the rules required to
produce verbs in Kunwinjku. This includes 157
pronominal entries (including variations reflecting
combinations of tense and transitivity), 23 adver-
bial/aspective/quantitative modifiers of the verb,
77 general incorporable nouns (a closed class),
31 body part incorporable nouns (an open class),
541 verb roots, and 124 TAM inflection possibil-
ities. As mentioned in section 3, we extracted
530 inflected verb forms from the Evans’ gram-
mar which we used to optimize coverage and ac-
curacy. Accuracy in this context refers to the num-
ber of correct analyses out of the set of analysis the
FST attempted. We calculate it this way to avoid
double-counting information already captured in
the coverage metric. Those numbers are shown
in Figure 8, along with the reported performance
over the test set.

6 Discussion

In order to better understand the performance of
the FST, we analyzed the coverage and accuracy
on the Bible dataset and identified four classes
of error: missing verb root, missing incorporated
nominal, irregular inflection patterns, and redupli-
cation (see Fig 7).

The most common error type is missing verb
root, which represents 47% of errors. Similarly,

missing incorporated noun, which accounts for
another 29%, for a total of 76% of errors due to
missing lexical entries. We posit that while it may
be possible to infer unseen roots by recognizing
the surrounding inflection and stripping it away,
the presence of unseen incorporated nouns which
attach directly to the verb root have the potential
to complicate the matter. However, stemming like
this would be sufficient for automatically discov-
ering potential verb roots from unannotated text,
which can then be verified by language experts
prior to adding them to the lexicon.

Reduplication represents 18% of errors. As
we discussed in 2.3.4, there are potential solu-
tions including 2-way FSTs (Dolatian and Heinz,
2018, 2019), and the possibility that neural ap-
proaches to morphological analysis could learn to
recognize reduplication through supervised learn-
ing (Micher, 2017; Moeller et al., 2018; Schwartz
et al., 2019). It would be interesting to observe a
similar error analysis on a much larger sample size
to see if this rate of reduplicative structure holds,
and to get an idea for the relative distribution of
reduplicative structure in Kunwinjku.

The least common class of error contained a sin-
gle instance: Irregular inflection pattern. Here, a
path through the FST could not be found because
we come across irregular variation of the TAM in-
flection. Whether this represents an entire class of
error or is caused by simple orthographic variation
is unknown: the question requires a larger sample
size and consultation with language experts.

7 Conclusion

Kunwinjku is low-resource Australian language
for which we would like to develop useful lan-
guage learning applications. Being able to model
the rich verbal morphology is an important step to-
wards that goal. In this work, we identified several
areas of Kunwinjku morphology which fit well
within the framework of finite state transduction,
and some for which a different approach may be
better suited to the task. FSTs do well at handling
the templatic structure of polysynthetic morphol-
ogy. For languages which exhibit high rates of al-
lomorphy and morphophonemic change, the abil-
ity to compose multiple FSTs into a final grammar
has been shown to be quite effective (Chen and
Schwartz, 2018; Littell, 2018).

The most significant shortcomings of our FST
are expanding the lexicon, accounting for redupli-

7

Verb Form Meaning/Problem

Missing Verb Root - 47%

ngurrimirndemornnamerren bear/place on the shoulders
wobekkang variation of bekkan; to hear about
ngakohbanjminj become an old person
ngarrukkendi variation of dukkan; tie up; put in handcuffs
ngadjareniwirrinj variation of djare; to want
yidjareniwirrinj variation of djare; to want
kamenyime variation of menmenyime; to mean
yiwernhmarnedjarenin variation of marnedjare; to love somebody

Missing Inc. Noun - 29%

yibenkangemarnbom heart
kankangemurrngrayekwong heart
kannjilngmarnbom feelings
yimalngdarrkiddi soul
kankangemarnbom heart

Reduplication - 18%
burrbuhburrbun keep thinking
djawahdjawan keep asking; plead
djawahdjawani keep asking; plead

Irreg. TAM Inflection - 8% ngayimerranj expected past perfect -inj TAM suffix

Figure 7: The inflected verbs from the Bible test set for which the FST had no analysis, sorted into one of the four
buckets for error analysis. The bold substrings are the morphs which the FST could not account for.

Coverage Accuracy
Kunwinjku Bible-Test 85.09 97.94
Evans Grammar-Dev 97.17 95.28

Figure 8: Coverage and accuracy of the FST model of
verbs in Kunwinjku. The Evans Grammar represents
the data we optimised our FST against. The Kunwinjku
Bible data is a blind test set.

cation, and being robust in the face of variation in
form and orthography.

Additionally, we could have benefitted from a
much larger annotated test set. While the Bible set
was sufficient to point out the issue of lexicon cov-
erage in our FST, more data could help solidify the
relative importance of the other much smaller er-
ror classes. It could also give us more insight into
the distribution of other constructions in Kunwin-
jku, which may inform the pedagogical aspect of
designing language learning applications in a low-
resource setting.

In future work we hope to expand the lexicon
of this tool in parallel with developing other ap-
proaches to morphosyntactic analysis. Specifi-
cally, recent work in bootstrapping recurrent neu-
ral models using an FST to generate training ex-
amples has showed significant increase in cov-
erage and accuracy in other polysynthetic envi-
ronments (Micher, 2017; Moeller et al., 2018;
Schwartz et al., 2019).

Acknowledgments

We are grateful for the support of the Warddeken
Rangers of West Arnhem. We thank Maı̈a Pon-
sonnet for her valuable insights into Gunwinyguan
morphology, syntax and semantics. We also thank
Alexandra Marley for contributing her expertise
on Kunwinjku morphosyntax. This research has
been supported by grants from the Australian Re-
search Council and the Indigenous Languages and
Arts Program of the Federal Department of Com-
munication and the Arts. Finally, we would like
to thank the three anonymous reviewers for their
constructive feedback.

References
Antti Arppe, Jordan Lachler, Trond Trosterud, Lene

Antonsen, and Sjur N Moshagen. 2016. Basic lan-
guage resource kits for endangered languages: A
case study of Plains Cree. Collaboration and Com-
puting for Under-Resourced Languages: Towards
an Alliance for Digital Language Diversity, pages
1–8.

Brett Baker and Mark Harvey. 2003. Word Structure
in Australian Languages. Australian Journal of Lin-
guistics, 23:3–33.

Kenneth R Beesley and Lauri Karttunen. 2003. Finite-
state morphology: Xerox tools and techniques.
CSLI, Stanford.

Steven Bird. 2018. Designing mobile applications for

8

endangered languages. In The Oxford Handbook of
Endangered Languages. Oxford University Press.

Steven Bird and Alex Marley. 2019. Kunwok.org.
https://kunwok.org/. Accessed: 2019-08-
30.

Emily Chen and Lane Schwartz. 2018. A morpho-
logical analyzer for St. Lawrence Island / Central
Siberian Yupik. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation, Miyazaki, Japan. European Language
Resources Association.

Christopher Culy. 1985. The complexity of the vocab-
ulary of Bambara. In The Formal Complexity of Nat-
ural Language, pages 349–357. Springer.

Hossep Dolatian and Jeffrey Heinz. 2018. Modeling
reduplication with 2-way finite-state transducers. In
Proceedings of the Fifteenth Workshop on Computa-
tional Research in Phonetics, Phonology, and Mor-
phology, pages 66–77, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Hossep Dolatian and Jeffrey Heinz. 2019. Learn-
ing reduplication with 2-way finite-state transducers.
In International Conference on Grammatical Infer-
ence, pages 67–80. Proceedings of Machine Learn-
ing Research.

Mark Dras, François Lareau, Benjamin Börschinger,
Robert Dale, Yasaman Motazedi, Owen Rambow,
Myfany Turpin, and Morgan Ulinski. 2012. Com-
plex predicates in Arrernte. In Proceedings of the
LFG12 Conference, pages 177–197. CSLI Publica-
tions.

Nicholas Evans. 2003. A Pan-dialectal Grammar of
Bininj Gun-Wok (Arnhem Land): Mayali, Kunwin-
jku and Kune. Canberra: Pacific Linguistics.

Murray Garde, Jill Nganjmirra, and Dan Kennedy.
2019. Bininj Kunwok Dictionary. njamed.com.
Accessed: 2019-07-19.

Martin Haspelmath and Thomas Müller-Bardey. 2004.
Valency change. In Geert Booij, Christian
Lehmann, and Joachim Mugdan, editors, Morphol-
ogy: A Handbook on Inflection and Word Formation,
pages 1130–45. de Gruyter Berlin; New York.

Mans Hulden. 2009. Foma: a finite-state compiler and
library. In Proceedings of the 12th Conference of
the European Chapter of the Association for Com-
putational Linguistics, pages 29–32. Association for
Computational Linguistics.

Mans Hulden. 2011. Morphological analysis tutorial:
A self-contained tutorial for building morpholog-
ical analyzers. https://fomafst.github.
io/morphtut.html. Accessed: 2019-09-30.

Benjamin Hunt, Emily Chen, Sylvia Schreiner, and
Lane Schwartz. 2019. Community lexical access

for an endangered polysynthetic language: An elec-
tronic dictionary for St. Lawrence Island Yupik. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics, pages 122–126, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Anna Kazantseva, Owennatekha Brian Maracle,
Ronkwe’tiyóhstha Josiah Maracle, and Aidan
Pine. 2018. Kawennón:nis: the wordmaker for
Kanyen’kéha. In Proceedings of the Workshop
on Computational Modeling of Polysynthetic Lan-
guages, pages 53–64, Santa Fe, USA. Association
for Computational Linguistics.

Jordan Lachler, Lene Antonsen, Trond Trosterud, Sjur
Moshagen, and Antti Arppe. 2018. Modeling North-
ern Haida verb morphology. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation, Miyazaki, Japan. European
Language Resources Association.

Patrick Littell. 2018. Finite-state morphology for
Kwak’wala: A phonological approach. In Proceed-
ings of the Workshop on Computational Modeling
of Polysynthetic Languages, pages 21–30, Santa Fe,
USA. Association for Computational Linguistics.

Jeffrey Micher. 2017. Improving coverage of an Inuk-
titut morphological analyzer using a segmental re-
current neural network. In Proceedings of the 2nd
Workshop on the Use of Computational Methods in
the Study of Endangered Languages, pages 101–
106, Honolulu. Association for Computational Lin-
guistics.

Sarah Moeller, Ghazaleh Kazeminejad, Andrew Cow-
ell, and Mans Hulden. 2018. A neural morphologi-
cal analyzer for Arapaho verbs learned from a finite
state transducer. In Proceedings of the Workshop
on Computational Modeling of Polysynthetic Lan-
guages, pages 12–20, Santa Fe, USA. Association
for Computational Linguistics.

Maı̈a Ponsonnet. in press. Comitative applicative con-
structions and their “transfer” extensions in Dal-
abon and other Gunwinyguan languages (non-Pama-
nyungan, Australia). In Myriam Bouveret, editor,
A Contrastive study of Give Constructionalization.
John Benjamins Publishing Company, Amsterdam.

Brian Roark, Richard Sproat, and Richard William
Sproat. 2007. Computational approaches to mor-
phology and syntax, volume 4. Oxford University
Press.

Lane Schwartz, Emily Chen, Benjamin Hunt, and
Sylvia Schreiner. 2019. Bootstrapping a neural mor-
phological analyzer for St. Lawrence Island Yupik
from a finite-state transducer. In Proceedings of the
3rd Workshop on the Use of Computational Meth-
ods in the Study of Endangered Languages Volume
1, pages 87–96, Honolulu. Association for Compu-
tational Linguistics.

9

From Shakespeare to Li-Bai:
Adapting a Sonnet Model to Chinese Poetry

Zhuohan Xie Jey Han Lau Trevor Cohn
The University of Melbourne

zhuohanx@student.unimelb.edu.au jeyhan.lau@gmail.com t.cohn@unimelb.edu.au

Abstract
In this paper, we adapt Deep-speare, a joint
neural network model for English sonnets, to
Chinese poetry. We illustrate the characteris-
tics of Chinese quatrain and explain our archi-
tecture as well as training and generation pro-
cedure, which differs from Shakespeare son-
nets in several aspects. We analyse the gen-
erated poetry and find that the adapted model
works well for Chinese poetry, as it can: (1)
generate coherent 4-line quatrains of different
topics; and (2) capture rhyme automatically to
a certain extent.

1 Introduction
Classical poetry is an important Chinese cultural
heritage and holds great value. The most popular
poetry type is quatrain. Table 1 shows a seven-
character quatrain written by Li Bai, one of the
most famous poets in Chinese history, which we
will use to explain characteristics of Chinese qua-
train.

First, a Chinese quatrain must contain four sen-
tences where each sentence has the same number
(five or seven) of characters. Usually, these sen-
tences follow the “introduction, follow-up, transi-
tion and conclusion” mode, which means the first
sentence starts a topic, the second continues it, then
the third sentence extends it to a new realm and the
last provides a summarisation (Wang, 2002). The
rhythmic scheme in Chinese quatrain is simple: the
last characters of the second and fourth sentences
should rhyme. Optionally, the last character of the
first sentence can also rhyme with them, as the qua-
train shows in Table 1. As for tone, each character
contains one single syllable and there are two tones
for middle Chinese (Pulleyblank, 2011): “Ping”
(level tone) or “Ze” (downward tone). Generally,
tones at the same positions of two adjacent sen-
tences are opposite and four common tonal pat-
terns are illustrated in Wang (2002). Character

望庐山瀑布
【唐】李白

日照香炉生紫烟， * Z P P Z Z P
遥看瀑布挂前川。 * P * Z Z P P
飞流直下三千尺， * P * Z P P Z
疑是银河落九天。 * Z P P Z Z P

Waterfall on Mount Lu
Li Bai

The Sunlit Censer peak exhales
a wreath of cloud.

Like an unpended stream
the waterfall sounds loud.
Its torrent dashes down

three thousand feet from high.
As if the Silver River fell from azure sky.

Table 1: A 7-character Tang Quatrain by Li Bai.

tone is indicated in Table 1 where ‘P’ indicates
“Ping”, ‘Z’ refers to “Ze” and ‘*’ means this char-
acter can be either tone.

Following all these constraints, a well-written
Chinese quatrain are full of rhythm while express-
ing abundant emotions.

1.1 Motivation
Inspired by Deep-speare (Lau et al., 2018), a joint
neural network model that is trained on English
sonnets to generate quatrains in iambic pentame-
ter (Halle and Keyser, 1971), we seek to adapt this
model to poetry in other languages. The abun-
dance of Chinese quatrain and its important cul-
tural status makes it a natural choice.

We analyse the similarity between characteris-
tics of English sonnets and Chinese quatrains and
found it is possible to adapt the model to Chinese
as the language model can be modified to handle
Chinese characters.

Lau et al. (2018) found that a vanilla language

10

model can learn meter automatically at human
level performance after it was trained on 2K son-
nets. Given this, we have the expectation that the
adapted language model should learn to generate
quatrains with reasonable rhythm after we train it
with sufficient data.

1.2 Contribution
The main contributions of the paper are:

1. We adapt Deep-speare to generate Chinese
quatrains; source code of our adapted model
is available at: ANONYMISED.

2. We find that our model is able to learn rhyme
patterns automatically and can generate co-
herent quatrains of various topics; native
Chinese speakers are unable to distinguish
the best machine generated quatrains from
human-written ones.

3. Our model is able to maintain originality in
that BLEU scores and longest matching sub-
string demonstrate the quatrains are not too
similar to the training corpus.

2 Related Work
Poetry generation is a challenging task in Natu-
ral Language Processing. Many approaches were
proposed to solve such problem, among which,
the earliest methods were based on templates and
rules. It requires users to provide keywords or titles
and a rhyming template so the system can expand
words and fill them into the user-selected template.
This method is used in several successful poetry
generation services, for instance, the haiku genera-
tion system of Wu et al. (2009) extracts rules from
corpus and expand keywords from users to gener-
ate haiku sentences based on rules.

Another influential approach for Chinese qua-
train generation is statistical machine translation
(SMT). It is first utilised to generate Chinese cou-
plets, which can be regarded as a special qua-
train comprised of two sentences (Jiang and Zhou,
2008). They take the first sentence as input from
users and generate an N-best list of second sen-
tence candidates via a phrase-based SMT decoder.
This method is extended by He et al. (2012) to gen-
erate Chinese quatrains where users are asked to
provide the first sentence as input and then the sys-
tem “translates” three following sentences based
on the previous sentences.

Recently, neural networks are the predominant
technique in the literature. Zhang and Lapata
(2014) propose using recurrent neural networks
(RNN) to generate the poem sentence by sentence.
However, the model they provide is rather com-
plex as it has one CNN and two RNNs, and it
still observes theme drift when generating long se-
quences. To solve these problems, Wang et al.
(2016) propose a simpler neural model which
treats the whole poem as a character sequence.
This approach can be easily extended to generate
other genres such as Song Iambics or Haiku and
they utilise the attention mechanism (Bahdanau
et al., 2014) to avoid theme drift.

The closest work to our study is Deep-speare,
which is a joint neural model designed for En-
glish sonnets. Deep-speare has 3 components: a
language model, a pentameter model and a rhyme
model. The language model is an LSTM encoder-
decoder with attention that generates word by word
and the pentameter model is trained to learn the
iambic pentameter, an alternating stress pattern
that sonnets exhibit. The rhyme model is opti-
mised to separate rhyming word pairs automati-
cally from non-rhyming ones in quatrains, which
can help to enforce rhyme when generating the
quatrains. All models are trained together (as a
multi-task model), and the authors found that the
model can generate sonnet quatrains with good
stress and rhyme patterns.

3 Dataset

We source our poem dataset from Zhang and Lap-
ata (2014), and use a modern Chinese pinyin dic-
tionary1.

3.1 Overview
We choose to use Tang quatrains as the Tang dy-
nasty is one of the most famous dynasties for Chi-
nese quatrains. We filter out non-quatrains from
the Tang poetry collection and keep 2, 349 five-
character and 7, 219 seven-character quatrains for
our experiments. We sample 80% of the quatrains
for training, 10% for development and 10% for test.
Dataset statistics for each partition is presented in
Table 2. There are 4, 484 unique characters in the
full quatrain dataset (9, 568 quatrains in total) and
our training partition has a coverage of 4, 283 char-
acters.

1https://github.com/DevinZ1993/Chinese-Poetry-
Generation

11

Partition #Qs #Chs #UniChs
Train (5-ch) 1879 38k 2785

Train (7-ch) 5775 162k 4091

Dev (5-ch) 235 5k 1279

Dev (7-ch) 722 20k 2385

Test (5-ch) 235 5k 1277

Test (7-ch) 722 20k 2325

Total 9568 249k 4484

Table 2: Dataset statistics. “Qs” denotes quatrains,
“Chs” characters and “UniChs” unique characters.

To pre-train the word embeddings, we use ap-
proximately 300k quatrains from the full collec-
tion (quatrains in the development and test parti-
tion are excluded). The word embedding is trained
per character, where each line in the quatrain is
treated as a sentence and each character is treated
as a word. We also tried jieba (Sun, 2012), a Chi-
nese segmentation tool to tokenise phrases accord-
ing to ShiXueHanYing (Liu, 1735), a poetic phrase
taxonomy. We found that in preliminary experi-
ments that the approach did not work well, and we
hypothesise that this may be because classical po-
ets compose their poems in a succinct manner by
using minimum characters, and so each character
is meaningful and can be treated as a word.

3.2 Rhyme Analysis
In total, 4, 484 unique characters exist in the
whole quatrain corpus, and only some of them are
rhyming characters that appear at the end of sen-
tences. We analyse the number of rhyme com-
binations (i.e. rhyme tuples and triples) for each
partition in Table 3. 2, 450 unique rhyme tuples
and 2, 882 unique rhyme triples exist for seven-
character quatrains and 1, 034 unique rhyme tuples
and 244 unique rhyme triples appear in the five-
character quatrains. We take into account of the
order of rhyme combinations, for instance, (‘尘’,
‘春’, ‘人’) and (‘春’, ‘尘’, ‘人’) are considered dif-
ferent.

One interesting observation is that although the
proportion of rhyme tuples in both five-character
and seven-character quatrains is about the same
(80%), the proportion of triples in seven-character
quatrains is nearly 60%, which is much higher than
that of five-character quatrains (13%).

We show the 5 most common rhyme tuples and
triples in Table 4. We find that seven-character
quatrains largely limit their rhyming patterns to
the same words such as ‘尘’ (chen), ‘春’ (chun),
‘人’ (ren), ‘新’ (xin), ‘身’ (shen).2 By contrast,
five-character quatrains have more variations for
rhyming patterns, e.g. ‘道’ (dao), ‘老’ (lao), ‘草’
(cao) and ‘卮’ (zi), ‘辞’ (ci), ‘离’ (li).

4 Architecture
The original Deep-speare contains language
model, rhyme model and pentameter model (Lau
et al., 2018), here we only extend vanilla language
model to work on Chinese quatrains where we
treat each Chinese character as an individual word.

4.1 Language Model
The language model is a variant of an LSTM
encoder-decoder where the encoder encodes pre-
vious sentences and the decoder predicts the next
character in the current sentence, while attending
to the encodings of previous sentences. Figure 1
shows the process of predicting the second sen-
tence from the example in Table 1 where the en-
coder encodes the first sentence (bottom charac-
ters of Figure 1) while the decoder predicts the sec-
ond sentence per character and each character (top-
right of Figure 1) is generated based on its previ-
ous one (top-left of Figure 1) beginning from <s>,
the sentence starting symbol. The encoder encodes
first two sentences when decoder predicts the third
sentence.

The encoder first uses a shared character embed-
ding matrix Wchar to embed the first sentence Si

to character vectors Xi. Then Xi is fed into a sin-
gle layer bidirectional LSTM (Gers et al., 1999) to
yield a sequence of hidden states hi = [

−→
hi ;
←−
hi].

Then selective encoding (Zhou et al., 2017) is ap-
plied to each hi to filter out less useful information.
We use the last forward hidden state concatenated
with the first backward hidden state to represent the
whole sentence h = [

−−→
h−1;

←−
h1] (h−1 here means the

last hidden state). The selective encoding filters
out information from each hidden state hi using h
by the following equation:

h′
i = hi ⊙ σ(Wahi + Uah + ba)

where⊙ indicates element-wise multiplication and
W , U and b refer to model parameters.

2The pinyin of the characters largely follow ‘人辰韵’ pat-
tern (‘en’，‘in’，‘ün’).

12

Partition #Quatrains #Tuples %Tuples #Triples %Triples
Train (5-ch) 1879 1491 79.35 258 13.73

Train (7-ch) 5775 4769 82.58 3440 59.57

Dev (5-ch) 235 186 79.15 24 10.21

Dev (7-ch) 722 597 82.67 427 59.14

Test (5-ch) 235 184 78.30 30 12.77

Test (7-ch) 722 604 83.66 438 60.66

Total 9568 7831 81.85 4617 48.25

Table 3: Rhyme proportion in human-written quatrains.

R Tuple F Triple F
1 (‘春’, ‘人’) 31 (‘人’, ‘氛’, ‘云’) 2

2 (‘深’, ‘心’) 18 (‘道’, ‘老’, ‘草’) 2

3 (‘开’, ‘来’) 15 (‘草’, ‘道’, ‘老’) 2

4 (‘人’, ‘春’) 12 (‘半’, ‘远’, ‘转’) 2

5 (‘来’, ‘开’) 9 (‘卮’, ‘辞’, ‘离’) 2
(a) 5-char

R Tuple F Triple F
1 (‘春’, ‘人’) 95 (‘尘’, ‘春’, ‘人’) 22

2 (‘身’, ‘人’) 57 (‘春’, ‘尘’, ‘人’) 16

3 (‘尘’, ‘人’) 49 (‘春’, ‘新’, ‘人’) 13

4 (‘开’, ‘来’) 42 (‘春’, ‘身’, ‘人’) 11

5 (‘家’, ‘花’) 37 (‘新’, ‘春’, ‘人’) 11
(b) 7-char

Table 4: Top-5 rhyme combinations in human-written quatrains. “R” denotes rank and “F” denotes frequency.

The decoder embeds the current sentence St

with the same shared character embedding matrix
Wchar to generate character vectors Xt and feed
them into a unidirectional LSTM to produce the
decoding state st:

st = LSTM(Xi, st−1)

To attend to the encodings of previous sentences
(h′

i), we compute a weighted sum (h∗
t) as follows:

et
i = vT

b tanh(Wbh
′
i + Ubst + bb)

at = softmax(et)

h∗
t =

∑

i

at
ih

′
i

Finally, st and h∗
t are combined by a gating unit

(Chung et al., 2014) to generate state s′
t and fed into

the output layer where softmax activation is used to
yield a probability distribution over the character
vocabulary.

s′
t = GRU(st, h

∗
t)

p = softmax(Wouts
′
t + bout)

We use standard cross-entropy loss to optimise
the model and dropout as regularisation.

To reduce the number of parameters, the output
matrix Wout is obtained from Wchar via a projec-
tion matrix Wproj :

Wout = tanh(WcharWproj)

4.2 Training Procedure
We combine five-character and seven-character
quatrains together for training. In preliminary ex-
periments we found that the model works better if
we train quatrains from right to left, i.e. instead
of generating starting with <s> to predict the first
character and so on, we generate from </s>, the
ending symbol, to predict the last character and
generate backwards terminating with <s>. The
context from the encoder is modified accordingly,
and it does not encode the first sentence as shown in
Figure 1. It instead encodes the last two sentences
in reverse order for the second sentence. We think
this is better way because: (1) the rhyme charac-
ters appear at the end of sentences, and it would
be better if the model produces them first; and
(2) for noun compounds (e.g. adjective+noun),

13

x1 x2 x3 x4 x5 x7x6

⽇ 照 ⾹ 炉 ⽣ 紫 烟

h1 h2 h3 h4 h5 h6 h7

Selective Encoding

x1 s1

x2 s2

x3 s3

<s>

遥

看

h1 h2 h3 h4 h5 h6 h7

s1

s2

s3

遥

看

瀑

Figure 1: Architecture of the language Model

generating the last character first is a more sen-
sible approach, as it limits the choices of adjec-
tive. For instance, 青山 (green mountain), 青龙
(green dragon),青草 (green grass) are all frequent
phrases in Chinese quatrains. The adjective would
be 青 (green) if 草 (grass) is generated first. On
the other hand, if青 (green) is generated first, then
there are many words that can appear after it, com-
plicating the prediction.

We tune hyper-parameters of the model based
on its performance on the development partition.
We train the model for 30 epochs and use the Ada-
grad optimiser (Duchi et al., 2011). We pre-train
CBOW (Mikolov et al., 2013a,b) embeddings on
the full poetry collection, as described Section 3.1.
The embeddings are updated during training. We
set the learning rate to 0.2 and dropout probability
to 0.4.

4.3 Generation Procedure
We use the same model to generate five-character
and seven-character quatrains, by specifying the
total length of quatrains (20 for five-character and
28 for seven-character). We generate one sentence

at a time (4 in total), and we sample characters one
at a time and stop when we have a sufficient num-
ber of characters (5 or 7) for a sentence. We did not
apply beam search to generate the quatrain since
we found the topics of machine generated quatrains
can be more diverse if we use sampling.

Since we train our data in reverse order, we gen-
erate quatrains in reverse order as well. We feed
the hidden state of the previous character to the
decoder of language model to compute the charac-
ter distribution for the current character and sample
from it using a temperature τ (Hinton et al., 2015)
between 0.1 and 0.2.

p̃i = fτ (p)i =
p

1
τ
i

∑
j p

1
τ
j

We resample if the sampled character is: (1) a
character that has appeared more than once; (2) one
of the preceding three characters; (3) the last char-
acter of any sentence; or (4) UNK or PAD special
tokens. UNK tokens represent characters that are
not in our vocabulary3; we also use UNK tokens
to represent the previous context for the first sen-
tence. PAD tokens are used to pad five-character
quatrains so that they can be trained with seven-
character quatrains together.

We find that setting temperature in the above
range limits the possibility of generating more
diverse poetry because the generated quatrains
would usually end in frequent characters such as
‘人’ (person), ‘来’ (come) or ‘中’ (in). As the rest
of the quatrain will be generated based on these
characters, it limits the topic and content for the
poem, and there is little diversity in the generated
quatrains. In light of this, we set temperature to
0.9 when generating the last character of the qua-
train. We generate 100 quatrains under two dif-
ferent temperatures (0.2 and 0.9) to compare the
differences between them; results are presented in
Figure 2. The model produces 67 unique sentence-
ending characters under temperature 0.9, but only
5 unique characters when we set temperature to
0.2. Also, the cumulative proportion of the top-9
characters is only 35% when temperature is 0.9. In
contrast, the most frequent character ‘人’ (person)
alone occupies over 90% cumulative proportion at
0.2 temperature.

3Out-of-Vocabulary (OOV) Rate is 0.13% in our model.

14

人 来 头 中 归 行 山 回 林 Os

0

20

40

60

80

100
90

7
1 1 1 0 0 0 0 0

11
3 5 3 3 3 3 2 2

65

0.2
0.9

Figure 2: Relative frequency of sentence-ending char-
acters under different temperatures. “Os” denotes Oth-
ers.

桃花荷叶红， 孤舟行路不胜愁，
春水不成空。 万山云雨峡中幽。
花开绿窗下， 知君莫向荆州客，
何人入梦中。 不见青山湘水流。

Table 5: Quatrains generated by our model.

5 Evaluation
We select two representative quatrains (one five-
word and one seven-word) generated by our sys-
tem and present them in Table 5. We find that our
system is able to: (1) capture rhyme patterns auto-
matically; (2) generate quatrains of various topics;
and (3) compose coherent poetry.

For the presented quatrains, the last charac-
ters of the first, second and last sentences rhyme.
It demonstrates that the language model is able
to learn rhyming pattern automatically, without
requiring an additional rhyme model to enforce
rhyming.

Various topics exist in Tang quatrains, such as
“love” and “wanderer staying long in a foreign
land” and our system is able to generate quatrains
of various topics. The topic of the left quatrain
is boudoir resentment, which is one of the major
themes of love poems. Phrases that symbolise fe-
male appear in such quatrain, such as桃花 (peach
blossom) and 荷叶 (lotus leaf). The overall nar-
rative depicts a love story. The topic of the right
quatrain is about travelling, and it describes the
scenery the poet observes when travelling alone on
a boat, using phrases such as 万山 (thousands of
mountains) and云雨 (clouds and rain).

Our evaluation includes rhyme evaluation, sim-
ilarity evaluation and human evaluation. We see
various topics appear in the generated quatrains
and they are coherent, therefore, we would like to
perform diversity and coherence evaluation in the
future work.

5.1 Automatic Evaluation
We generate 500 five-character quatrains and 500
seven-character using the hyper-parameter config-
uration discussed in Section 4.3, and analyse the
number of rhyming quatrains and the variation of
rhyming patterns. We also use BLEU and longest
matching substring to check for similarity between
our machine generated quatrains with the train-
ing corpus (so as to confirm that the model is not
simply memorising and reciting quatrains from the
training data).

Rhyme Evaluation We present the proportion
of rhyming quatrains in Table 6. Our system
works better with respect to rhyme when generat-
ing short sentences: 25% of the five-character qua-
trains rhyme, but only 8.4% of the seven-character
quatrains rhyme. We hypothesise that this may be
because shorter sentences are easier for the system
to learn the rhyming patterns.

We also examine the number of unique rhyme
combinations generated by our system for the
1, 000 quatrains. 52 unique rhyme tuples and 22
triples appear in the five-character quatrains and
26 unique rhyme tuples and 8 triples appear in
the seven-character quatrains. This again implies
that it is more difficult for the system to learn the
rhyming patterns for longer sentences. We show
the top-5 rhyme combinations for the generated
quatrains in Table 6. Comparing these to Table 4,
we find that frequent combinations are learnt by the
model.

The results show our system is able to capture
rhyme pattern to some extent, but the generated
quatrains do not rhyme as much as human written
ones and rhyming combination is limited as well.
This might suggest that we need a rhyming model
to generate quatrains with better rhyme schemes.

Similarity Check We treat each generated qua-
train as the hypothesis, and compute BLEU (Chen
and Cherry, 2014) score against the training corpus
(reference). The average BLEU score is 0.46 and
0.44 for five-character and seven-character qua-
trains respectively. Seven-character quatrains gen-

15

Partition #Quatrains #Tuples %Tuples #Triples %Triples
5-ch 500 125 25 44 8.8

7-ch 500 42 8.4 11 2.2

Total 1000 167 16.7 55 5.5

Table 6: Rhyme proportion in machine generated quatrains.

R Tuple F Triple F
1 (‘空’, ‘中’) 12 (‘尘’, ‘春’, ‘人’) 6

2 (‘开’, ‘来’) 12 (‘身’, ‘春’, ‘人’) 6

3 (‘春’, ‘人’) 12 (‘开’, ‘苔’, ‘来’) 5

4 (‘愁’, ‘头’) 10 (‘台’, ‘开’, ‘来’) 4

5 (‘家’, ‘花’) 6 (‘愁’, ‘秋’, ‘头’) 2
(a) 5-char

R Tuple F Triple F
1 (‘归’, ‘飞’) 6 (‘身’, ‘春’, ‘人’) 3

2 (‘春’, ‘人’) 5 (‘尘’, ‘春’, ‘人’) 2

3 (‘里’, ‘西’) 3 (‘尘’, ‘尽’, ‘春’) 1

4 (‘尽’, ‘春’) 2 (‘台’, ‘开’, ‘来’) 1

5 (‘开’, ‘来’) 2 (‘头’, ‘首’, ‘州’) 1
(b) 7-char

Table 7: Top-5 rhyme combinations in machine generated quatrains. “R” denotes rank and “F” denotes frequency.

erally have lower BLEU scores, and they also have
a bigger spread.

We also check the longest substring that can
be matched in the training corpus for each of the
generated quatrain. The average length of the
longest substring is 3.70 for five-character qua-
trains (20 characters in total) and 4.05 for seven-
character quatrains (28 characters in total). The
length of the longest matching substring is 6 and
7 for five-character and seven-character quatrains
respectively; for most quatrains this length ranges
from 3 to 4, which is less than a quarter of the
length of quatrain.

Taking the BLEU scores and longest matching
substring results together, we see that our system
can generate original poetry, i.e. it is not just mem-
orising the quatrains from the training data and
reciting them during generation.

5.2 Human Evaluation
For human evaluation, we pick 5 five-character
and 5 seven-character machine generated quatrains
with highest quality from our perspective. 4 out
of the 5 quatrains contain rhyme tuples so as to
mimic real rhyming patterns (as we saw in Sec-
tion 3.2). We also sample 5 five-character and 5
seven-character human-written quatrains from the
training data and mix the 20 quatrains in a ques-
tionnaire and ask native Chinese speakers to judge
for each quatrain whether it is computer-generated

or human-written.
We receive 171 valid responses from volunteers,

where they are all native mandarin speakers and
most of them hold a bachelor’s degree. In gen-
eral, the users found it very difficult to distinguish
the machine-generated quatrains from the human-
written ones. On average the accuracy is 45.15%,
which is slightly worse than pure guessing at iden-
tifying the poems. The quatrain which is voted
most (by 70% users) as being “human-written” is
generated by our model (Table 5; right quatrain).

However, we acknowledge that our volunteers
might not be the best at identifying quatrains,
therefore, we would like to seek evaluations from
experts in the future work.

6 Conclusion
In this paper, we extend Deep-speare, a joint neu-
ral network model for English sonnets, to gener-
ate Chinese quatrains. Chinese quatrain holds an
important cultural status in China, and there is a
large collection of these quatrains, making it a nat-
ural choice for adaptation. We analyse Chinese
quatrains and detail how we adapt Deep-speare
in terms of training and generation. We find the
adapted model works well, as it can: (1) gener-
ate quatrains of different topics; (2) capture the
rhyming scheme automatically; (3) compose co-
herent poetry. We also check the similarity of the
generated quatrains with the training data, and find

16

5-char 7-char

0.3

0.4

0.5

0.6

0.7

(a) BLEU
5-char 7-char

3

4

5

6

7

(b) Longest matching substring

Figure 3: Similarity Check.

that the generated poetry is original. Human eval-
uation demonstrates that our best machine gener-
ated quatrains are almost indistinguishable from
human-written ones for native Chinese speakers.

For future work, we believe the following are
promising directions:

1. There is potential to utilise data4 that has tone
labels to better understand the tonal patterns
in Chinese quatrains.

2. Adapt the rhyme model of Deep-speare to
produce rhyme more consistently in Chinese
quatrains.

3. Train a reverse summarisation model on Chi-
nese quatrains to generate a title given a qua-
train.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Boxing Chen and Colin Cherry. 2014. A systematic
comparison of smoothing techniques for sentence-
level bleu. In Proceedings of the Ninth Workshop
on Statistical Machine Translation, pages 362–367.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.
4https://github.com/jackeyGao/chinese-poetry

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research, 12(Jul):2121–2159.

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins.
1999. Learning to forget: Continual prediction with
lstm.

Morris Halle and Samuel Jay Keyser. 1971. Illustra-
tion and defense of a theory of the iambic pentame-
ter. College English, 33(2):154–176.

Jing He, Ming Zhou, and Long Jiang. 2012. Generat-
ing chinese classical poems with statistical machine
translation models. In Twenty-Sixth AAAI Confer-
ence on Artificial Intelligence.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Long Jiang and Ming Zhou. 2008. Generating chi-
nese couplets using a statistical mt approach. In
Proceedings of the 22nd International Conference
on Computational Linguistics-Volume 1, pages 377–
384. Association for Computational Linguistics.

Jey Han Lau, Trevor Cohn, Timothy Baldwin, Julian
Brooke, and Adam Hammond. 2018. Deep-speare:
A joint neural model of poetic language, meter and
rhyme. In the 56th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL 2018),
pages 1948–1958.

Wenwei Liu. 1735. Shixuehanying (诗学含英).

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

17

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems, pages 3111–3119.

Edwin G Pulleyblank. 2011. Middle Chinese: A study
in historical phonology. UBC Press.

J Sun. 2012. ‘jieba’chinese word segmentation tool.

Li Wang. 2002. A summary of rhyming constraints of
chinese poems (诗词格律概要). In Beijing Press.

Qixin Wang, Tianyi Luo, and Dong Wang. 2016.
Can machine generate traditional chinese poetry?
a feigenbaum test. In International Conference
on Brain Inspired Cognitive Systems, pages 34–46.
Springer.

Xiaofeng Wu, Naoko Tosa, and Ryohei Nakatsu. 2009.
New hitch haiku: An interactive renku poem com-
position supporting tool applied for sightseeing nav-
igation system. In International Conference on En-
tertainment Computing, pages 191–196. Springer.

Xingxing Zhang and Mirella Lapata. 2014. Chinese po-
etry generation with recurrent neural networks. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 670–680.

Qingyu Zhou, Nan Yang, Furu Wei, and Ming Zhou.
2017. Selective encoding for abstractive sentence
summarization. arXiv preprint arXiv:1704.07073.

18

Readability of Twitter Tweets for Second Language Learners

Patrick JACOB and Alexandra L. UITDENBOGERD
RMIT University - School of Science

124 La Trobe St
Melbourne VIC 3000

patrick.jacob@rocketmail.com,sandra.uitdenbogerd@rmit.edu.au

Abstract

Optimal language acquisition via reading re-
quires the learners to read slightly above their
current language skill level. Identifying mate-
rial at the right level is the essential role of au-
tomatic readability measurement. Short mes-
sage platforms such as Twitter offer the op-
portunity for language practice while reading
about current topics and engaging in conversa-
tion in small doses, and can be filtered accord-
ing to linguistic criteria to suit the learner. In
this research, we explore how readable tweets
are for English language learners and which
factors contribute to their readability. With
participants from six language groups, we col-
lected 14,659 data points, each representing
a tweet from a pool of 4100 tweets, and a
judgement of perceived readability. Tradi-
tional readability measures and features failed
on the data-set, but demographic data showed
that judgements were largely genuine and re-
flected reported language skill, which is con-
sistent with other recent studies. We report on
the properties of the data set and implications
for future research.

1 Credits

We thank Klerke et al. (2016) for the Twitter cor-
pus from their unpublished research.

2 Introduction

Since the first half of the twentieth century re-
searchers have analysed texts to determine their
readability, that is, how easy the text is to read
and comprehend, often expressed as levels of lin-
guistic education, knowledge, age or experience.
The findings around readability have been applied
to education for selecting appropriate reading ma-
terial for students, in communication with govern-
mental bodies to reach a higher number of citizens
(Temnikova et al., 2015) and in marketing/public

relations of companies to increase the reach of
their materials (Risius and Pape, 2016).

While there have been many studies on read-
ability of regular text for students and foreign lan-
guage learners, the same is not true for the mi-
croblog text genre. Twitter is a popular platform
for reading current topics and engaging in so-
cial interaction, providing a cross-cultural, cross-
interest, and cross-language platform for read-
ing social media posts of up to 280 characters in
length, and a filtered feed has potential as a source
of regular reading material for learners. While
the Flesch readability of English language tweets
has been analysed to discover demographic trends
and to compare them to other modern text genres
(Davenport and DeLine, 2014), and judgements
of tweet clarity for emergency communication has
been researched (Temnikova et al., 2015), to our
knowledge tweets have not been studied in rela-
tion to English as an Additional Language (EAL,
a term that recognises that it may be a third lan-
guage, for example).

Our aim was to extend readability research to
tweets for EAL learners. Tweets are different from
ordinary text due to their short length, hashtags,
mentions (user identifiers preceded by an @ sym-
bol), links, and other non-standard text tokens that
they contain. This poses challenges for traditional
readability formulae, which assume regular text,
as found in books and periodicals. This study
evaluates the applicability of readability formulae
and the influence of the unique expressions used in
tweets such as hashtags, mentions and links. The
goal was to find predictors that increase accuracy
in classifying Twitter tweets to language reading
levels, which will assist users to find more appro-
priate material for their reading abilities and aid
institutions to adjust their published tweets for for-
eign language reader target audiences.

19

3 Related Literature

3.1 Classic Studies

Text readability has been researched since early
last century, and produced the widely used Flesch
Reading Ease formula (Flesch, 1948).

206.835− 1.015
(

words

sentences

)
− 84.6

(
syllables

words

)

The Flesch formula shows an inverse relation-
ship between readability and the number of sylla-
bles per word (lexical complexity) and the num-
ber of words per sentence (grammatical complex-
ity). This simple measure has become a stan-
dard for text analysis in other fields of research,
and is often used as a baseline for readability re-
search, hence we include it in our study. Dale-
Chall (1948) is another user-derived readability
measure, based on children with English as a first
language:

0.1579
(
difficult words

words
∗ 100

)
+0.0496

(
words

sentences

)

Dale and Chall’s research determined that the per-
centage of difficult words in a given text and the
number of words per sentence influence readabil-
ity. This formula assumes every word not on a list
of 3000 words a fourth-grade American student
should be familiar with is difficult. It would be
interesting to see the interaction between the Dale-
Chall formula and research based on the findings
of Uitdenbogerd (2005), which show that cognates
(words that are same or very similar between the
native language and the foreign language of study)
influence the understanding of sentences for stu-
dents of foreign languages.

Most readability measures and indexes are only
considered valid for text samples with a minimum
number of words or sentences (Collins-Thompson
and Callan, 2004; Homan et al., 1994), and there-
fore not intended for typical tweet text. However,
we include the above formulae and related classic
readability features in this initial study.

3.2 Twitter-related Research

Davenport and DeLine (2014) studied the read-
ability of a corpus of 17.4 Million tweets. They
modified the Flesch formula by treating each tweet
as a single sentence, due to their brevity and un-
conventional punctuation. This approach may no

longer be adequate for a Twitter corpus, given the
new character limit of 280 characters for tweets.

Temnikova et al. (2015) analysed the text dif-
ficulty of emergency messages on social media
including Twitter. They used crowd-sourcing
(CrowdFlower) to present a questionnaire of 500
tweets to participants, who rated them as one of
very clear, needs improvement, or very unclear.
Additionally, participants could suggest how to
write a more understandable version of the tweet.
Amongst the resulting recommendations are to use
easy vocabulary and short complete sentences, ex-
clude mentions, and minimise hashtag use. Even
though the resulting recommendations appear to
be valid, it is unclear what the background of the
participants was, which can impact how text is per-
ceived. In contrast, for our study, we selected and
recorded the background of participants from spe-
cific populations.

4 Experiment Design

There are generally two types of research design
for predicting readability. The first models reading
difficulty using data collected from human partic-
ipants. The readability measure by Kincaid et al.
(1975) is one example of this. They invited 531
participants from two navy bases in the US to read
from a set of eighteen passages of training man-
uals. The task was to answer questions about the
manuals by filling in missing words (Cloze test).
From the results, Kincaid et al. deduced the for-
mula to predict the reading grade level for navy
personnel. The advantage of this approach is that
the collected data and resulting model represents
the genuine user experience of text difficulty. The
main challenge is obtaining sufficient data from
the target user population for analysis.

The second research method, which has become
prominent in NLP communities, uses large cor-
pora of text samples that have been labelled by ex-
perts or publishers, to train machine learning mod-
els. One example is the research of François and
Fairon (2012), who trained a machine learning al-
gorithm with a text corpus labelled according to
the levels of the Common European Framework
of Reference for Languages (CEFR), to model
the readability of French text for second language
learners (François and Fairon, 2012). This ap-
proach allows modern classifiers to be trained on
large data-sets of features. However, as has been
confirmed by Vajjala and Lucic (2019), expert or

20

publisher labels of text are a poor substitute for
genuine user experience, and even the choice of
method of measuring the reading experience can
lead to large differences in results. This echoes the
results found elsewhere in usability research (Jef-
fries and Desurvire, 1992).

There was no Twitter corpus annotated with
difficulty levels available, hence our research de-
sign consisted of a user study of tweet readabil-
ity, specifically for people with English as an ad-
ditional language. Our approach has the added ad-
vantage of reflecting the user experience of lan-
guage learners matching the demographics of the
participants. Participants completed a question-
naire that collected demographic data and reading
difficulty judgements of a set of tweets.

4.1 Participant Recruitment
Wilson VanVoorhis and Morgan (2007) recom-
mends that with more than six predictors, to have
at least ten participants per predictor. With 10-15
predictors from the survey (such as age groups,
Twitter affinity, education levels) and text features
from the tweets (such as the number of syllables,
characters or Hashtags), we needed at least 150
participants per language. To account for contra-
dicting, invalid or otherwise wrong responses that
would need to be discarded from the corpus, we
increased the target number of recruits to 200.

We tried to recruit 200 native speakers from
each of the six target languages of our study
(Spanish, Portuguese, German, Dutch, Cantonese,
and Mandarin) via the crowd-sourcing platform
Figure Eight1. The actual questionnaire was
hosted on Qualtrics2, a specialised website for
conducting questionnaires. A participant would be
forwarded to the Qualtrics questionnaire via a link
once they accepted the survey questionnaire.

4.2 Twitter Corpus Collection
The Twitter corpus we used was merged from two
Twitter corpora: one corpus from unpublished re-
search by Klerke et al. (2016); and a larger cor-
pus initially containing 6,000 randomly captured
tweets using the Twitter Stream Application De-
veloper Interface.

The second corpus was captured in August
2018 directly from the Twitter stream, utilising the
tweepy python library3, which allows searching

1https://www.figure-eight.com
2https://www.qualtrics.com/au
3https://www.tweepy.org

Original: People Swea They KNOW E V E R Y T H I N G
Bhou Me Bhuh They Dont Know NOTHING Bhuu my Name
Corrected: People swear they know everything about me, but
they don’t know nothing but my name

Figure 1: An example of tweet simplification

for a specified number of tweets that contain de-
fined keywords. We used both functions to search
for about 400 English language tweets for each
first language, containing at least one word from a
list of cognates of that language. This ensured that
the tweet corpus contained a minimum number
of cognates from each language. Due to specific
post-collection steps that lowered the final corpus
of tweets, more tweets were collected than needed.

Tweets were filtered for offensive content, us-
ing an automatic profanity check, followed by a
manual process by the researchers to filter any re-
maining offensive tweets. Lastly, we filtered and
deleted duplicates (such as retweets) leaving the
entire corpus at 4700 tweets, commencing with
873 from the Klerke corpus. The first 4000 were
used for the survey.

Due to platform limitations we broke the sur-
vey up into five surveys for each language: four of
1000 tweets and one of 100 tweets used for further
validity checking and analysis. The 100-tweet sur-
vey consisted of tweets originally containing col-
loquialisms and/or social media features, such as
emojis, which were manually selected from the
pool of 4000. The tweets were stripped of emo-
jis, hashtags, mentions, and repetitious content;
spelling corrected, and the text adjusted in other
ways to standardise it (for example, see Figure 1).
It was used to test the questionnaire setup prior to
releasing the main surveys.

4.3 Questionnaire
To avoid reading fatigue and to stay within the
budget, each person made 20 judgements. This
approach should have resulted in six judgements
per question for 4000 tweets. That is, for each
tweet, we would have at least two human judge-
ments from each language family group. Using
the Qualtrics randomisation function, the tweet
questions were selected randomly from the pool
of 4100 tweets to minimise ordering effects. To
ensure an even distribution of judgements, each
tweet was presented to at least one participant be-
fore any were shown a second time.

Participants were asked for their age, gender,
country, education and foreign language knowl-

21

edge, to assist in providing context for the ground
truth collected, as well as to capture potential con-
founding variables known to influence vocabulary
knowledge. We then presented the participants
with 20 tweets for them to judge according to read-
ing difficulty. Participants were to position a slider
on a scale from 1 (very difficult) to 10 (very easy)
representing their perception of the tweet’s read-
ability, as shown in Figure 2.

The last task for the participant was to an-
swer a short translation task to confirm the par-
ticipant does indeed speak their stated first lan-
guage. The translation question was based on
common proverbs in the participant’s native lan-
guage, which they needed to translate from En-
glish to their native language. This had the ad-
vantage that it was a relatively easy task, since
proverbs are usually widely known, but allowed
us to evaluate if the participant speaks the claimed
language.

Using the IP range of specific countries, we re-
stricted the survey job to specific language speak-
ers in countries where they predominately or offi-
cially spoke that language. This way we had an-
other layer to ensure we would only recruit the
right target participants.

4.4 Survey Execution and Outcome

For the 100-tweet test surveys we lowered the
number of tweets per job from twenty to ten. Af-
ter seeing that target participation was reached
for three languages (Spanish, Portuguese and Ger-
man) we released all other jobs, which were kept
open for about a month. Table 1 shows that Span-
ish, Portuguese and German participants were
most active, while Chinese and Dutch-speaking
countries had much lower participation. In the
case of Dutch-targeted jobs, someone hacked the
survey and exhausted the available budget, leaving
us with few judgements for Dutch speakers.

5 Data Restructuring and Cleansing

Data cleansing prior to analysis consisted of the
following steps:

• Transposing the data columns into a format
suitable for analysis
• Harmonising the contents of several columns

such as country of origin or languages.
• Matching and unifying the columns about ed-

ucations levels.

• Deleting rows with failed validation ques-
tions.

Table 1 shows the final data set size for each lan-
guage after the data cleansing steps were finished,
.

Survey Number of
participants

Number of
data points

Spanish 258 4188
Portuguese 233 4187

German 240 4179
Dutch 55 928

Mandarin 35 547
Cantonese 44 630

Total 865 14659

Table 1: Number of data points after cleaning

6 Descriptive Statistics

When visualising the judgement data as a his-
togram (see Figure 3) it shows an exponential dis-
tribution from very difficult to very easy perceived
tweets. Fitting a line to the log of the number of
judgements at each rating level has an R2 of 0.97.
Thus most tweets were evaluated as 10 (very easy
to read and understand) by participants.

6.1 Twitter Use
When looking at the average ratings shown in Ta-
ble 2, it can be seen that the more time someone
spends with Twitter, the easier it is for partici-
pants to read tweets. Participants who used Twit-
ter daily or weekly rated the tweets at 8.39 on av-
erage, while participants that never used Twitter
averaged 7.99. Presumably frequent Twitter users
are more accustomed to the linguistic conventions
of Twitter and find it easier to understand tweets.
This would partially explain why the majority of
tweets are rated 10, as the majority of participants
were heavy Twitter users.

Twitter
usage M SD Sample

Size
Daily 8.39 1.85 6988

Weekly 8.39 1.96 3409
Occasionally 8.14 2.02 3156

Never 7.99 2.07 1109

Table 2: Mean and standard deviation of tweet read-
ability judgements across Twitter usage groups

6.2 Education
Formal school and language education had a
strong influence on the judgements in the data

22

Figure 2: Example tweet question including slider.

Figure 3: Histogram of judgements

(see Figure 4). Participants without any formal
education didn’t rate any tweets as 10, while the
group of PhD graduates have the highest fraction
of tweets rated 10. PhD graduates judged tweets
as 9.07 on average, whereas participants without
formal education rated their tweets on average at
7.25.

CEFR
Level M SD Sample

Size
A1 9.35 1.0 160
A2 7.8 2.08 720
B1 8.46 1.77 1311
B2 8.52 1.66 1090
C1 8.64 1.62 547
C2 8.74 1.98 798

Table 3: Average judgement by CEFR Level

During data cleansing, we mapped all reported
English education levels to the CEFR standard,
which has levels in increasing order of skill, A1,
A2, B1, B2, C1 and C2 respectively. This map-
ping was possible for 4523 data points, which rep-
resents 30% of all judgements. Our data shows

that the higher the English education, the more
likely the tweets are judged higher. The average of
A2 participants is 7.8 (30% of tweets given a 10),
while the average of the C2 group is 8.74 (65% of
judgements being 10) and average ratings increase
monotonically between those two levels. The ex-
ception is A1, which had an average of 9.35. This
could be due to a Dunning-Kruger effect, in which
those with minimal knowledge of a subject have
a disproportionately high opinion of their knowl-
edge, a problem with the CEFR mapping at the
A1 end, or randomly assigned tweets coinciden-
tally being easier to read. It should also be noted
that there were only 160 A1-based judgements,
whereas all other language groups had at least 547.
Those with A1 level English or less are likely to
have found the user interface itself challenging, let
alone the tweets they were allocated, which may
have impacted their participation, resulting in a
high proportion of “false beginners” in the cohort.

No. of
add. Lang. M SD Sample

Size
0 8.16 2.03 8105
1 8.43 1.84 5330
2 8.69 1.55 848
3 8.90 1.63 297
6 9.08 1.01 79

Table 4: Average judgement by additional languages
spoken

We also captured any additional languages par-
ticipants spoke besides their native language and
English. Table 4 shows that the more languages
a person spoke, the higher the average rating per
tweet. The population of people speaking more
than one additional language is relatively small,
but so is the standard deviation. It is likely that

23

Figure 4: Chart of judgements by education level

broader language knowledge improves the reading
capabilities of unusual text such as tweets.

6.3 Twitter-specific Text Features

Twitter is a social media platform, where ad-
ditional features are used to graphically express
emotions and other items (emojis); or connect with
other users (mentions), tweets (hashtags) or web-
sites in and outside of Twitter (links). We look at
each of these features below.

Emojis Emojis are ideograms used in messag-
ing, including stylised facial expressions for dis-
playing emotions, places, animals, food, and flags,
among other objects. For the large data set, tweets
with 0, 1, 2, 3 and >3 emojis respectively all had
ratings between 8.17 and 8.51 with no obvious
trend, and standard deviations from 1.84 to 1.98.
The emojis did not seem to influence the judge-
ments.

We also analysed a subset (40) of the modified
tweets from the small test set from which emo-
jis had been stripped. The average judgements of
tweets with emojis removed (8.18, n = 246) was
lower than that of the original tweets (M = 8.33,
n = 93) . Due to the universal understanding
of emojis across languages, they might increase
readability, or their removal from tweets may take
essential semantic content away. However, the
difference in means is small, the variability high,
and the tweets themselves were not randomly se-
lected, so strong conclusions cannot be drawn at
this stage.

Hashtags Hashtags are used as metadata tags to
reference themes or content and make them easily
findable within and across social media platforms.

Hashtags per Tweet Count M SD
>1 1215 8.14 2.01
1 1812 8.24 1.99
0 11632 8.33 1.92

Table 5: Mean and standard deviation of judgements
according to number of hashtags

The question is if they influence the readability of
tweets, since they are often composed of joined
and abbreviated words, for example, #muppetgov-
ernment or #ImACeleb. In our corpus the number
of hashtags present ranged from zero to twenty,
but with very few containing more than 3 hash-
tags, and no obvious trend was observed as hash-
tags increased without binning. As with emojis,
the subset of 29 modified tweets stripped of hash-
tags was judged less readable on average (8.07,
n = 195) than the original ones (8.43, n = 61).
A reverse trend was found in the larger data-set
(see Table 5), with minimal overlap of confidence
intervals, indicating confidence in the estimate of
the population mean. However, differences in the
mean are much smaller than those of the standard
deviation, so hashtags are not strong predictors of
readability.

Mentions Mentions use the @-sign to refer to
other users on Twitter, and like hashtags, are often
used on social media, typically either at the be-
ginning or end of tweets. Twitter does not count
mentions in the character limit but only allows up
to 50 mentions per tweet.

We used the test subset (22) to compare tweets
that are stripped of mentions against those with
mentions. On average, the judgement with modi-
fied tweets is 8.19 (N = 156), while the ones with

24

mentions lie at 7.89 (N = 72). These numbers
indicate that mentions decrease readability.

Figure 5: Chart of average judgements by mention bro-
ken down by Twitter use. Error bars are 95% confi-
dence intervals.

Interestingly, when broken down by Twitter use,
daily Twitter use led to tweets with mentions being
rated higher than those without. The opposite was
true for those who used Twitter weekly or less fre-
quently. This behaviour could mean that frequent
users are better able to filter or appropriately pro-
cess mentions when reading.

Links Links are often used on Twitter to refer to
other resources on the internet, such as news arti-
cles or videos. The links are often abbreviated to
save space (for example, https://t.co/hle8l0AO1i).
We found no evidence that links influence judge-
ments of tweets, whether we used the number of
links or their length.

6.4 Readability Measures

We analysed the relationship between different
text features and judgements, such as the num-
ber of characters per word, number of syllables
per word, and sentence length. Most of them had
negligible impact, except the total number of char-
acters or words seems to show a trend on average
that the more words, the lower the rating, but since
they feed into readability measures, we would like
to point out a few findings with traditional read-
ability formulae.

Flesch Reading Ease We compared judgements
with Flesch scores, grouping scores into bins,
which showed a peak at RE ∈ [77,81], indicating
most tweets were in the fairly easy to easy range.
A slight upward trend was observed, indicating
weak agreement between RE and judgements.

Some Flesch scores were extremely negative,
due to the sentence length and frequent use of
words with high syllable counts. For example the
following tweet is one sentence long, with 30 Syl-

lables and eight words with a Flesch Score of -
118.53.

#FollowMikeaveli #FollowMikeaveli #Fol-
lowMikeaveli #FollowMikeaveli NO QUESTIONS
JUST FOLLOW.

While this tweet had a very negative score,
meaning very difficult, its three ratings were 10,
10 and 7. We also tried the Flesch-Kincaid for-
mula, which had similar trends.

Dale-Chall The feature that is unique to Dale
Chall’s formula is the number of difficult words,
being all words not in a list of 3000 easy words.
Our data shows that on average, tweets with a
higher number of difficult words are judged more
difficult. The Dale-Chall formula however, shows
the opposite trend. That is, the harder the tweet ac-
cording to the Dale-Chall score, the easier it was
judged by participants. Additionally, we did an
analysis and exchanged cognates for “easy words”
in the formula to see if this would have any ef-
fect. The trend reversed to the expected direction,
but was again weak. A more nuanced approach is
probably needed, with high frequency words from
the list retained and combined with cognates. This
will be explored in future work.

6.5 Correlation

Using both Pearson and Spearman correlations,
we calculated correlation matrices between all
columns and features. We used both formulations,
as Pearson calculates the linear relationship be-
tween two variables, while Spearman evaluates the
monotonic relationship, which is more appropriate
for ordinal data or not entirely linear data. (See Ta-
ble 6.)

No single feature has a strong relationship to
the judgements. The range is between negative
and positive 9.6%, which is quite low. Correla-
tion between native languages was also low, re-
gardless of language similarity. This could mean
that readability is different for each language. The
highest positive Pearson correlation, and second
highest Spearman, is the number of additional lan-
guages a participant speaks. Education and En-
glish level are also highly placed, confirming the
previous finding that education or language skills
have a stronger relationship with readability than
the content itself. Twitter-specific features like the
number of emojis and hashtags have little relation-
ship with the judgements, the strongest being for
mentions (Spearman -5.1%). In general, we find

25

Features Pearson Spearman
number of further languages 9.6% 8.3%
english level 7.2% 6.2%
twitter usage 6.4% 4.8%
education 4.8% 4.4%
flesch kincaid twitter adjusted 4.2% 5.3%
flesch 1948 3.2% 3.3%
percentage cognates per Tweet 1.8% 0.2%
dale chall 1.2% -0.2%
number of Emojis 0.4% 0.9%
average length links -0.5% -1.3%
number of links -0.6% -1.4%
number of sentence -1.6% -3.3%
number of hashtags -2.3% -2.9%
number of cognates -2.5% -3.2%
number of mentions -2.7% -5.1%
cognates dale chall -3.1% -2.1%
flesch kincaid -4.5% -5.0%
number difficult words -5.3% -8.2%
number of words -5.5% -8.5%
number of syllables -5.8% -8.6%
number of characters -6.0% -9.2%

Table 6: Pearson and Spearman rank correlation be-
tween judgements and features.

that demographic data are stronger predictors than
text features.

6.6 Confidence in Results
Our correlation matrix showed that no feature has
a strong correlation to the judgements. It made us
question whether the results were trustworthy or
whether the participants put in any effort. While
we had a validation question for each participant
to check if they spoke the native language they
claim, we did not implement a similar question
to measure sincerity in answering. However, we
have some indication that participants answered
thoughtfully. First, the slider for tweets was ini-
tially set to 1, representing very hard to read and
understand, but most of the tweets were rated 10.
It means the participants moved the bar to provide
their response. Second, the test subset (17) we ma-
nipulated to more straightforward language (see,
for example, Figure 1), had an average judgement
of 8.35 (n = 99) compared to the original average
of 7.55 (n = 56), meaning simplified ones were
judged as easier to read. These results lower our
doubts about the sincerity of the answers by the
participants.

7 Future Work

The features we extracted have a low correlation
to the judgements. However, these are not the only
features that can be extracted. We saw that uncom-
mon or incorrect words have an effect on readabil-

ity, therefore, constructing a measure of the sever-
ity of incorrectness might show stronger correla-
tion than we currently have. Other possible fea-
tures could be a percentile of non-lexical words,
presence of particular grammatical terms or fre-
quency of named entities to name a few. From the
extracted features, emojis and mentions, while not
showing high correlation themselves, may influ-
ence judgements when isolated and compared to
tweets stripped of them. We are also yet to explore
the use of features such as perplexity. Our ma-
chine learning results using further features will
be reported elsewhere.

A difficulty with the current data set is that the
majority of judgements are at the maximum of the
scale, indicating a mismatch between participants
and text. A new experiment that selects more ho-
mogeneous participant groups based on confound-
ing variables such as age, Twitter usage, English
levels and education may be more successful. Ob-
taining more judgements per tweet would allow
more conclusions about user perceptions.

8 Conclusion

We started this research by asking what influences
the readability of English tweets for foreign lan-
guage speakers?

We designed and executed a survey on a crowd-
sourcing platform where 865 participants made
10–20 readability judgements from a pool of 4100
tweets. It did not produce the results we expected,
as all features showed a low correlation (≤ 9.6%)
to the judgements. These features included tradi-
tional readability formulae and their components,
which in other studies correlate well with user
judgements (for example, Uitdenbogerd (2005)
achieved 9-85% correlation for traditional read-
ability features and formulae). This study revealed
that traditional readability formulae do not work
well on tweets. Another observation we made is
that some demographic data had stronger predic-
tive power than the text features themselves. For
example, English skill level, number of languages
known besides English, and the native language
showed the highest correlation out of the available
features.

As for what makes it hard or easy to read tweets,
we do not have a definitive answer, but our re-
search points in the following directions. Slang,
wrongly written and uncommon words seem to
lower the readability. The number of words

26

or characters and readability formulae have lim-
ited predictive value on the readability. From
the Twitter-related features, emojis may improve
readability, while using mentions and hashtags di-
minish it for those less familiar with tweets.

All these insights leave us to further investigate
in future studies how strongly the observed effects
influence the readability of tweets, and thereby
build a useful model for filtering Twitter content
for language learners.

References
Kevyn Collins-Thompson and James P Callan. 2004.

A language modeling approach to predicting read-
ing difficulty. In Proceedings of the Human Lan-
guage Technology Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: HLT-NAACL 2004, pages 193–200. As-
sociation for Computational Linguistics.

Edgar Dale and Jeanne S. Chall. 1948. A formula
for predicting readability: Instructions. Educational
Research Bulletin, 27(2):37–54.

James R. A. Davenport and Robert DeLine. 2014. The
readability of tweets and their geographic correla-
tion with education. Computing Research Reposi-
tory, abs/1401.6058.

Rudolf Flesch. 1948. A new readability yardstick.
Journal of Applied Psychology, 32(3):221–233.

Thomas François and Cedrick Fairon. 2012. An AI
readability formula for French as a foreign language.
In Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning,
EMNLP-CoNLL ’12, pages 466–477. Association
for Computational Linguistics.

Susan Homan, Margaret Hewitt, and Jean Linder.
1994. The development and validation of a formula
for measuring single-sentence test item readability.
Journal of Educational Measuremen, 31(4):349–
358.

Robin Jeffries and Heather Desurvire. 1992. Usability
testing vs. heuristic evaluation: was there a contest?
ACM SIGCHI Bulletin, 24(4):39–41.

J. Peter Kincaid, Robert P. Fishburne Jr., Richard
L.Rogers, and Brad S. Chissom. 1975. Derivation
of New Readability Formulas (Automated Readabil-
ity Index, Fog Count and Flesch Reading Ease For-
mula) for Navy Enlisted Personnel. Naval Technical
Training Command.

Sigrid Klerke, Alexandra L. Uitdenbogerd, Falk Sc-
holer, and Tim Baldwin. 2016. Twitter corpus from
eye gaze study. Twitter data-set from an unpublished
paper.

Marten Risius and Theresia Pape. 2016. Developing
and evaluating a readability measure for microblog-
ging communication. In E-Life: Web-Enabled Con-
vergence of Commerce, Work, and Social Life, pages
217–221. Springer International Publishing.

Irina Temnikova, Sarah Vieweg, and Carlos Castillo.
2015. The case for readability of crisis communica-
tions in social media. In Proceedings of the 24th In-
ternational Conference on World Wide Web, WWW
’15 Companion, pages 1245–1250. Association for
Computing Machinery.

Alexandra L. Uitdenbogerd. 2005. Readability of
French as a foreign language and its uses. In ADCS
2005: Proceedings of the Tenth Australasian Docu-
ment Computing Symposium, pages 19–25.

Sowmya Vajjala and Ivana Lucic. 2019. On under-
standing the relation between expert annotations of
text readability and target reader comprehension. In
Proceedings of the Fourteenth Workshop on Innova-
tive Use of NLP for Building Educational Applica-
tions, pages 349–359, Florence, Italy. Association
for Computational Linguistics.

Carmen R. Wilson VanVoorhis and Betsy L. Morgan.
2007. Understanding power and rules of thumb for
determining sample sizes. Tutorials in Quantitative
Methods for Psychology, pages 43–50.

27

Red-faced ROUGE:
Examining the Suitability of ROUGE for Opinion Summary Evaluation

Wenyi Tay1,2, Aditya Joshi2, Xiuzhen Zhang1, Sarvnaz Karimi2 and Stephen Wan2

1RMIT University, Australia
2CSIRO Data61, Australia

{wenyi.tay, xiuzhen.zhang}@rmit.edu.au
{Aditya.Joshi, Sarvnaz.Karimi, Stephen.Wan}@data61.csiro.au

Abstract
One of the most common metrics to automat-
ically evaluate opinion summaries is ROUGE,
a metric developed for text summarisation.
ROUGE counts the overlap of word or word
units between candidate summaries and refer-
ence summaries. This formulation treats all
words in the reference summary equally. In
opinion summaries, however, not all words in
the reference are equally important. Opin-
ion summarisation requires to correctly pair
two types of semantic information: (1) opin-
ion target, or aspect; and, (2) polarity of can-
didate and reference summaries. We inves-
tigate the suitability of ROUGE for evaluat-
ing opinion summaries of online reviews. We
design three experiments to evaluate the be-
haviour of ROUGE for opinion summarisa-
tion on the ability to capture aspect and po-
larity. We show that ROUGE cannot distin-
guish opinion summaries of the same or op-
posite polarities for the same aspect. More-
over, ROUGE scores have significant variance
under different configuration settings. As a re-
sult, we present three recommendations for fu-
ture work on evaluating opinion summaries.

1 Introduction

Popular e-commerce websites allow users to ex-
press their opinion about products or services in
the form of reviews. An opinion is formally
defined as a combination of aspect (an attribute
of the product or service as the opinion target,
expressed through aspect words), and sentiment
polarity (either positive or negative, expressed
through opinion words) (Liu, 2012). The opin-
ion expressed in online reviews potentially helps
prospective buyers to make decisions. Given the
large volume of reviews, it is time-consuming and
often impractical for a user of these websites to
read all reviews pertaining to the set of products
that they are considering to purchase. This makes
opinion summarisation important because it al-
lows users to obtain aggregate key opinions about

the product or service based on its reviews. Given
the value of opinion summaries, automatic opinion
summarisation is an active area of research with
the focus of producing high-quality opinion sum-
maries.

The quality of an opinion summary would ide-
ally be evaluated by human annotators. For ex-
ample, annotators may read a summary and rate
it according to quality measures such as informa-
tiveness, ability to capture sentiment polarity, co-
herence and redundancy (Angelidis and Lapata,
2018). However, human evaluation is resource-
intensive and not scalable. This motivates auto-
matic evaluation. In the case of automatic evalua-
tion, for a set of product reviews, reference sum-
maries are written by human experts apriori. Ref-
erence summaries are the ground truth summaries
against which candidate summaries to be evalu-
ated.

Using reference and candidate summaries, au-
tomatic evaluation of opinion summaries adopts
metrics from text summarisation (Lin, 2004) and
machine translation (Papineni et al., 2002; Lavie
and Denkowski, 2009). We focus on the most
frequently reported metric for opinion summari-
sation, Recall-Oriented Understudy for Gisting
Evaluation (ROUGE) (Lin, 2004) and leave the
analysis of other evaluation metrics to future stud-
ies. ROUGE counts the overlap of word or word
units between the candidate summary and refer-
ence summary with respect to the word units in
the reference summary. A higher ROUGE score
means a larger overlap of word units while a lower
ROUGE score means a smaller overlap of word
units. The ROUGE scores can then be used as a
criterion to compare summaries and systems.

An opinion is a combination of aspect and
sentiment, thus, the evaluation must assess both.
ROUGE treats the contribution of all matched
word units in the reference summary to the
ROUGE score equally. This may not hold in the

28

case of opinion summaries. For example, a lack
of match to aspect terms in the reference summary
may be due to the different ways people refer to
the same aspect, or that it does not contain that as-
pect and thus the opinion is not present. The lack
of a match to sentiment-bearing terms can mean
there is no opinion present in the summary, the
opinion is consistent but expressed differently or
the opinion is opposite to the reference summary.
That ROUGE does not differentiate the reasons for
the lack of a word match or the reasons for mis-
match has implications to evaluate opinions sum-
maries. To date, opinion summarisation has been
considered a special case of text summarisation.
Therefore, the popularity of ROUGE for opinion
summarisation seems intuitive. However, the dis-
tinction between opinion summarisation and text
summarisation warrants a critical examination of
the utility of ROUGE for opinion summarisation.
Our research question is:
‘Can ROUGE scores be used to correctly compare
summaries to ensure that the candidate summary
is accurate to the opinion aspect and polarity in
the reference summary?’

This paper makes two-fold contributions:
(1) Through experiments, we demonstrate that
ROUGE is not able to accurately evaluate the
opinions in the candidate summary against the ref-
erence summary1; and (2) Our discussion pro-
vides three recommendations for further research
on opinion summary evaluation.

2 Related Work

Early work in opinion summarisation conducted
their evaluation using metrics other than ROUGE.
Pang and Lee (2004), an early work in extrac-
tive opinion summarisation, use sentence-level ac-
curacy. Lerman et al. (2009) pre-date the exis-
tence of opinion summarisation datasets. There-
fore, they use human evaluation for their systems.
Pitler et al. (2010) propose an automatic metric
for summarisation. This metric captures linguis-
tic quality using a set of features. They con-
clude that syntactic features are the best indica-
tors for linguistic quality of summaries. Follow-
ing the availability of datasets with opinion sum-
maries, ROUGE could be used for opinion sum-
marisation. However, its value has been under-

1Although the current analysis focuses on ROUGE for
evaluating opinion summaries, the limitations of using word
matching for evaluation is also a problem faced by text sum-
marisation and text generation.

stood to be limited for the evaluation of opinion
summarisation. Jayanth et al. (2015) observe that
ROUGE is influenced by topic terms more than
sentiment terms. Therefore, they report two met-
rics: ROUGE scores and sentiment correlation.
Mackie et al. (2014) show that, for microblog sum-
marisation, ROUGE does not correlate with hu-
man judgment as well as a more naı̈ve indicator:
fraction of topic words. In addition, limitations of
ROUGE to evaluate text summarisation have also
been reported. Conroy and Schlesinger (2008)
show that ROUGE may not correlate well with hu-
man evaluation for text summarisation, and needs
to be combined with human scores. More recently,
Graham (2015) present an extensive comparison
of 192 variants of ROUGE, and show that the met-
rics have contrasting conclusions. Table 1 sum-
marises key studies and the choice of automatic
evaluation metrics used for opinion summarisa-
tion.

Despite the limitations, ROUGE is the
most popular metric for opinion summarisa-
tion (Moussa et al., 2018). It continues to be
used as an automatic evaluation in recent papers
either on its own (Anchiêta et al., 2017) or
in combination with other automatic metrics
such as METEOR (Amplayo and Lapata, 2019).
Angelidis and Lapata (2018) report ROUGE for
multi-document opinion summarisation.

Alternatives to ROUGE have been proposed.
Kabadjov et al. (2009) use sentiment intensity
to measure sentiment summarisation. Kunneman
et al. (2018) use gold standard summaries avail-
able in the forum as reference summaries, and re-
port precision, recall and F1 scores. Poddar et al.
(2017) use a combination of lexical and senti-
ment similarity to capture sentiment-aware simi-
larity between sentences.

We note that past work states the limitations of
ROUGE as a part of the discussion of the results
of their proposed systems, while examining these
limitations is the focus of our work.

3 ROUGE

ROUGE measures content coverage of candi-
date summaries against reference summaries (Lin,
2004). Different variants of ROUGE have been
proposed. For example, ROUGE-N, ROUGE-L
and ROUGE-S count the number of overlapping
units of n-gram, word sequences, and word pairs
between the candidate summary and the reference

29

Dataset Task ROUGE Others

Ganesan et al. (2010) Opinosis Abstractive R-1,R-2,R-SU4 No
Jayanth et al. (2015) Movie Abstractive R-1,R-2 Senti Corr
Wang and Ling (2016) RottenTomatoes Abstractive R-SU4 BLEU, METEOR
Angelidis and Lapata (2018) Oposum Extractive R-1,R-2,R-L No
Kunneman et al. (2018) ProductReviews Abstractive No Precision, Recall and F1

Amplayo and Lapata (2019) RottenTomatoes Abstractive R-1 R-2,R-L,R-SU4 METEOR

Table 1: Summary of automatic evaluation metrics used to evaluate opinion summaries.

Reference: The rooms were neat and clean. Summary1: Clean room. Summary2: The rooms were dirty.

Configuration R-1 R-2 R-L R-SU4 R-1 R-2 R-L R-SU4

None 0.250 0.000 0.250 0.087 0.600 0.500 0.600 0.400
Stemming 0.500 0.000 0.250 0.174 0.600 0.500 0.600 0.400
StopWordRemoval 0.400 0.000 0.400 0.222 0.400 0.000 0.400 0.222
StopWordRemoval+Stemming 0.800 0.000 0.400 0.444 0.400 0.000 0.400 0.222

Table 2: F1 score of ROUGE metrics under different configurations.

summaries respectively. The formula for ROUGE-
N is shown in equation 1, where gramn is the
choice of n-gram and S is the reference summary:

ROUGE-N =

∑
gramn∈S Countmatch(gramn)∑

gramn∈S Count(gramn)
.

(1)

The following considerations are important
when using ROUGE:

1. Multiple reference summaries: A candidate
summary with highest score for each pair-
wise evaluation of the candidate summary
against each reference summary will be the
ROUGE score for the summary. In this pa-
per, we assume one reference summary.

2. Pre-processing configurations: Different
pre-processing configurations can be taken
into account. These typically include stem-
ming and stop word removal. There are
no recommended or commonly agreed pre-
processing configurations. In this paper, we
compare multiple combinations of these pre-
processing configurations.

3. Other configurations: Although ROUGE
is a recall-based metric, there is an option
to report precision and F1 scores with each
ROUGE metric. The precision score takes
the overlapping word units with reference to
the word units of the Candidate summary.
The F1 score is the harmonic mean of the
recall and precision score. In our work,

we investigate the different configurations of
ROUGE for opinion summary evaluation.

4. Comparing different systems: ROUGE
scores can be used to compare summarisa-
tion systems by taking the mean or median of
all the summaries generated by the system.
Should the ROUGE score at summary level
be incorrect, the error propagates to the sys-
tem level. We focus on the ROUGE scores at
the summary level.

To demonstrate how ROUGE is computed, we
consider the following hypothetical examples:
Reference summary: The rooms were neat and
clean.
Candidate summary 1: Clean room.
Candidate summary 2: The rooms were dirty.

The opinion in Candidate summary 1 is consis-
tent with the Reference summary since the two re-
fer to clean rooms. Candidate summary 2 gives an
opinion that is opposite to the Reference summary
because it states that the rooms were dirty. Intu-
itively, Candidate summary 1 should be evaluated
better as compared to Candidate summary 2.

We report the ROUGE scores of ROUGE-1
(R-1), ROUGE-2 (R-2), ROUGE-L (R-L) and
ROUGE-SU4 (R-SU4) for these examples. Ta-
ble 2 shows the ROUGE scores for various
ROUGE metrics with different configurations for
our example summaries. We see that for con-
figurations “None” and “Stemming”, all ROUGE
metrics for Candidate summary 2 are higher than
Candidate summary 1. In the case of “Stop-

30

No. of gold standard summaries 223
Min No. of Words in a summary 3
Max No. of Words in a summary 62
Average No. of Words in a summary 16.7
Median No. of Words in a summary 15

Table 3: Statistics of Opinosis Dataset.

WordRemoval”, both summaries are the same.
However, for “StopWordRemoval+Stemming”,
ROUGE metrics score Candidate summary 1
higher than Candidate summary 2. This demon-
strates that the selection of the pre-processing con-
figuration for ROUGE metrics may affect the scor-
ing of summaries thus affecting the comparison of
summaries.

The previous motivating example highlights
that opinion summary evaluation requires a dif-
ferent notion of content coverage compared to
text summarisation. Content coverage for opinion
summaries is not just matching words. Opinion
summary evaluation requires differential compar-
ison of two groups of words, the aspect terms and
sentiment-bearing words. We design three exper-
iments that create summaries to reflect semantic
and sentiment variability. They are described in
the forthcoming section.

4 Experiment and Results

Opinosis is a opinion summary dataset by Gane-
san et al. (2010). It contains 51 documents,
where each document is a collection of opinions
from online reviews on one aspect of hotels, cars
and products. Examples of aspects are service
for hotels, mileage of cars and size of netbooks
(Note that aspects are called topics in the Opinosis
dataset (Ganesan et al., 2010).) Each document
is associated with three to five gold standard sum-
maries. The gold standard summaries are created
by human annotators by asking them to summarise
the major opinions in the document. We observe
duplicates in the gold standard summaries. After
removing duplicates, there are 223 gold standard
summaries left. Some key statistics of the dataset
are listed in Table 3.

4.1 Summary Triplet Experiment

Our first experiment investigates a trivial case:
“How does ROUGE respond when evaluating can-
didate summaries of similar or different aspects to
the reference summary?”

We investigate this problem using summary
triplets. Each triplet is made up of: (1) a reference
summary (Reference); (2) a candidate summary
of the same aspect (Summ-SameAsp); and (3) a
candidate summary of a different aspect (Summ-
DiffAsp). We begin by taking one gold standard
summary as Reference. Summ-SameAsp is a ran-
domly selected gold standard summary with the
same aspect as Reference. For Summ-DiffAsp, we
randomly select a summary with a different aspect
from Reference. We repeat this process for every
gold standard summary in the dataset. We have a
total of 223 summary triplets.

Since the same aspect can be referred to by dif-
ferent words, we wish to avoid the bias from the
same (different) aspect terms in the second (third)
summary for the ROUGE metrics. Therefore, we
mask the aspect terms in summaries2. Table 4
shows two examples of summary triplets. Observe
that the terms in the Summ-DiffAsp are generally
different from those in Summ-SameAsp.

Table 5 shows the proportion of triplets that
Summ-SameAsp is scored higher than Summ-
DiffAsp; higher values indicate better performance
of ROUGE for ranking candidate summaries. The
Recall score of ROUGE variants perform reason-
ably well with around 60% “accuracy” except
for R-2. This result confirms our observation
that there are few overlapping words between the
candidate summary and reference summary when
they are of different aspects.

We closely analyse the poor performance of R-
2 and we found that it is due to the many ties in
the scores of Summ-SameAsp and Summ-DiffAsp.
In particular, many candidate summaries have a
R-2 score of zero, as shown in Figure 1. When
ROUGE scores are zero for both candidate sum-
maries, scores are no longer meaningful for evalu-
ation of candidate summaries.

We also observe that, with “Stemming”, the
proportion is higher than otherwise. One possible
explanation is that “Stemming” relaxes the exact
word match requirement to allow matching of dif-
ferent word forms.

We further examine how the choice of Recall,
Precision or F1 score affects the suitability of us-
ing ROUGE to compare summaries. In Table
5, we report the proportion of triplets that score

2For two aspects, summaries do not contain the given as-
pect terms. For the aspect “accuracy”, we mask the word “ac-
curate” and for aspect “eyesight-issues”, we mask the word
“eyes”.

31

Reference Summ-SameAsp Summ-DiffAsp R-1Summ-SameAsp R-1Summ-DiffAsp

Great 〈performance〉 and
handling. 〈Performance〉,
styling and quality have
good value for money.

Adequate 〈performance〉,
nice looks, long dis-
tance cruiser. Overall
〈performance〉 good, poor
engine 〈performance〉,
gas mileage 22 highway
and poor comfort level.

〈Price〉 was good. Best
〈prices〉 on other websites
than Holiday Inn.

0.069 0.125

The 〈rooms〉 were very
neat and clean.

The 〈rooms〉 are clean,
large and comfortable.
Not the most modern
decor, however.

The Best Western in San
Francisco is a decent, in-
expensive option for one’s
stay in the city. It’s
〈location〉 is terrific , be-
ing near many attractions,
and the rooms, while
small, are clean.

0.222 0.0.95

Table 4: Two examples of summary triplets. Summ-SameAsp is a randomly selected gold standard summary on
the same aspect. whereas Summ-DiffAsp is on a different aspect. Words in angle bracket are the aspect terms we
masked. We report the R-1 F1 score with stemming and stop word removal.

Recall F1 score

Configuration R-1 R-2 R-L R-SU4 R-1 R-2 R-L R-SU4

None 0.659 0.323 0.578 0.677 0.758 0.345 0.744 0.767
Stemming 0.682 0.341 0.596 0.695 0.771 0.359 0.744 0.776
StopWordRemoval 0.610 0.108 0.592 0.610 0.646 0.108 0.628 0.646
StopWordRemoval+Stemming 0.641 0.139 0.632 0.641 0.677 0.139 0.677 0.677

Table 5: Proportion of 223 summary triplets that Summ-SameAsp is scored higher than Summ-DiffAsp, by Recall
and F1 score, when the aspect terms are masked.

Summ-SameAsp higher than Summ-DiffAsp, using
Recall and F1 score. When using Recall score, the
proportion of correctly assessed triplets is lower.
Using F1 score, the proportion is higher suggests
that the Precision score plays a part in the compar-
ison of candidate summaries of two different as-
pects and in a way controls for the different lengths
in the candidate summaries.

There are three learning points to this experi-
ment: (1) ROUGE gives a low score to candi-
date summary of a different aspect to the refer-
ence summary; (2) ROUGE-N score decreases as
n-gram increases. It is possible that ROUGE-N
scores are zero. Hence, is useful to plot the dis-
tribution of ROUGE scores; and, (3) Results sug-
gest that “Stemming” increases ROUGE’s ability
to compare summaries.

4.2 Same Polarity Triplet Experiment

We had two annotators read all 223 gold standard
summaries for 51 aspects and assign either a pos-
itive or negative sentiment polarity to each sum-
mary. When there is a conflict between the two as-
signed labels, a third annotator decides if the sum-

mary is positive or negative. Out of the 51 aspects,
for 38 aspects (74.5%) the gold summaries of each
aspect were consistent in their polarity whereas for
13 aspects (24.6%) the gold summaries were op-
posite.

Our second experiment is on the 38 aspects
where all gold summaries have the same polar-
ity. We design the experiment in a controlled way
to study how ROUGE ranks candidate summaries
containing same and opposite polarities compared
to the same reference summary. Using the idea
of a triplet summary as before, we create a triplet
consisting of: (1) a reference summary (Refer-
ence); (2) a candidate summary that is consistent
in aspect and sentiment polarity (Summ-Syn); and,
(3) a candidate summary of the same aspect but
opposite sentiment polarity (Summ-Ant). From the
summary triplets we generated in the previous sec-
tion, we use Reference and Summ-SameAsp sum-
maries. By replacing the sentiment-bearing words
of Summ-SameAsp with its synonym or antonym,
we generate two versions of the same summary.
We have a candidate summary that is consistent in
aspect and sentiment polarity, Summ-Syn, and an-

32

Figure 1: Boxplot of ROUGE scores show that scores for Summ-DiffAsp are generally lower than scores for Summ-
SameAsp. Also, R-2 scores with “StopWordRemoval” are close to zero for candidate summaries which makes it
less meaningful to be used to compare summaries.

other summary that is of same aspect but opposite
polarity, Summ-Ant. This forms the second and
third summaries of the triplet. This experiment
controls for all the matching of the other words
except for the sentiment-bearing words. Hence,
we can study the impact of matching sentiment-
bearing words in the reference summary.

To generate the synonym and antonym version
of a summary, we first identify the sentiment-
bearing words in the summary. A sentiment-
bearing word is an adjective, adverb or verb and
its lemmatised word form contains a sentiment
score in SentiWordNet (Baccianella et al., 2010).
The pre-processing steps of part-of-speech tag-
ging, lemmatisation and looking it up in Senti-
Wordnet was performed through python’s NLTK
package (Bird et al., 2009). We obtain synonyms
and antonyms3 from Wiktionary using the python
package wiktionaryparser. Table 6 reports the pro-

3We also experimented with WordNet (Fellbaum, 1998)
to get synonym and antonym of a sentiment-bearing word,
however, the pairs we obtained from WordNet had lower cov-
erage than Wiktionary.

portion of sentiment-bearing words present in the
gold standard summaries and Table 7 shows ex-
amples of the synonyms and antonyms from Wik-
tionary.

Intuitively, Summ-Syn is accurate to Reference
summary. As such, we expect Summ-Syn to be
evaluated as a better summary over Summ-Ant.
But, based on the ROUGE formula, we expect
similar ROUGE scores for both candidate sum-
maries.

Not all triplets have a synonym and antonym
summary due to the nature of the synonym and
antonym extraction method. We exclude triplets
where there are no synonym and antonym sum-
maries. We are left with 104 summary triplets with
synonym and antonym summaries with at least
one sentiment-bearing word replaced. On average,
0.124 of the summary is replaced by antonyms or
synonyms. Table 8 shows two examples of sum-
mary triplet and Table 9 shows the proportion of
triplets that ROUGE scored both summaries the
same score.

From Table 9, most triplets have the same

33

Proportion Examples

Adjectives 0.122 easy, clean, friendly
Adverbs 0.050 not, very, too
Verbs 0.110 is, like, was

Table 6: Proportion of sentiment-bearing words of all
words in gold standard summaries according to their
part-of-speech tag.

Word Synonym Antonym

small little large
large big small
exceptional excellent ordinary
inferior bad superior
worse unfavorable good

Table 7: Five examples of sentiment-bearing words
with its synonym and antonym.

score as expected from our understanding of the
ROUGE formula. ROUGE scores cannot be used
to differentiate summaries that are accurate to the
reference summary in terms of sentiment polarity.

4.3 Opposite Polarity Triplet Experiment

Our third experiment is on the 13 aspects where
gold summaries are not consistent in sentiment
polarity. For example, for the topic “but-
tons amazon kindle”, there are 1 negative sum-
mary and 3 positive summaries. We create a triplet
consisting of: (1) a reference summary (Refer-
ence); (2) a candidate summary that is consistent
in aspect and sentiment polarity (Summ-SamePol);
and, (3) a candidate summary of the same aspect
but opposite sentiment polarity (Summ-DiffPol).
We took all possible combinations with the anno-
tated gold standard summaries. We have a total of
142 summary triplets. An example of the triplet is
shown in Table 10.

We report the proportion of the 142 summary
triplets where Summ-SamePol is scored higher
than Summ-DiffPol in Table 11. R-2 is excluded
as the R-2 scores of both candidate summaries are
mostly zero, which are not meaningful to com-
pare summaries. We observe that in general,
the proportion of triplets where ROUGE scores
the second summary higher is lower than 50%.
This suggests that ROUGE is not able to correctly
rank candidate summaries of the same polarity
with the reference summary. Also, we observe
that configurations with “StopWordRemoval” is
always lower than the configurations without.

From all experiments, the inclusion of “StopWor-
dRemoval” often reduces the effectiveness of the
the ability to use ROUGE scores to compare can-
didate summaries.

5 Discussion

Our empirical analysis for examining whether
ROUGE is suitable for evaluating opinion sum-
maries leads us to three suggestions for future
studies for automatic evaluation in opinion sum-
marisation:

1. The configurations for ROUGE can change
or reverse the order of scores of summary.
We observe that F1 scores appear to compare
summaries better than Recall. Also, “Stop-
WordRemoval” seems to reduce the ability of
ROUGE scores for comparing summaries for
our dataset. Including “Stemming” often im-
prove the ability to compare candidate sum-
maries for our dataset. Hence, when report-
ing ROUGE scores, in addition to reporting
ROUGE variants, we recommend reporting
the configurations under which ROUGE was
computed.

2. ROUGE scores will be low when candidate
summary is of a different aspect from the ref-
erence summary. This is because opinions
for different aspects are described by differ-
ent sets of words. As such, there is little word
overlap which leads to low ROUGE scores.
Hence, for improvements to the opinion sum-
mary evaluation, we recommend checking
for a match of the aspect in candidate and ref-
erence summary as a differentiating criteria.

3. It is not possible to infer from ROUGE
scores if the candidate summary is accurate
to the reference especially for sentiment po-
larity. ROUGE requires an exact match of
the sentiment-bearing words in the reference
summary. But reviewers express opinions
differently which can result in the lack of
match of sentiment-bearing words. We rec-
ommend sentiment agreement of candidate
and reference summaries as another criteria
for evaluation.

6 Conclusions

ROUGE is a popular metric for automatic evalu-
ation of opinion summarisation. However, using
ROUGE as a means to measure content coverage

34

Reference Summ-Syn Summ-Ant R-1Summ-Syn R-1Summ-Ant

Great 〈performance〉 and
handling. 〈Performance〉,
styling and quality have
good value for money.

Adequate 〈performance〉,
charming looks, long
distance cruiser. Over-
all 〈performance〉 good,
impoverished engine
〈performance〉, gas
mileage 22 highway
and impoverished comfort
level.

Adequate 〈performance〉,
horrible looks, long dis-
tance cruiser. Overall
〈performance〉 good, rich
engine 〈performance〉, gas
mileage 22 highway and
rich comfort level.

0.069 0.069

The 〈rooms〉 were very neat
and clean.

The 〈rooms〉 are clean, big
and comforting. Not the
most contemporary decor,
however.

The 〈rooms〉 are clean,
small and comfortless. Not
the most ancient decor,
however.

0.222 0.222

Table 8: Two examples of summary triplet. Summ-Syn is a synonym version of a gold standard summary.
Summary-Ant is an antonym version of a gold standard summary. We report the R-1 F1 score with stemming
and stop word removal. The words that are replaced in the original summary are underlined.

Configuration R-1 R-2 R-L R-SU4

None 0.952 1.000 0.952 0.952
Stemming 0.933 1.000 0.942 0.933
StopWordRemoval 0.952 1.000 0.942 0.952
StopWordRemoval+Stemming 0.913 0.990 0.904 0.913

Table 9: Proportion of 104 summary triplets with same ROUGE scores for Summ-Syn and Summ-Ant.

Reference Summ-SamePol Summ-DiffPol R-1Summ-SamePol R-1Summ-DiffPol

New 〈buttons〉 are easy to
use and effective. No more
accidental 〈button〉 presses.
〈Buttons〉 make navigation
easy.

Magical five way 〈button〉.
Next page 〈button〉 on both
side of kindle. No reset
〈button〉.

It is not user friendly and
the 〈buttons〉 are not easily
pressed.

0.000 0.118

Table 10: An examples of summary triplet. Summ-SamePol and Summ-DiffPol are gold standard summaries of the
same aspect as Reference with same and different polarity respectively. We report the R-1 F1 score with stemming
and stop word removal.

Configuration R-1 R-L R-SU4

None 0.479 0.465 0.493
Stemming 0.479 0.465 0.500
StopWordRemoval 0.430 0.387 0.437
StopWordRemoval+Stemming 0.451 0.394 0.444

Table 11: Proportion of 142 summary triplets where
Summ-SamePol is scored higher than Summ-DiffPol.

is not sufficient for the evaluation of opinion sum-
maries. The word count overlap is not an indicator
of accurate opinion summarisation. Our experi-
ments simulate scenarios where inaccurate sum-
maries are automatically generated. We observe
that ROUGE is unable to differentiate summaries
that are accurate and summaries that are inaccu-
rate. For future work, we will investigate opinion

summaries that contain multiple opinions. Based
on the learning points from the investigation, we
aim to propose a new metric that incorporates se-
mantic similarity in terms of opinion target and
opinion polarity.

Acknowledgments

We thank the anonymous reviewers for their thor-
ough and insightful comments. Wenyi is sup-
ported by an Australian Government Research
Training Program Scholarship and a CSIRO
Data61 Top-up Scholarship.

References
Reinald Kim Amplayo and Mirella Lapata. 2019. In-

formative and controllable opinion summarization.

35

arXiv preprint arXiv:1909.02322.

Rafael Anchiêta, Rogerio Figueredo Sousa, Raimundo
Moura, and Thiago Pardo. 2017. Improving opinion
summarization by assessing sentence importance in
on-line reviews. In Proceedings of the Brazilian
Symposium in Information and Human Language
Technology, pages 32–36, Uberlândia, Brazil.

Stefanos Angelidis and Mirella Lapata. 2018. Sum-
marizing Opinions: Aspect Extraction Meets Senti-
ment Prediction and They Are Both Weakly Super-
vised. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing, pages
3675–3686, Brussels, Belgium.

Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas-
tiani. 2010. SentiWordNet 3.0: An enhanced lexi-
cal resource for sentiment analysis and opinion min-
ing. In Proceedings of the conference on Interna-
tional Language Resources and Evaluation, Valletta,
Malta.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural Language Processing with Python, 1st edi-
tion. O’Reilly Media, Inc.

John M Conroy and Judith D Schlesinger. 2008.
CLASSY and TAC 2008 Metrics. In Proceedings
of the Text Analysis Conference, Gaithersburg, MD.

Christiane Fellbaum, editor. 1998. WordNet: An Elec-
tronic Lexical Database. MIT Press, Cambridge,
MA.

Kavita Ganesan, ChengXiang Zhai, and Jiawei Han.
2010. Opinosis: A Graph Based Approach to Ab-
stractive Summarization of Highly Redundant Opin-
ions. In Proceedings of the International Confer-
ence on Computational Linguistics, pages 340–348,
Beijing, China.

Yvette Graham. 2015. Re-evaluating Automatic Sum-
marization with BLEU and 192 Shades of ROUGE.
In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, pages
128–137, Lisbon, Portugal.

Jayanth Jayanth, Jayaprakash Sundararaj, and Pushpak
Bhattacharyya. 2015. Monotone submodularity in
opinion summaries. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language
Processing, pages 169–178, Lisbon, Portugal.

Mijail Kabadjov, Alexandra Balahur, and Ester
Boldrini. 2009. Sentiment intensity: Is it a good
summary indicator? In Language and Technology
Conference, pages 203–212. Springer.

Florian Kunneman, Sander Wubben, Antal van den
Bosch, and Emiel Krahmer. 2018. Aspect-based
summarization of pros and cons in unstructured
product reviews. In Proceedings of the International
Conference on Computational Linguistics, pages
2219–2229, Santa Fe, NM.

Alon Lavie and Michael J. Denkowski. 2009. The
meteor metric for automatic evaluation of machine
translation. Machine Translation, 23(2-3):105–115.

Kevin Lerman, Sasha Blair-Goldensohn, and Ryan Mc-
Donald. 2009. Sentiment summarization: evaluat-
ing and learning user preferences. In Proceedings of
the Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 514–
522, Athens, Greece.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.

Bing Liu. 2012. Sentiment Analysis and Opinion Min-
ing. Morgan & Claypool Publishers.

Stuart Mackie, Richard McCreadie, Craig Macdonald,
and Iadh Ounis. 2014. On choosing an effective au-
tomatic evaluation metric for microblog summarisa-
tion. In Proceedings of the Information Interaction
in Context Symposium, pages 115–124.

Mohammed Elsaid Moussa, Ensaf Hussein Mohamed,
and Mohamed Hassan Haggag. 2018. A survey
on opinion summarization techniques for social me-
dia. Future Computing and Informatics Journal,
3(1):82–109.

Bo Pang and Lillian Lee. 2004. A sentimental edu-
cation: Sentiment analysis using subjectivity sum-
marization based on minimum cuts. In Proceedings
of the Annual Meeting on Association for Computa-
tional Linguistics, page 271, Barcelona, Spain.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic eval-
uation of machine translation. In Proceedings of the
Annual Meeting on Association for Computational
Linguistics, pages 311–318, Philadelphia, PA.

Emily Pitler, Annie Louis, and Ani Nenkova. 2010.
Automatic evaluation of linguistic quality in multi-
document summarization. In Proceedings of the An-
nual Meeting of the Association for Computational
Linguistics, pages 544–554, Uppsala, Sweden.

Lahari Poddar, Wynne Hsu, and Mong Li Lee. 2017.
Author-aware Aspect Topic Sentiment Model to Re-
trieve Supporting Opinions from Reviews. In Pro-
ceedings of the Conference on Empirical Methods
in Natural Language Processing, pages 472–481,
Copenhagen, Denmark.

Lu Wang and Wang Ling. 2016. Neural Network-
Based Abstract Generation for Opinions and Ar-
guments. In Proceedings of the Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 47–57, San Diego, CA.

36

Improved Document Modelling with a Neural Discourse Parser

Fajri Koto Jey Han Lau Timothy Baldwin
School of Computing and Information Systems

The University of Melbourne
ffajri@student.unimelb.edu.au, jeyhan.lau@gmail.com, tbaldwin@unimelb.edu.au

Abstract

Despite the success of attention-based neu-
ral models for natural language generation
and classification tasks, they are unable to
capture the discourse structure of larger doc-
uments. We hypothesize that explicit dis-
course representations have utility for NLP
tasks over longer documents or document se-
quences, which sequence-to-sequence models
are unable to capture. For abstractive sum-
marization, for instance, conventional neural
models simply match source documents and
the summary in a latent space without explicit
representation of text structure or relations.
In this paper, we propose to use neural dis-
course representations obtained from a rhetor-
ical structure theory (RST) parser to enhance
document representations. Specifically, doc-
ument representations are generated for dis-
course spans, known as the elementary dis-
course units (EDUs). We empirically inves-
tigate the benefit of the proposed approach on
two different tasks: abstractive summarization
and popularity prediction of online petitions.
We find that the proposed approach leads to
improvements in all cases.

1 Introduction

Natural language generation and document classi-
fication have been widely conducted using neural
sequence models based on the encoder–decoder
architecture. The underlying technique relies on
the production of a context vector as the document
representation, to estimate both tokens in natu-
ral language generation and labels in classification
tasks. By combining recurrent neural networks
with attention (Bahdanau et al., 2015), the model
is able to learn contextualized representations of
words at the sentence level. However, higher-level
concepts, such as discourse structure beyond the
sentence, are hard for an RNN to learn, especially
for longer documents. We hypothesize that NLP

tasks such as summarization and document classi-
fication can be improved through the incorporation
of discourse information.

In this paper, we propose to incorporate latent
representations of discourse units into neural train-
ing. A discourse parser can provide information
about the document structure as well as the re-
lationships between discourse units. In a sum-
marization scenario, for example, this informa-
tion may help to remove redundant information or
discourse disfluencies. In the case of document
classification, the structure of the text can pro-
vide valuable hints about the document category.
For instance, a scientific paper follows a particular
discourse narrative pattern, different from a short
story. Similarly, we may be able to predict the so-
cietal influence of a document such as a petition
document, in part, from its discourse structure and
coherence.

Specifically, discourse analysis aims to identify
the organization of a text by segmenting sentences
into units with relations. One popular represen-
tation is Rhetorical Structure Theory (RST) pro-
posed by Mann and Thompson (1988), where the
document is parsed into a hierarchical tree, where
leaf nodes are the segmented units, known as En-
tity Discourse Units (EDUs), and non-terminal
nodes define the relations.

As an example, in Figure 1 the two-sentence
text has been annotated with discourse structure
based on RST, in the form of 4 EDUs connected
with discourse labels attr and elab. Arrows
in the tree capture the nuclearity of relations,
wherein a “satellite” points to its “nucleus”. The
Nucleus unit is considered more prominent than
the Satellite, indicating that the Satellite is a
supporting sentence for the Nucleus. Nuclear-
ity relationships between two EDUs can take
the following three forms: Nucleus–Satellite,
Satellite–Nucleus, and Nucleus–Nucleus. In this

37

EDU-1 EDU-2 EDU-3 EDU-4

attr elab

elab

EDU-1:	American	Telephone	&	Telegraph	Co.	said	it
EDU-2:	will	lay	off	75	to	85	technicians	here,	effective	Nov.	1
EDU-3:	The	workers	install,	maintain	and	repair	its	branch,
EDU-4:	which	are	large	intracompany	telephone	networks

Figure 1: An example of a discourse tree, from (Yu
et al., 2018); elab = elaboration; attr = attribute.

work, we use our reimplementation of the state
of the art neural RST parser of Yu et al. (2018),
which is based on eighteen relations: purp,
cont, attr, evid, comp, list,
back, same, topic, mann, summ,
cond, temp, eval, text, cause,
prob, elab.1

This research investigates the impact of dis-
course representations obtained from an RST
parser on natural language generation and docu-
ment classification. We primarily experiment with
an abstractive summarization model in the form
of a pointer–generator network (See et al., 2017),
focusing on two factors: (1) whether summariza-
tion benefits from discourse parsing; and (2) how
a pointer–generator network guides the summa-
rization model when discourse information is pro-
vided. For document classification, we investigate
the content-based popularity prediction of online
petitions with a deep regression model (Subrama-
nian et al., 2018). We argue that document struc-
ture is a key predictor of the societal influence (as
measured by signatures to the petition) of a docu-
ment such as a petition.

Our primary contributions are as follows: (1)
we are the first to incorporate a neural discourse
parser in sequence training; (2) we empirically
demonstrate that a latent representation of dis-
course structure enhances the summaries gener-
ated by an abstractive summarizer; and (3) we
show that discourse structure is an essential factor
in modelling the popularity of online petitions.

2 Related Work

Discourse parsing, especially in the form of RST
parsing, has been the target of research over a long
period of time, including pre-neural feature engi-

1The details of each relation can be found on the RST
website http://www.sfu.ca/rst/index.html

neering approaches (Hernault et al., 2010; Feng
and Hirst, 2012; Ji and Eisenstein, 2014). Two
approaches have been proposed to construct dis-
course parses: (1) bottom-up construction, where
EDU merge operations are applied to single units;
and (2) transition parser approaches, where the
discourse tree is constructed as a sequence of
parser actions. Neural sequence models have also
been proposed. In early work, Li et al. (2016a)
applied attention in an encoder–decoder frame-
work and slightly improved on a classical feature-
engineering approach. The current state of the
art is a neural transition-based discourse parser
(Yu et al., 2018) which incorporates implicit syn-
tax features obtained from a bi-affine dependency
parser (Dozat and Manning, 2017). In this work,
we employ this discourse parser to generate dis-
course representations.

2.1 Discourse and Summarization

Research has shown that discourse parsing is valu-
able for summarization. Via the RST tree, the
salience of a given text can be determined from the
nuclearity structure. In extractive summarization,
Ono et al. (1994), O’Donnell (1997), and Marcu
(1997) suggest introducing penalty scores for each
EDU based on the nucleus–satellite structure. In
recent work, Schrimpf (2018) utilizes the topic
relation to divide documents into sentences with
similar topics. Every chunk of sentences is then
summarized in extractive fashion, resulting in a
concise summary that covers all of the topics dis-
cussed in the passage.

Although the idea of using discourse infor-
mation in summarization is not new, most work
to date has focused on extractive summarization,
where our focus is abstractive summarization.
Gerani et al. (2014) used the parser of Joty et al.
(2013) to RST-parse product reviews. By extract-
ing graph-based features, important aspects are
identified in the review and included in the sum-
mary based on a template-based generation frame-
work. Although the experiment shows that the
RST can be beneficial for content selection, the
proposed feature is rule-based and highly tailored
to review documents. Instead, in this work, we
extract a latent representation of the discourse di-
rectly from the Yu et al. (2018) parser, and incor-
porate this into the abstractive summarizer.

38

2.2 Discourse Analysis for Document
Classification

Bhatia et al. (2015) show that discourse anal-
yses produced by an RST parser can improve
document-level sentiment analysis. Based on
DPLP (Discourse Parsing from Linear Projection)
— an RST parser by Ji and Eisenstein (2014) —
they recursively propagate sentiment scores up to
the root via a neural network.

A similar idea was proposed by Lee et al.
(2018), where a recursive neural network is used
to learn a discourse-aware representation. Here,
DPLP is utilized to obtain discourse structures,
and a recursive neural network is applied to the
doc2vec (Le and Mikolov, 2014) representations
for each EDU. The proposed approach is evalu-
ated over sentiment analysis and sarcasm detection
tasks, but found to not be competitive with bench-
mark methods.

Our work is different in that we use the la-
tent representation (as distinct from the decoded
discrete predictions) obtained from a neural RST
parser. It is most closely related to the work of
Bhatia et al. (2015) and Lee et al. (2018), but
intuitively, our discourse representations contain
richer information, and we evaluate over more
tasks such as popularity prediction of online pe-
titions.

3 Discourse Feature Extraction

To incorporate discourse information into our
models (for summarization or document regres-
sion), we use the RST parser developed by Yu
et al. (2018) to extract shallow and latent discourse
features. The parser is competitive with other tra-
ditional parsers that use heuristic features (Feng
and Hirst, 2012; Li et al., 2014; Ji and Eisenstein,
2014) and other neural network-based parsers (Li
et al., 2016b).

3.1 Shallow Discourse Features

Given a discourse tree produced by the RST parser
(Yu et al., 2018), we compute several shallow fea-
tures for an EDU: (1) the nuclearity score; (2) the
relation score for each relation; and (3) the node
type and that of its sibling.

Intuitively, the nuclearity score measures how
informative an EDU is, by calculating the (rela-

tive) number of ancestor nodes that are nuclei:2

∑
x∈ancestor(e) 1nucleus(x)

h(root)

where e is an EDU; h(x) gives the height from
node x;3 and 1nucleus(x) is an indicator function,
i.e. it returns 1 when node x is a nucleus and 0
otherwise.

The relation score measures the importance of a
discourse relation to an EDU, by computing the
(relative) number of ancestor nodes that partici-
pate in the relation:

∑
x∈ancestor(e) 1rj (x)h(x)∑

x∈ancestor(e) h(x)

where rj is a discourse relation (one of 18 in total).
Note that we weigh each ancestor node here by

its height; our rationale is that ancestor nodes that
are closer to the root are more important. The for-
mulation of these shallow features (nuclearity and
relation scores) are inspired by Ono et al. (1994),
who propose a number of ways to score an EDU
based on the RST tree structure.

Lastly, we have 2 more features for the node
type (nucleus or satellite) of the EDU and its sib-
ling. In sum, our shallow feature representation
for an EDU has 21 dimensions: 1 nuclearity score,
18 relation scores, and 2 node types.

3.2 Latent Discourse Features

In addition to the shallow features, we also extract
latent features from the RST parser.

In the RST parser, each word and POS tag
of an EDU span is first mapped to an embed-
ding and concatenated to form the input se-
quence {xw1 , ..., xwm} (m is number of words in
the EDU). Yu et al. (2018) also use syntax fea-
tures ({xs1, ..., xsm}) from the bi-affine dependency
parser (Dozat and Manning, 2017). The syntax
features are the output of the multi-layer percep-
tron layer (see Dozat and Manning (2017) for full
details).

The two sequences are then fed to two (sep-
arate) bi-directional LSTMs and average pooling
is applied to learn the latent representation for an

2The ancestor nodes of an EDU are all the nodes traversed
in its path to the root.

3Note that tree height is computed from the leaves, and
so the height of the root node is equivalent to the depth of a
leave node.

39

Neural	Features

Doc Tokenization

Stanford	CoreNLP

Bi-Affine	Parser Syntax	Feat.

POS	tag

Segmentation EDU	span

RST	Parser

Shallow	Features

Figure 2: Pipeline of RST feature extraction

EDU:

{hw1 , .., hwm} = Bi-LSTM1({xw1 , .., xwm})
{hs1, ..., hsm} = Bi-LSTM2({xs1, .., xsm})

he = Avg-Pool({hw1 , .., hwm})⊕
Avg-Pool({hs1, ..., hsm})

where ⊕ denotes the concatenate operation.
Lastly, Yu et al. (2018) apply another bi-

directional LSTM over the EDUs to learn a con-
textualized representation:

{f1,, fn} = Bi-LSTM({he1, .., hen})

We extract the contextualized EDU represen-
tations ({f1,, fn}) and use them as latent dis-
course features.

3.3 Feature Extraction Pipeline

In Figure 2, we present the feature extraction
pipeline. Given an input document, we use Stan-
ford CoreNLP to tokenize words and sentences,
and obtain the POS tags.4 We then parse the pro-
cessed input with the bi-affine parser (Dozat and
Manning, 2017) to get the syntax features.

The RST parser (Yu et al., 2018) requires EDU
span information as input. Previous studies have
generally assumed the input text has been pre-
processed to obtain EDUs, as state-of-the-art EDU
segmentation models are very close to human per-
formance (Hernault et al., 2010; Ji and Eisen-
stein, 2014). For our experiments, we use the pre-
trained EDU segmentation model of Ji and Eisen-
stein (2014) to segment the input text to produce
the EDUs.

Given the syntax features (from the bi-affine
parser), POS tags, EDU spans, and tokenized text,
we feed them to the RST parser to extract the shal-
low and latent discourse features.

We re-implemented the RST Parser in PyTorch
and were able to reproduce the results reported in
the original paper. We train the parser on the same

4https://stanfordnlp.github.io/
CoreNLP/

RNN	Bi-LSTM	

word1,		word2,		word3,			...				wordn

Context	Vector

Attention	distribution	of	tokens

Pgen

xt

Vocab	distributionPG-distribution

x(1-Pgen)

x	Pgen

Figure 3: Architecture of the pointer–generator net-
work (See et al., 2017).

data (385 documents from the Wall Street Jour-
nal), based on the configuration recommended in
the paper.

To generate syntax features, we re-train an
open-source bi-affine model, and achieve over
95% unlabelled and labelled attachment scores.5

Source code used in our experiments is avail-
able at: https://github.com/fajri91/
RSTExtractor.

4 Abstractive Summarization

Abstractive summarization is the task of creating
a concise version of a document that encapsulates
its core content. Unlike extractive summarization,
abstractive summarization has the ability to create
new sentences that are not in the original docu-
ment; it is closer to how humans summarize, in
that it generates paraphrases and blends multiple
sentences in a coherent manner.

Current sequence-to-sequence models for ab-
stractive summarization work like neural machine
translation models, in largely eschewing symbolic

5https://github.com/XuezheMax/
NeuroNLP2

40

analysis and learning purely from training data.
Pioneering work such as Rush et al. (2015), for
instance, assumes the neural architecture is able to
learn main sentence identification, discourse struc-
ture analysis, and paraphrasing all in one model.
Studies such as Gehrmann et al. (2018); Hsu et al.
(2018) attempt to incorporate additional supervi-
sion (e.g. content selection) to improve summa-
rization. Although there are proposals that extend
sequence-to-sequence models based on discourse
structure — e.g. Cohan et al. (2018) include an
additional attention layer for document sections
— direct incorporation of discourse information is
rarely explored.

Hare and Borchardt (1984) observe four core
activities involved in creating a summary: (1)
topic sentence identification; (2) deletion of un-
necessary details; (3) paragraph collapsing; and
(4) paraphrasing and insertion of connecting
words. Current approaches (Nallapati et al., 2016;
See et al., 2017) capture topic sentence identifica-
tion by leveraging the pointer network to do con-
tent selection, but the model is left to largely fig-
ure out the rest by providing it with a large train-
ing set, in the form of document–summary pairs.
Our study attempts to complement the black-box
model by providing additional supervision signal
related to the discourse structure of a document.

4.1 Summarization Model
Our summarization model is based on the pointer–
generator network (See et al., 2017). We present
the architecture in Figure 3, and summarize it as
follows:

{hi} = Bi-LSTM1({wi}) (1)

eti = vᵀ tanh(Whhi +Wsst + be) (2)

at = softmax(et)

h∗t =
∑

i

atihi

Pvoc = softmax(V ′(V [st, h
∗
t] + bv) + b′v)

pgen = σ(wᵀ
h∗h
∗
t + wᵀ

sst + wᵀ
xxt + bg)

where {hi} are the encoder hidden states, {wi}
are the embedded encoder input words, st is the
decoder hidden state, and xt is the embedded de-
coder input word.

The pointer–generator network allows the
model to either draw a word from its vocabulary
(generator mode), or select a word from the in-
put document (pointer mode). pgen is a scalar de-
noting the probability of triggering the generator

mode, and Pvoc gives us the generator mode’s vo-
cabulary probability distribution. To get the final
probability distribution over all words, we sum up
the attention weights and Pvoc:

P (w) = pgenPvoc(w) + (1− pgen)
∑

i:wi=w

ati

To discourage repetitive summaries, See et al.
(2017) propose adding coverage loss in addition
to the cross-entropy loss:

ct =

t−1∑

t′=0

at
′

eti = vᵀtanh(Whhi +Wsst +Wcc
t
i + be)

covlosst =
∑

i

min(ati, c
t
i)

Intuitively, the coverage loss works by first sum-
ming the attention weights over all words from
previous decoding steps (ct), using that informa-
tion as part of the attention computation (eti), and
then penalising the model if previously attended
words receive attention again (covlosst). See et al.
(2017) train the model for an additional 3K steps
with the coverage penalty after it is trained with
cross-entropy loss.

4.2 Incorporating the Discourse Features

We experiment with several simple methods to in-
corporate the discourse features into our summa-
rization model. Recall that the discourse features
(shallow or latent) are generated for each EDU,
but the summarization model operates at the word
level. To incorporate the features, we assume each
word within an EDU span receives the same dis-
course feature representation. Henceforth we use
g and f to denote shallow and latent discourse fea-
tures.

Method-1 (M1): Incorporate the discourse fea-
tures in the Bi-LSTM layer (Equation (1)) by con-
catenating them with the word embeddings:

{hi} = Bi-LSTM1({wi ⊕ fi}); or

{hi} = Bi-LSTM1({wi ⊕ gi})

Method-2 (M2): Incorporate the discourse fea-
tures by adding another Bi-LSTM:

{h′i} = Bi-LSTM2({hi ⊕ fi}); or

{h′i} = Bi-LSTM2({hi ⊕ gi})

41

Method F1 Recall Precision
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

PG 36.82 15.92 33.57 37.36 16.10 34.05 38.72 16.86 35.32
+M1-latent 37.76 16.51 34.48 40.15 17.52 36.65 37.90 16.64 34.61
+M1-shallow 37.45 16.23 34.22 40.15 17.38 36.68 37.34 16.24 34.13
+M2-latent 38.04 16.73 34.83 38.92 17.05 35.62 39.54 17.51 36.23
+M2-shallow 37.15 16.13 33.96 38.52 16.68 35.21 38.19 16.67 34.91
+M3-latent 37.04 16.05 33.86 37.52 16.22 34.29 38.95 16.98 35.63
+M3-shallow 37.09 16.15 33.95 39.05 16.97 35.73 37.62 16.46 34.45

PG+Cov 39.32 17.22 36.02 40.33 17.61 36.93 40.82 17.99 37.42
+M1-latent 40.06 17.63 36.70 44.44 19.53 40.69 38.60 17.05 35.39
+M1-shallow 39.78 17.50 36.50 43.50 19.08 39.89 38.94 17.22 35.75
+M2-latent 40.00 17.62 36.72 43.53 19.17 39.94 39.28 17.37 36.09
+M2-shallow 39.58 17.30 36.36 44.00 19.19 40.38 38.40 16.87 35.31
+M3-latent 39.23 17.00 36.00 42.95 18.54 39.37 38.29 16.69 35.16
+M3-shallow 39.57 17.31 36.28 43.85 19.14 40.17 38.37 168.6 35.20

Table 1: Abstractive summarization results.

Method-3 (M3): Incorporate the discourse fea-
tures in the attention layer (Equation (2)):

eti = vᵀ tanh(Whhi +Wsst +Wffi + be); or

eti = vᵀ tanh(Whhi +Wsst +Wggi + be)

4.3 Data and Result
We conduct our summarization experiments using
the anonymized CNN/DailyMail corpus (Nallap-
ati et al., 2016). We follow the data preprocessing
steps in See et al. (2017) to obtain 287K training
examples, 13K validation examples, and 11K test
examples.

All of our experiments use the default hyper-
parameter configuration of See et al. (2017). Ev-
ery document and its summary pair are truncated
to 400 and 100 tokens respectively (shorter texts
are padded accordingly). The model has 256-
dimensional hidden states and 128-dimensional
word embeddings, and vocabulary is limited to the
most frequent 50K tokens. During test inference,
we similarly limit the length of the input document
to 400 words and the length of the generated sum-
mary to 35–100 words for beam search.

Our experiment has two pointer–generator net-
work baselines: (1) one without the coverage
mechanism (“PG”); and (2) one with the cover-
age mechanism (“PG+Cov”; Section 4.1). For
each baseline, we incorporate the latent and shal-
low discourse features separately in 3 ways (Sec-
tion 4.2), giving us 6 additional results.

We train the models for approximately 240,000-
270,000 iterations (13 epochs). When we include
the coverage mechanism (second baseline), we
train for an additional 3,000–3,500 iterations using
the coverage penalty, following See et al. (2017).

We use ROUGE (Lin, 2004) as our evaluation
metric, which is a standard measure based on
overlapping n-grams between the generated sum-
mary and the reference summary. We assess un-
igram (R-1), bigram (R-2), and longest-common-
subsequence (R-L) overlap, and present F1, recall
and precision scores in Table 1.

For the first baseline (PG), we see that incor-
porating discourse features consistently improves
recall and F1. This observation is consistent ir-
respective of how (e.g. M1 or M2) and what (e.g.
shallow or latent features) we add. These improve-
ments do come at the expense of precision, with
the exception of M2-latent (which produces small
improvements in precision). Ultimately however,
the latent features are in general a little better, with
M2-latent produing the best results based on F1.

We see similar observations for the second base-
line (PG+Cov): recall is generally improved at the
expense of precision. In terms of F1, the gap be-
tween the baseline and our models is a little closer,
and M1-latent and M2-latent are the two best per-
formers.

42

Reference:	
nigel	short	said	women	should	accept	they	're	`	hard-wired	very	differently	'
made	comments	when	explaining	why	there	were	so	few	women	in	chess	.
female	chess	players	reacted	angrily	to	mr	short	's	statements	last	night	.
PG	+	Cov	+	M1-latent:
nigel	short	,	49	,	said	women	should	accept	they	were	`	hard-wired	very
differently	'	and	were	n't	as	adept	at	playing	chess	as	men	.
mr	short	,	who	was	the	first	english	player	to	play	a	world	chess
championship	match	,	made	the	comments	when	explaining	why	there	were
few	women	in	competitive	chess	.	

PG	+	Cov:
nigel	short	has	controversially	claimed	women	were	not	suited	to	playing
chess	because	it	required	logical	thinking	.
but	critics	immediately	pointed	out	that	he	lost	a	high-profile	game	against	a
woman	grandmaster	.
he	told	new	in	chess	magazine	:	`	why	should	-lsb-	men	and	women	-rsb-
function	in	the	same	way	?	'

Example-1

Reference:	
deva	joseph	hit	problems	when	she	could	n't	fit	handbag	inside	suitcase	.
14-year-old	left	in	floods	of	tears	after	flight	to	spain	left	without	her	.
offered	to	pay	for	bag	to	go	in	hold	but	was	told	she	needed	a	credit	card	.
easyjet	said	it	should	have	made	an	exception	to	policy	of	accepting	cash	.

PG	+	Cov	+	M1-latent:
deva	joseph	,	14	,	was	left	stranded	at	a	busy	airport	after	being	told	she
would	not	be	allowed	to	take	her	flight	home	to	spain	.
the	teenager	offered	to	pay	for	the	second	item	to	be	put	in	the	hold	but	was
told	only	credit	cards	would	be	accepted	-	even	though	she	is	too	young	to
have	one	.
a	schoolgirl	was	left	stranded	at	a	busy	airport	after	easyjet	refused	to	let	her
board	its	plane	-	because	she	was	carrying	two	pieces	of	hand	luggage	.

PG	+	Cov:
deva	joseph	,	14	,	was	stranded	at	a	busy	airport	after	being	told	she	would
not	be	allowed	to	take	her	flight	home	to	spain	.
teenager	offered	to	pay	for	the	second	item	to	be	put	in	the	hold	but	she	is	too
young	to	have	one	.

Example-2

Figure 4: Comparison of summaries between our
model and the baseline.

4.4 Analysis and Discussion

We saw previously that our models generally im-
prove recall. To better understand this, we present
2 examples of generated summaries, one by the
baseline (“PG+Cov”) and another by our model
(“M1-latent”), in Figure 4. The highlighted words
are overlapping words in the reference. In the first
example, we notice that the summary generated
by our model is closer to the reference, while the
baseline has other unimportant details (e.g. he told
new in chess magazine : ‘ why should -lsb- men
and women -rsb- function in the same way ?). In
the second example, although there are more over-
lapping words in our model’s summary, it is a little
repetitive (e.g. first and third paragraph) and less
concise.

Observing that our model generally has better
recall (Table 1) and its summaries tend to be more
verbose (e.g. second example in Figure 4), we cal-
culated the average length of generated summaries
for PG+Cov and M1-latent, and found that they
are of length 55.2 and 64.4 words respectively.
This suggests that although discourse information

helps the summarization model overall (based on
consistent improvement in F1), the negative side
effect is that the summaries tend to be longer and
potentially more repetitive.

5 Petition Popularity Prediction

Online petitions are open letters to policy-makers
or governments requesting change or action, based
on the support of members of society at large. Un-
derstanding the factors that determine the popu-
larity of a petition, i.e. the number of supporting
signatures it will receive, provides valuable infor-
mation for institutions or independent groups to
communicate their goals (Proskurnia et al., 2017).

Subramanian et al. (2018) attempt to model pe-
tition popularity by utilizing the petition text. One
novel contribution is that they incorporate an aux-
iliary ordinal regression objective that predicts the
scale of signatures (e.g. 10K vs. 100K). Their re-
sults demonstrate that the incorporation of auxil-
iary loss and hand-engineered features boost per-
formance over the baseline.

In terms of evaluation metric, Subramanian
et al. (2018) use: (1) mean absolute error (MAE);
and (2) mean absolute percentage error (MAPE),
calculated as 100

n

∑n
i=1

ŷi−yi
yi

, where n is the num-
ber of examples and ŷi (yi) the predicted (true)
value. Note that in both cases, lower numbers are
better.

Similar to the abstractive summarization task,
we experiment with incorporating the discourse
features of the petition text to the petition regres-
sion model, under the hypothesis that discourse
structure should benefit the model.

5.1 Deep Regression Model

As before, our model is based on the model of
Subramanian et al. (2018). The input is a con-
catenation of the petition’s title and content words,
and the output is the log number of signatures.
The input sequence is mapped to GloVe vectors
(Pennington et al., 2014) and processed by sev-
eral convolution filters with max-pooling to cre-
ate a fixed-width hidden representation, which is
then fed to fully connected layers and ultimately
activated by an exponential linear unit to predict
the output. The model is optimized with mean
squared error (MSE). In addition to the MSE loss,
the authors include an auxiliary ordinal regression
objective that predicts the scale of signatures (e.g.
{10, 100, 1000, 10000, 100000}), and found that it

43

improves performance. Our model is based on the
best model that utilizes both the MSE and ordinal
regression loss.

5.2 Incorporating the Discourse Features

We once again use the methods of incorporation
presented in Section 4.2. As the classification
model uses convolution networks, only Method-1
is directly applicable.

We also explore replacing the convolution net-
works with a bidirectional LSTM (“Bi-LSTM w/
GloVe”), based on the idea that recurrent networks
are better at capturing long range dependencies be-
tween words and EDUs. For this model, we test
both Method-1 and Method-2 to incorporate the
discourse features.6

Lastly, unlike the summarization model that
needs word level input (as the pointer network re-
quires words to attend to in the source document),
we experiment with replacing the input words with
EDUs, and embed the EDUs with either the latent
(“Bi-LSTM w/ latent”) or the shallow (“Bi-LSTM
w/ shallow”) features.

5.3 Data, Result, and Discussion

We use the US Petition dataset from (Subrama-
nian et al., 2018).7 In total we have 1K petitions
with over 12M signatures after removing petitions
that have less than 150 signatures. We use the
same train/dev/test split of 80/10/10 as Subrama-
nian et al. (2018).

We present the test results in Table 2. We tune
the models based on the development set using
MAE, and find that most converge after 8K–10K
iterations of training. We are able to reproduce
the performance of the baseline model (“CNN w/
GloVe”), and find that once again, adding the shal-
low discourse features improves results.

Next we look at the LSTM model (“Bi-LSTM
w/ GloVe”). Interestingly, we found that replacing
the CNN with an LSTM results in improved MAE,
but worse MAPE. Adding discourse features to
this model generally has marginal improvement in
all cases.

When we replace the word sequence with EDUs
(“Bi-LSTM w/ latent” and “Bi-LSTM w/ shal-
low”), we see that the latent features outperform
the shallow features. This is perhaps unsurprising,

6Our LSTM has 200 hidden units, and uses a dropout rate
of 0.3, and L2 regularization.

7The data is collected from https://petitions.
whitehouse.gov.

Model MAE MAPE

CNN w/ GloVe 1.16 14.38
+ M1-latent 1.15 14.66
+ M1-shallow 1.12(1) 14.19

Bi-LSTM w/ GloVe 1.14 14.57
+ M1-latent 1.13 14.39
+ M1-shallow 1.13 14.25
+ M2-latent 1.12 14.02
+ M2-shallow 1.13 14.20

Bi-LSTM w/ latent 1.11(2) 13.91
Bi-LSTM w/ shallow 1.15 14.67

Table 2: Average petition regression performance over
3 runs (noting that lower is better for both MAE and
MAPE). One-sided t-tests show that both (1) and (2)
are significantly better than the baseline (p < 0.05 and
p < 0.005, resp.).

given that the shallow discourse features have no
information about the actual content, and are un-
likely to be effective when used in isolation with-
out the word features.

6 Conclusion and Future Work

In this paper, we explore incorporating discourse
information into two tasks: abstractive summa-
rization and popularity prediction of online peti-
tions. We experiment with both hand-engineered
shallow features and latent features extracted from
a neural discourse parser, and found that adding
them generally benefits both tasks. The caveat,
however, is that the best method of incorpora-
tion and feature type (shallow or latent) appears
to be task-dependent, and so it remains to be seen
whether we can find a robust universal approach
for incorporating discourse information into NLP
tasks.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. International Con-
ference on Learning Representations.

Parminder Bhatia, Yangfeng Ji, and Jacob Eisenstein.
2015. Better document-level sentiment analysis
from rst discourse parsing. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 2212–2218.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,

44

Trung Bui, Seokhwan Kim, Walter Chang, and Nazli
Goharian. 2018. A discourse-aware attention model
for abstractive summarization of long documents. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 615–621, New Or-
leans, Louisiana.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In Proceedings of the 2016 international con-
ference on learning representations, pages 1–8.

Vanessa Wei Feng and Graeme Hirst. 2012. Text-level
discourse parsing with rich linguistic features. In
Proceedings of the 50th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 60–68.

Sebastian Gehrmann, Yuntian Deng, and Alexander M
Rush. 2018. Bottom-up abstractive summarization.
In Proceedings of Empirical Methods in Natural
Language Processing, pages 4098–4109.

Shima Gerani, Yashar Mehdad, Giuseppe Carenini,
Raymond T. Ng, and Bita Nejat. 2014. Abstractive
summarization of product reviews using discourse
structure. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1602–1613.

Victoria C. Hare and Kathleen M. Borchardt. 1984. Di-
rect instruction of summarization skills. Journal
Reading Research Quarterly, Wiley, International
Reading Association, pages 62–78.

Hugo Hernault, Helmut Prendinger, David A. duVerle,
and Mitsuru Ishizuka. 2010. Hilda: A discourse
parser using support vector machine classification.
Dialogue and Discourse, 1(3):1–33.

Wan Ting Hsu, Chieh-Kai Lin, Ming-Ying Lee, Kerui
Min, Jing Tang, and Min Sun. 2018. A unified
model for extractive and abstractive summarization
using inconsistency loss. In Proceedings of the 56th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 132–141.

Yangfeng Ji and Jacob Eisenstein. 2014. Represen-
tation learning for text-level discourse parsing. In
Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics, pages 13–
24.

Shafiq R. Joty, Giuseppe Carenini, Raymond T. Ng,
and Yashar Mehdad. 2013. Combining intra- and
multi-sentential rhetorical parsing for document-
level discourse analysis. In Proceedings of the 51st
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 486–496.

Quoc V. Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Pro-
ceedings of The 31st International Conference on
Machine Learning, pages 1188–1196.

Kangwook Lee, Sanggyu Han, and Sung-Hyon
Myaeng. 2018. A discourse-aware neural network-
based text model for document-level text classifica-
tion. Journal of Information Science, 44.

Jiwei Li, Rumeng Li, and Eduard H. Hovy. 2014. Re-
cursive deep models for discourse parsing. In Pro-
ceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 2061–2069.

Qi Li, Tianshi Li, and Baobao Chang. 2016a. Dis-
course parsing with attention-based hierarchical
neural networks. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 362–371.

Qi Li, Tianshi Li, and Baobao Chang. 2016b. Dis-
course parsing with attention-based hierarchical
neural networks. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 362–371.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text Summarization
Branches Out: Proceedings of the ACL-04 Work-
shop, pages 74–81.

William C. Mann and Sandra A. Thompson. 1988.
Rhetorical structure theory: Toward a functional the-
ory of text organization. Text Interdisciplinary Jour-
nal for the Study of Discourse, pages 243–281.

Daniel Marcu. 1997. From discourse structures to text
summaries. In Proceedings of of ACL Workshop on
Intelligent Scalable Text Summarisation, pages 82–
88.

Ramesh Nallapati, Bowen Zhou, Cicero Nogueira dos
santos, Caglar Gulcehre, and Bing Xiang. 2016.
Abstractive text summarization using sequence-to-
sequence rnns and beyond. In Proceedings of The
20th SIGNLL Conference on Computational Natu-
ral Language Learning, pages 280–290.

Michael O’Donnell. 1997. Variable-length on-line
document generation. In Proceedings of the 6th Eu-
ropean Workshop on Natural Language Generation,
pages 82–91.

Kenji Ono, Kazuo Sumita, and Seiji Miike. 1994. Ab-
stract generation based on rhetorical structure ex-
traction. In Proceedings of the 15th conference on
Computational linguistics, pages 344–348.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543.

Julia Proskurnia, Przemyslaw A. Grabowicz, Ry-
ota Kobayashi, Carlos Castillo, Philippe Cudré-
Mauroux, and Karl Aberer. 2017. Predicting the
success of online petitions leveraging multidimen-
sional time-series. In WWW ’17 Proceedings of the

45

26th International Conference on World Wide Web,
pages 755–764.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of Empiri-
cal Methods in Natural Language Processing, pages
379–389.

Natalie M. Schrimpf. 2018. Using rhetorical topics for
automatic summarization. Proceedings of the Soci-
ety for Computation in Linguistics, 1(1):125–135.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics, pages 1073–1083.

Shivashankar Subramanian, Timothy Baldwin, and
Trevor Cohn. 2018. Content-based popularity pre-
diction of online petitions using a deep regression
model. In ACL 2018: 56th Annual Meeting of
the Association for Computational Linguistics, vol-
ume 2, pages 182–188.

Nan Yu, Meishan Zhang, and Guohong Fu. 2018.
Transition-based neural RST parsing with implicit
syntax features. In roceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 559–570.

46

Does an LSTM forget more than a CNN?
An empirical study of catastrophic forgetting in NLP

Gaurav Arora Afshin Rahimi
School of Computing and Information Systems

The University of Melbourne
gaurava@student.unimelb.edu.au
{arahimi,tbaldwin}@unimelb.edu.au

Timothy Baldwin

Abstract
Catastrophic forgetting — whereby a model
trained on one task is fine-tuned on a second,
and in doing so, suffers a “catastrophic” drop
in performance over the first task — is a hur-
dle in the development of better transfer learn-
ing techniques. Despite impressive progress
in reducing catastrophic forgetting, we have
limited understanding of how different archi-
tectures and hyper-parameters affect forgetting
in a network. In this paper, we aim to un-
derstand factors which cause forgetting dur-
ing sequential training. Our primary finding
is that CNNs forget less than LSTMs. We
show that max-pooling is the underlying op-
eration which helps CNNs alleviate forgetting
compared to LSTMs. We also found that cur-
riculum learning (Bengio et al., 2009), placing
a hard task towards the end of task sequence,
reduces forgetting. We analysed the effect of
fine-tuning contextual embeddings on catas-
trophic forgetting, and found that using fixed
word embeddings is preferable to fine-tuning.1

1 Introduction

Transfer learning — transferring knowledge from
a source task to a target task — has become an
essential technique in both computer vision and
NLP. Earlier attempts at transfer learning were
limited in their applicability (Mou et al., 2016), as
the transfer only worked for very similar tasks: if
the source and target tasks were not very similar,
training on the target task resulted in catastrophic
forgetting (Ratcliff, 1990; McCloskey and Cohen,
1989), whereby the neural network abruptly for-
gets previously-acquired knowledge during train-
ing on a new task, limiting inductive transfer.
ULMFit (Howard and Ruder, 2018) developed
specialised techniques to reduce forgetting dur-
ing the fine-tuning process, resulting in successful

1All code associated with this paper is available at
https://github.com/gauravaror/catastrophic forgetting

transfer learning. A general finding of this work
was that uncovering underlying causes of catas-
trophic forgetting can result in improved architec-
tures for transfer learning.

Previous studies found that using dropout
(Goodfellow et al., 2014) and sharp activation
functions (French, 1991) help reduce catastrophic
forgetting. Sharp activation functions effectively
distribute each task to different parts of the net-
work. It is unknown if increasing the capacity of
the network will also have a similar effect. An-
other study found that using a max operation (Sri-
vastava et al., 2013) in the network reduces forget-
ting. There hasn’t been a study comparing forget-
ting for different architectures to test if networks
with the max operation have less forgetting. Task
complexity (Nguyen et al., 2019) is positively cor-
related with total error observed, but it is unknown
how we should arrange tasks in sequence to reduce
forgetting. We conduct an empirical study to un-
derstand how factors like network architecture and
capacity affect forgetting.

In this work, we design experiments to empiri-
cally address the following research questions:

RQ1: Do some neural architectures forget more
than others?

RQ2 Should we fine-tune pre-trained embeddings
in a continual learning setup?

RQ3 Do networks with more capacity forget less?

RQ4 Do networks forget more during/after train-
ing over a difficult task?

Our experimental setup consists of studying for-
getting for various neural architectures and hyper-
parameter configurations in a continual learning
setup. We train the network without access to data
from the previous tasks, and measure how much
of the knowledge learned in previous tasks is for-
gotten. After performing initial experiments, we

47

conduct further experiments to understand the un-
derlying reason for the differences in forgetting.

We found that CNNs forget less than LSTMs,
because of max pooling. Max-pooling decreases
forgetting as the gradient doesn’t update all the
shared parameters. Further, adding contextual
word embeddings such as ELMo (Peters et al.,
2018a) with either an LSTM or a CNN as the
top layer, reduces the forgetting for both architec-
tures. Surprisingly, the LSTM forgets less when
the ELMo embeddings are frozen, and fine-tuning
performs worse than randomly initialised embed-
dings in a continual learning setup. We also found
that, contrary to common wisdom, more network
capacity doesn’t always result in less forgetting.
For CNNs, sequence forgetting increases as we in-
crease the number of layers, whereas for the di-
mensionality of hidden layers, the degree of for-
getting depends on the task sequence: the choice
of which task to train first has more impact on for-
getting than the number of hidden units in the net-
work, and placing difficult tasks towards the end
of the task sequence reduces overall forgetting.

2 Background

2.1 Catastrophic forgetting

Our work is similar to early work on catastrophic
forgetting (Ratcliff, 1990; McCloskey and Cohen,
1989), which studied factors affecting forgetting
like the width of the network or amount of train-
ing. The amount of new learning was found to be
directly proportional to the amount of forgetting in
previous tasks. They also found that lowering the
learning rate decreases forgetting, but impairs the
ability of the network to learn. Recent empirical
work (Goodfellow et al., 2014) studied the effect
of the activation function and different training al-
gorithms. They found that training with dropout is
always better, and the choice of activation is task-
dependent and should be cross-validated.

Both earlier empirical studies focused on only
two-task sequences, whereas we use four-task se-
quences, based on Nguyen et al. (2019) who stud-
ied the effect of total sequence complexity and se-
quential heterogeneity. They found that error rates
do not correlate with the sequential heterogeneity
of tasks.

Rebuffi et al. (2017) and Li and Hoiem (2018)
found that training on a subsequent task doesn’t
update the classification layer of the previous task,
and only updates the encoder layer, increasing

catastrophic forgetting. Knowledge distillation
loss (Hinton et al., 2015) is a commonly used tech-
nique to avoid dramatic changes in the encoder
layer, while adapting the classification layer for
the new task.

Yogatama et al. (2019) found catastrophic for-
getting while fine-tuning ELMo and BERT (De-
vlin et al., 2019) embeddings, similar to our find-
ings. They also found that sampling examples
from a different task (with uniform probability)
enables a network to learn all tasks reasonably
well; this requires access to all task simultane-
ously, which is different from our setup. We
consider whether to fine-tune embeddings or not,
which is similar to the question posed by Peters
et al. (2019), who focused on various types of task.
In contrast, we address the same question in a con-
tinual learning setup.

2.2 Transfer Learning

ULMFit (Howard and Ruder, 2018) was an effort
to enable transfer learning in a pre-trained LSTM
network. The authors utilised specialised tech-
niques such as layer-wise fine-tuning, concat pool-
ing (concatenation of final hidden state), and max
and mean pooling of all hidden states to alleviate
catastrophic forgetting during fine-tuning. In this
work, we argue and empirically support the use
of max pooling, as opposed to using only average
pooling, as a means to reduce catastrophic forget-
ting. It would be interesting to further study the
individual architectural design choices that enable
successful transfer learning, which we leave to fu-
ture work.

2.3 Evaluation metrics for Catastrophic
forgetting

GEM (Lopez-Paz et al., 2017) proposed Aver-
age, Backward, and Forward Transfer to measure
catastrophic forgetting. Backward Transfer mea-
sures the influence task t has on the previous task
k < t, and Forward Transfer measures the influ-
ence on future task k > t. Since we are only
concerned with forgetting in the network, we use
Backward Transfer with a slight modification to
measure catastrophic forgetting in a task sequence.

The amount of absolute drop in task perfor-
mance is not a good measure of forgetting because
tasks have different state-of-the-art (SOTA) per-
formance and difficulty level (e.g. majority class
performance). The forgetting ratio (Serra et al.,

48

2018) is a normalised measure of forgetting across
multiple tasks which we also adapt in this work.

3 Method

We study catastrophic forgetting by training tasks
sequentially. During sequential task training, net-
works suffer from forgetting knowledge acquired
in previous tasks because of overfitting to new
tasks, and also lack of access to the training data
of the old tasks. Our setup is very similar to fine-
tuning in transfer learning. Various tasks and task
sequences used in our study are described in Sec-
tion 4. Task sequences are trained using neural
architectures with fixed hyper-parameters, as de-
scribed in Section 6. We performed experiments
to find how forgetting changes for different ar-
chitectures (Section 7), ways to use embeddings
(Section 8), network configurations (Section 9),
and task sequences (Section 10). We compare the
amount of forgetting of various architectural de-
sign choices using the evaluation metric proposed
in Section 5.

4 Tasks

We selected four text classification tasks of differ-
ent nature, each targeting different language learn-
ing tasks for English.

• Stanford Sentiment Treebank (“SST”):
fine-grained sentiment classification over five
classes (Socher et al., 2013).

• Subjectivity (“SUBJ”): binary classification
of Subjectivity vs. Objectivity in IMDB re-
views (Pang and Lee, 2004).

• TREC Question classification (“TREC”):
coarse-grained classification of questions,
based on 6 classes (Voorhees and Tice, 1999).

• Corpus of Linguistic Acceptability
(“CoLA”): prediction of whether a sentence
is grammatical or not (Warstadt et al., 2018).

Table 1 contains state-of-the-art (SOTA), majority
class voting, and single-task performance using a
CNN for all four tasks.

We consider a task difficult for our setup if we
cannot attain performance close to SOTA with a
simple architecture like an LSTM or CNN. SST
is the most challenging task in our setup: achiev-
ing SOTA performance requires large pre-trained
contextual embeddings like ELMo (Peters et al.,

2018a). Socher et al. (2013) proposed recur-
sive neural networks for SST based on an explicit
constituency parse tree, and results for standard
LSTMs are well below SOTA. CoLA is a mod-
erately difficult task as it also requires specialised
techniques to perform reasonably well. For TREC
and Subjectivity, on the other hand, it is possi-
ble to reach performance close to SOTA with sim-
ple architectures. We intentionally selected tasks
of varying difficulty to see if forgetting increases
with more complicated tasks.

4.1 Task Sequence

We formed various task sequences with length
four using the tasks detailed in Table 1. We used
all 24 task sequences possible. A selection of
task sequences is listed in Table 6, wherein the
code name indicates the order of the tasks during
training (e.g. “TREC SUBJ CoLA SST” = train
on TREC first, then SUBJ, CoLA and SST).

5 Evaluation

We used accuracy as our metric for evaluation,
except for CoLA where we used Mathews corre-
lation (Matthews, 1975) as the dataset is unbal-
anced. All results are averaged over five runs with
different random seeds.

After training a sequence, we calculate the per-
formance score for each component task (over
held-out test data). Because absolute metrics are
not comparable between tasks, we normalise the
raw performance score for each task to get a
roughly uniform metric, disregarding task diffi-
culty. Further, we use normalised performance
scores to calculate forgetting for each task and the
whole task sequence, as detailed below.

5.1 Normalisation

Direct comparison of forgetting between TREC
and SST, e.g., is not ideal, as the absolute differ-
ence in accuracy could be up to 40%. Normali-
sation enables fairer comparison of forgetting, as
it incorporates a measure of task difficulty based
on SOTA and majority class performance. This
normalisation is similar to the forgetting ratio pro-
posed by Serra et al. (2018).

We normalise performance metric based on: (a)
SOTA for the task PERSOTA; and (b) majority
class performance PERMAJ. PERi,j refers to per-
formance measured for the task at position i after
training the task at position j (where i ≤ j). Pi,j

49

Tasks SOTA Majority Class CNN #Training Instances #Classes

TREC 0.98 0.19 0.91 5452 6
Cer et al. (2018)

SUBJ 0.96 0.50 0.92 9000 2
Cer et al. (2018)

CoLA 0.34 0.00 0.25 8551 2
Warstadt et al. (2018)

SST 0.55 0.25 0.38 8544 5
Peters et al. (2018a)

Table 1: The tasks targeted in this work, with state of the art (SOTA) performance, majority class performance,
and performance when trained individually using a single-layer CNN. We used Mathew’s Correlation Coefficient
(Matthews, 1975) for CoLA, and accuracy as the performance measure for all other tasks.

refers to the normalised performance of the task
at position i after training the task at position j.
Negative values for Pi,i indicate accuracy is below
majority classifier accuracy.

Pi,j =
PERi,j − PERMAJ

PERSOTA − PERMAJ
∀i ≤ j (1)

5.2 Forgetting of a Sequence
We use this normalised performance to measure
forgetting for an entire task sequence. Our forget-
ting metric is similar to Backward Transfer pro-
posed by Lopez-Paz et al. (2017). We track forget-
ting of the task sequence, which is a scaled version
of Backward Transfer.

Sequence forgetting (FSeq) is the sum over the
individual task forgetting values Fi. Individual
task forgetting is the scaled performance drop for
each task, indexed based on the position at which
the task was trained. The difference between per-
formance when the task was first trained and the
end of the sequence, is considered to be perfor-
mance drop:

Fi =
Pi,i − Pi,T∣∣Pi,i

∣∣ (2)

FSeq =

i=T∑

i=1

Fi (3)

where T refers to the position of the last trained
task. We also refer to Fi as FTASK when TASK is
trained at position i (e.g. when TREC is trained as
the first task, F1 = FTREC). Lower forgetting is
better.

6 Neural Models

Our network consists of an encoder and a classifi-
cation layer. The encoder learns to extract useful

Optimiser Adam
Learning Rate 0.001

Patience 10
Batch size 128

dropout 0.5
Embedding dimension 128

ELMo hidden size 1024

Table 2: Hyper-parameters used for training.

features for the task automatically. The classifi-
cation layer uses the encoder output to label in-
stances, which is dependent on the task and ac-
tual label set. We use the same encoder but dif-
ferent classifier layers for all tasks. Our architec-
ture is similar to the one used by Li and Hoiem
(2018). The AllenNLP library (Gardner et al.,
2018) was used to build our neural models. We
used Mathew’s Correlation as the early stopping
criteria for CoLA, and loss for the other tasks. Un-
less otherwise stated, we train networks with the
hyper-parameters listed in Table 2.

7 RQ1: Do LSTMs forget more than
CNNs?

CNN-based architectures (Krizhevsky et al.,
2012) have been widely used for transfer learn-
ing, whereas LSTM-based architectures need
specialised techniques to transfer successfully
(Howard and Ruder, 2018). This difference mo-
tivated us to compare forgetting between LSTMs
and CNNs.

We used the standard LSTM encoder imple-
mentation from AllenNLP. The CNN encoder in
AllenNLP is single-layered, which we adapted to

50

multi-layer with max-pooling applied after the fi-
nal layer. We used a single n-gram filter with
width two for the CNN. We ran experiments using
LSTM and CNN encoders with all task sequences
and network configurations.

7.1 Results: CNN vs. LSTM

Table 3 and Figure 1 compare the main results
for forgetting between LSTMs and CNNs on
task sequence TREC SUBJ SST CoLA. Single-
layered CNN networks forget considerably less
than LSTM networks. The lowest Sequence For-
getting value of FSeq = 1.52 for LSTMs is more
than double the lowest FSeq of 0.71 observed for
CNNs. CNNs perform substantially better with
single-layered networks, and forgetting starts in-
creasing with higher numbers of layers. With
higher numbers of CNN layers, forgetting is only
slightly lower than LSTM networks. We also per-
formed experiments with bi-directional LSTMs
and observed very small-scale reductions in for-
getting, which could be due to slightly better mod-
elling of the task; because of the marginal dif-
ference in performance, we omit results for bi-
directional LSTMs from the paper.

We conducted further experiments to under-
stand what makes single-layered CNNs special in
reducing forgetting. Convolution and pooling op-
erations are two distinctive features of CNNs. We
ran experiments replacing max-pooling with aver-
age pooling.

7.2 Results: max pooling vs. average pooling

Table 4 and Figure 2 compare the main results for
forgetting between max pooling and average pool-
ing on task sequence TREC SUBJ SST CoLA.
Replacing max pooling with average pooling re-
sulted in a slight increase in FSeq, indicating max-
pooling helps in reducing forgetting.

A network with max pooling can train on dif-
ferent input distributions with less interference,
as different sub-networks (paths created by max-
pooling) can be used for each input distribution.
Srivastava et al. (2013) also report less forgetting
using a max operation in their proposed networks.
We observe that even with average pooling, for-
getting in CNNs is not as severe as in LSTMs.

8 RQ2: Should we fine-tune pre-trained
embedding in continual learning
setup?

Contextual embeddings like ELMo (Peters et al.,
2018b) and BERT (Devlin et al., 2019) have be-
came a standard component in recent NLP ar-
chitectures. The embeddings used in these pre-
trained architectures encode latent linguistic fea-
tures from a large corpus, thus improving sample
efficiency and generalisability of models, which
could change the forgetting dynamics of the net-
work. We used ELMo embeddings in a contin-
ual learning setup, and compared the model’s for-
getting in two scenarios: (a) embeddings are fine-
tuned during each task’s training; and (b) embed-
dings are fixed. Our experiments using fine-tuned
and fixed ELMo embeddings are referred to as
“CNNFix” and “CNNFT ” respectively, in the case
of the CNN.

8.1 Results: fixed ELMo

Table 3 presents results with fixed ELMo. Freez-
ing ELMo’s parameters in continual learning re-
duces the forgetting, e.g. for a single-layered
LSTM with 400 hidden dimensions, forgetting
was reduced from 2.57 to 0.58, which is the
least forgetting overall. The impact of fixed em-
beddings is similar for both LSTMs and CNNs.
Surprisingly, LSTMs perform slightly better than
CNN’s, contrary to results when embeddings are
not used. We hypothesise that this is due to the
LSTM sharing a similar structure to the underly-
ing model used by ELMo.

8.2 Results: ELMo with fine-tuning

Table 3 compares results using fixed and fine-
tuned ELMo embeddings. While fixed ELMo
helps the networks reduce forgetting, fine-tuning
catastrophically degrades the networks’ ability to
retain previous knowledge. Most of the gain from
using contextual embeddings is lost if we fine-
tune the embeddings: our results show that fine-
tuning increases forgetting from 0.58 to 2.57 in a
single-layer LSTM network with 400 hidden di-
mensions. These results highlight the importance
of specialised fine-tuning techniques like grad-
ual unfreezing and discriminative fine-tuning in
ULMFit (Howard and Ruder, 2018). Interestingly,
the CNN performs better with fine-tuning, but the
LSTM performs better with fixed ELMo embed-
dings.

51

#Layers Hdim CNN LSTM CNNR LSTMR CNNFix LSTMFix CNNFT LSTMFT

1 100 0.71 1.52 0.97 1.78 0.77 0.71 1.90 2.63
1 400 0.76 2.24 0.98 2.57 0.63 0.58 1.46 2.57
2 100 1.51 2.23 1.94 1.92 1.02 0.85 2.28 2.81
2 400 1.74 2.11 1.95 2.30 1.01 0.95 2.08 2.19
3 100 2.03 2.04 2.02 2.13 1.83 1.53 2.16 2.33
3 400 2.04 1.81 2.45 1.79 1.18 1.47 2.28 2.33

Table 3: Sequence Forgetting (FSeq) of TREC SUBJ SST CoLA using CNN and LSTM for various network
configurations. We denote the experiment with regularisation as “CNNR”, fixed ELMo as “CNNFix”, and ELMo
with fine-tuning as “CNNFT ”. Similar notation is used for the LSTM, and “Hdim” denotes the dimensionality of
the given hidden layer.

Figure 1: Performance of the LSTM and CNN on task sequence TREC SUBJ SST COLA, with one layer and
hidden dimensionality 100.

#Layers Hdim max pool avg pool

1 100 0.71 0.97
1 400 0.75 0.97
1 900 0.72 0.90
2 100 1.66 1.61
2 400 1.72 1.83
2 900 1.58 2.18

Table 4: Sequence Forgetting (FSeq) of
TREC SUBJ SST CoLA using max pooling and
average pooling for a different configuration.

9 RQ3: Do networks with more capacity
forget less?

A lot of work in the catastrophic forgetting litera-
ture has focused on freezing the weights of the net-
work (Mallya and Lazebnik, 2018; Fernando et al.,
2017). Here, we ask whether increasing the capac-
ity of the network would encourage the network to
use different sub-networks for different tasks. An-
other thought was that increasing capacity would

drive the network to over-fit, which could further
increase forgetting.

We considered neural networks up to four lay-
ers deep, with hidden dimensions of 100, 400, 900,
and 1400. We trained each task sequence on six-
teen different network configurations formed us-
ing four different layers and hidden dimensionali-
ties. The hidden dimensionality refers to the num-
ber of features in the hidden state in an LSTM, or
the number of output channels in a CNN.

Since networks with greater capacity are more
vulnerable to over-fitting, we also studied the ef-
fect of regularising the network. We also ran
all experiments using L2 regularisation by setting
weight decay to 0.0001 during training. LSTMR

and CNNR denote results for experiments with L2
regularisation.

9.1 Results: Layers

Table 3 lists results for different layers for both
CNNs and LSTMs, and their regularised versions.
Both CNNs and LSTMs have the least forgetting

52

Figure 2: Performance of Max and Average pooling on task sequence: TREC SUBJ SST CoLA, with Layer 1 and
Hidden Dimension 100.

for the single-layered network. By increasing the
number of layers in the network, forgetting also
increases. For CNNs, there is a huge degrada-
tion when changing the network from one layer
to two layers. This steep increase could be be-
cause we are using max-pooling only after the fi-
nal layer. We might be able to reduce forgetting
in a multi-layered CNN by having a pooling op-
eration after every layer. We found that regularis-
ing using weight decay didn’t help in reducing for-
getting. Our finding differs that of previous work
on dropout (Goodfellow et al., 2014), which found
that it helps in reducing forgetting. However, the
results are not comparable due to the different type
of regularisation.

9.2 Results: Hidden Dimensionality

Table 5 shows forgetting for hidden dimensionali-
ties 100 and 900 for four task sequences. We limit
our analysis to single-layered CNNs without em-
beddings. We find that the hidden dimensionality
with least forgetting is dependent on the arrange-
ment of tasks in the task sequence. We observe
that task sequences starting with TREC and CoLA
have lower forgetting with hdim = 100 (the first
and fourth task sequences in Table 5). In contrast,
task sequences starting with SST and Subjectivity
have less forgetting with hdim = 900 (the sec-
ond and third task sequence in Table 5). Increas-
ing the dimensionality reduces forgetting for some
tasks, but increases forgetting for others. For task
sequence CoLA SST TREC SUBJ in Table 5, in-
creasing the dimensionality from 100 to 900 in-
creases forgetting for CoLA by 0.61, whereas for-
getting for SST is reduced by 0.33. Out of the

24 tasks sequences considered, only four have
|F 900

Seq − F 100
Seq | > 0.3.2

10 RQ4: Do networks forget more when
training a difficult task?

From our experiments on task sequences of length
four, we observed FSeq varies from 0.63 to 1.81
on different task sequences. The task ordering has
a substantial impact on FSeq. To understand the
forgetting behaviour for tasks individually, we ran
an experiment with two tasks. We train two tasks
sequentially, and report the forgetting observed on
the first task after training the second task, aver-
aged over five runs. We train all twelve possible
configurations using four tasks.

10.1 Results: Two-task Sequence

Table 7 lists the results of forgetting on sequence
lengths two with a single-layered network and hid-
den dimensionality of 100. We observed training
a difficult task causes overall less forgetting for
the previous task. Training TREC after Subjectiv-
ity results in forgetting of 0.46, whereas training
hard tasks like SST only results in forgetting of
0.17. We also observe TREC suffers distinctively
less forgetting by training SST and CoLA, which
is also observable in our results for the four-task
sequence.

To further understand why training a difficult
task leads to less forgetting, we recorded the to-
tal number of epochs used in training each task.
Table 8 shows the number of epochs used for the
second task in training two-task sequences. TREC

2The superscript on FSeq here indicates the dimension-
ality.

53

Code Hdim FTOTAL FTREC FCoLA FSST FSUBJ

TREC SUBJ SST CoLA 100 0.77 0.40 0.0 0.23 0.12
900 +0.32 +0.215 0.0 +0.02 +0.08

SST CoLA TREC SUBJ 100 1.36 0.12 0.58 0.65 0.0
900 −0.41 −0.02 −0.22 −0.18 0.0

SUBJ CoLA SST TREC 100 1.81 0.0 0.61 0.61 0.59
900 −0.59 0.0 −0.35 −0.21 −0.03

CoLA SST TREC SUBJ 100 0.99 0.15 0.31 0.54 0.0
900 +0.23 −0.04 +0.61 −0.33 0.0

SST TREC SUBJ COLA 100 0.93 0.19 0.0 0.61 0.12
900 −0.10 +0.10 0.0 −0.16 −0.04

Table 5: FSeq and individual task forgetting for four task sequences on a single-layered network with hidden di-
mensionality 100 and 900. The actual forgetting value is reported for dimensionality 100 and increment/decrement
from reference value at 100 dimensionality is reported for 900 dimensionality, with red indicating an increase in
forgetting and green indicating a decrease in forgetting from 100 dimensionality.

generally requires more epochs than other tasks,
accounting for the large drop in performance when
training TREC later in the sequence.

10.2 Results: Forgetting when training a
difficult task

Table 6 lists the top and bottom task sequences
based on minimum FSeq across all considered di-
mensionalities. Results are in line with our obser-
vation from the two-task sequence, that training a
difficult task causes less forgetting to tasks trained
earlier. Having a difficult task like SST towards
the end of a sequence reduces overall forgetting.
In Table 6, all the top task sequences end with
difficult task SST or CoLA, whereas all bottom
tasks ends in TREC. This finding is similar to the
findings from curriculum learning (Bengio et al.,
2009): training a hard task later in a sequence has
overall less error, and leads to better generalisa-
tion. Forgetting of a task is inversely proportional
to its difficulty level, resulting in CoLA and SST
having the least forgetting when added to the end
of the sequence.

11 Discussion and Limitations

In our study, we used a very loose definition of
what makes a task difficult, mainly comparing
single-task performance on a simple CNN/LSTM
model with SOTA. Our current analysis shows that
task and task sequencing plays a pivotal role in for-
getting observed in the network. To establish what
quantifies a difficult task in a continual learning

Task Sequence min(F 100,400,900
Seq)

TREC SUBJ CoLA SST 0.63
TREC SUBJ SST CoLA 0.78
SST TREC SUBJ CoLA 0.81
CoLA SUBJ SST TREC 1.3
SST CoLA SUBJ TREC 1.4
CoLA SST SUBJ TREC 1.4

Table 6: The top three (green) and bottom three (red)
task sequences with FSeq for Layer = 1. For each
task sequence, minimum FSeq was considered across
dimensionalities 100, 400, 900. Most of the top task
sequences finish with SST or CoLA, and bottom ones
with TREC.

setup would require extensive experiments with a
large number of varied tasks.

For task sequence TREC SUBJ CoLA SST,
CoLA’s performance improves after training on
SST, resulting in negative FCoLA and a slight drop
in FSeq. This task sequence and network with
hdim = 900 is the only instance where we ob-
served Fi < 0. Our two-task experiments saw
forgetting of 0.16 when training SST after CoLA.
This observation could be a consequence of train-
ing on TREC or SUBJ beforehand. It would be
interesting to gain more insights on what enabled
improvement on CoLA while training SST in this
task sequence.

Our results with contextual ELMo embeddings
are intriguing, as the amount of forgetting is vastly

54

Second Task→ CoLA SST SUBJ TREC
First Task ↓

CoLA — 0.16 0.38 0.39
SST 0.36 — 0.40 0.57

SUBJ 0.35 0.17 — 0.46
TREC 0.09 0.08 0.15 —

Table 7: Forgetting on sequentially training two tasks;
Layer= 1, Dimensionality = 100.

Second Task→ CoLA SST SUBJ TREC
First Task ↓

CoLA — 10.6 11 16.4
SST 16.2 — 11.8 16.2

SUBJ 17.8 10.6 — 14.6
TREC 15.2 11.0 11.8 —

Table 8: Number of epochs used for training the second
task in the sequence; Layer = 1, Dimensionality = 100.

different when ELMo’s parameters are fixed, ver-
sus when they are fine-tuned for each task. Our
experiments favour using fixed embeddings. This
finding also points at the importance of develop-
ing new specialised fine-tuning approaches simi-
lar to the one introduced in ULMFit (Howard and
Ruder, 2018). When fine-tuning ELMo embed-
dings, CNNs have less forgetting than LSTMs,
and contrastingly LSTMs have less forgetting
when ELMo embeddings are fixed.

12 Conclusion

We carried out an empirical study on catastrophic
forgetting, observing that LSTMs forget more
than CNNs. Further experimentation provided
the insight that max-pooling helps CNNs alleviate
abrupt forgetting. Our findings with pre-trained
embeddings suggest one should avoid fine-tuning
pre-trained embeddings in a continual learning
setup. We also observed that more capacity
doesn’t help in reducing catastrophic forgetting,
and that training a difficult task towards the end
of a task sequence is beneficial.

Acknowledgement

We want to thank the anonymous reviewers for
their insightful suggestions, which gave rise to the
experiments with pre-trained embeddings.

References

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th annual international con-
ference on machine learning, pages 41–48. ACM.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Brian Strope, and Ray Kurzweil. 2018. Universal
sentence encoder for English. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 169–174, Brussels, Belgium. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 4171–4186.

Chrisantha Fernando, Dylan Banarse, Charles Blun-
dell, Yori Zwols, David Ha, Andrei A Rusu, Alexan-
der Pritzel, and Daan Wierstra. 2017. Pathnet: Evo-
lution channels gradient descent in super neural net-
works. arXiv preprint arXiv:1701.08734.

Robert M French. 1991. Using semi-distributed rep-
resentations to overcome catastrophic forgetting in
connectionist networks. In Proceedings of the 13th
annual cognitive science society conference, pages
173–178.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew E.
Peters, Michael Schmitz, and Luke Zettlemoyer.
2018. Allennlp: A deep semantic natural language
processing platform. CoRR, abs/1803.07640.

Ian J. Goodfellow, Mehdi Mirza, Xia Da, Aaron C.
Courville, and Yoshua Bengio. 2014. An empirical
investigation of catastrophic forgeting in gradient-
based neural networks. In 2nd International Con-
ference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference
Track Proceedings.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 328–339, Melbourne, Aus-
tralia. Association for Computational Linguistics.

55

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep con-
volutional neural networks. In Advances in neural
information processing systems, pages 1097–1105.

Z. Li and D. Hoiem. 2018. Learning without forget-
ting. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 40(12):2935–2947.

David Lopez-Paz et al. 2017. Gradient episodic mem-
ory for continual learning. In Advances in Neural
Information Processing Systems, pages 6467–6476.

Arun Mallya and Svetlana Lazebnik. 2018. Packnet:
Adding multiple tasks to a single network by itera-
tive pruning. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition,
pages 7765–7773.

Brian W Matthews. 1975. Comparison of the pre-
dicted and observed secondary structure of t4 phage
lysozyme. Biochimica et Biophysica Acta (BBA)-
Protein Structure, 405(2):442–451.

Michael McCloskey and Neal J Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. Psychology of Learn-
ing and Motivation - Advances in Research and The-
ory, 24(C):109–165.

Lili Mou, Zhao Meng, Rui Yan, Ge Li, Yan Xu,
Lu Zhang, and Zhi Jin. 2016. How transferable are
neural networks in nlp applications? In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 479–489.

Cuong V. Nguyen, Alessandro Achille, Michael Lam,
Tal Hassner, Vijay Mahadevan, and Stefano Soatto.
2019. Toward understanding catastrophic forgetting
in continual learning. CoRR, abs/1908.01091.

Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Proceedings of
the 42Nd Annual Meeting on Association for Com-
putational Linguistics, ACL ’04, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018a. Deep contextualized word rep-
resentations. In Proc. of NAACL.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018b. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2018, New Or-
leans, Louisiana, USA, June 1-6, 2018, Volume 1
(Long Papers), pages 2227–2237.

Matthew E. Peters, Sebastian Ruder, and Noah A.
Smith. 2019. To tune or not to tune? adapt-
ing pretrained representations to diverse tasks. In

Proceedings of the 4th Workshop on Representa-
tion Learning for NLP, RepL4NLP@ACL 2019, Flo-
rence, Italy, August 2, 2019., pages 7–14.

Roger Ratcliff. 1990. Connectionist models of recog-
nition memory: constraints imposed by learning
and forgetting functions. Psychological review,
97(2):285.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov,
Georg Sperl, and Christoph H Lampert. 2017. icarl:
Incremental classifier and representation learning.
In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 2001–2010.

Joan Serra, Didac Suris, Marius Miron, and Alexan-
dros Karatzoglou. 2018. Overcoming catastrophic
forgetting with hard attention to the task. In In-
ternational Conference on Machine Learning, pages
4555–4564.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

Rupesh K Srivastava, Jonathan Masci, Sohrob Kazer-
ounian, Faustino Gomez, and Jürgen Schmidhuber.
2013. Compete to compute. In Advances in neural
information processing systems, pages 2310–2318.

Ellen M Voorhees and Dawn M Tice. 1999. The trec-8
question answering track evaluation. In TREC, vol-
ume 1999, page 82. Citeseer.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2018. Neural network acceptability judg-
ments. arXiv preprint arXiv:1805.12471.

Dani Yogatama, Cyprien de Masson d’Autume, Jerome
Connor, Tomás Kociský, Mike Chrzanowski, Ling-
peng Kong, Angeliki Lazaridou, Wang Ling, Lei Yu,
Chris Dyer, and Phil Blunsom. 2019. Learning and
evaluating general linguistic intelligence. CoRR,
abs/1901.11373.

56

Detecting Chemical Reactions in Patents

Hiyori Yoshikawa1,3, Dat Quoc Nguyen1, Zenan Zhai1, Christian Druckenbrodt2,
Camilo Thorne2, Saber A. Akhondi2, Timothy Baldwin1, Karin Verspoor1
1The University of Melbourne, Australia; 2Elsevier; 3Fujitsu Laboratories Ltd.

1{hiyori.yoshikawa,dqnguyen,zenan.zhai,tbaldwin,karin.verspoor}@unimelb.edu.au
2{c.druckenbrodt,c.thorne.1,s.akhondi}@elsevier.com

Abstract

Extracting chemical reactions from patents is
a crucial task for chemists working on chem-
ical exploration. In this paper we introduce
the novel task of detecting the textual spans
that describe or refer to chemical reactions
within patents. We formulate this task as
a paragraph-level sequence tagging problem,
where the system is required to return a se-
quence of paragraphs that contain a descrip-
tion of a reaction. To address this new task,
we construct an annotated dataset from an ex-
isting proprietary database of chemical reac-
tions manually extracted from patents. We in-
troduce several baseline methods for the task
and evaluate them over our dataset. Through
error analysis, we discuss what makes the task
complex and challenging, and suggest possible
directions for future research.

1 Introduction

Chemical patents are a crucial resource for chem-
ical research and development activities. In fact,
many compounds are reported first in patents and
only a small fraction of them appears in the chem-
ical literature after 1 to 3 years (Senger et al.,
2015), meaning that chemists habitually search
over both academic papers and patent databases.
Moreover, as the number of chemical patents
awarded each year is ever-increasing, there is
an increasing urgency to perform patent searches
to establish the novelty of chemical compounds
(Akhondi et al., 2014). Text mining methods are
a vital tool in this process, enabling a significant
reduction in associated time and effort.

Most previous research in text mining of chem-
ical information has focused on named entity
recognition (NER) of chemical concepts, and sev-
eral publicly-available NER corpora have been de-
rived from both scientific literature (Kim et al.,
2003; Corbett et al., 2007; Krallinger et al., 2015)

and chemical patents (Akhondi et al., 2014). Some
studies have also addressed relation extraction be-
tween chemical entities and other concepts such as
protein and diseases (Wei et al., 2015; Krallinger
et al., 2017).

However, there has been limited work on au-
tomatically extracting chemical reactions from
patents. A chemical patent usually contains a de-
scription of chemical reactions that are relevant
to its claims. Figure 1 shows an example of a
chemical reaction description. Generally speak-
ing, a chemical reaction is a process where a set of
chemical compounds is transformed into another
set of chemical compounds. A reaction descrip-
tion may include the source chemical compounds,
solvents and reagents involved in the reaction, re-
action conditions, and materials obtained as a re-
sult of the reaction. Despite the fact that such in-
formation is crucial for a comprehensive under-
standing of chemical patents, there are — to the
best of our knowledge — few methods or anno-
tated resources that can be used for this purpose.

As a first step to extracting chemical reactions,
a filtering step must take place to determine where
reactions are described in a patent. In this paper,
we introduce this new task of chemical reaction
detection. The output of this task can be used
as the input to (more complex) downstream tasks.
For example, consider an event extraction system
that extracts every step of a reaction as an indi-
vidual event. Events in the first reaction of Fig-
ure 1 would be: (1) heating 2-pyridine-ethanol,
triphenyl phosphine and carbon tetrachloride; (2)
the addition of triphenyl phosphine; (3) heating
them again; and so on. The application would
also include estimating the relevance of chemi-
cal compounds to a given reaction, based on their
role in the reaction (Akhondi et al., 2019). Such
downstream tasks require as input a paragraph se-
quence corresponding to a reaction, in a repre-

57

P: Example 1: Preparation of 2-(4-benzyloxybutyl)pyridine
P: 2-(4-Benzyloxybutyl)pyridine is prepared in 5 steps according to the following reaction route.

...
P: (1) Preparation of 2-(2-chloroethyl)pyridine

reaction

P: 2-Pyridine-ethanol (15.00 g, 122 mmol), triphenyl phosphine (38.40 g, 146 mmol) and carbon
tetrachloride (100 mL) were put in a 500-mL flask, and heated under reflux. After 1.5 hours, triphenyl
phosphine (9.60 g, 36.6 mmol) was added thereto and further heated for 30 minutes under reflux.

P: The reaction liquid was cooled down to room temperature, and then pentane (200 mL) was added
thereto, and filtered using a Kiriyama funnel. The resultant filtrate was concentrated to give a crude
product (17.07 g). This was distilled under reduced pressure to give 11.16 g (yield 65.8%, purity 97.1%)
of 2-(2-chloroethyl)pyridine.

P: (2) Preparation of dimethyl 2-(2-pyridyl)ethylmalonate

reactionP: 2-(2-Chloroethyl)pyridine (10.35 g, 73.1 mmol), N,N-dimethylformamide (100 mL), dimethyl
malonate (14.48 g, 110 mmol) and potassium carbonate (18.18 g, 132 mmol) were put in a 300-mL
flask, and stirred. ...
...

...

Figure 1: An example of chemical reaction description in a patent document (US20180072670A1). The symbol
“P:” stands for the beginning of a paragraph.

sentation that preserves the order of the reaction
substeps. Indeed, reactions are complex processes
composed of sequentially ordered steps (much like
recipes in cooking) and tend to be described se-
quentially. Thus, we formulate this task as a
paragraph-level sequence tagging problem, where
the output is a set of paragraphs containing the de-
scription of a reaction. Although the task formula-
tion is simple, it is not straightforward to automate
as it requires document-level understanding of the
patent text, which tends to be highly ambiguous.

To measure the feasibility and identify the key
challenges of this new task, we created an an-
notated dataset and established benchmark re-
sults over it, in the form of rule-based and ma-
chine learning methods.1 The dataset is based
on the chemical structure data from Reaxys®.2

The database contains chemical reactions manu-
ally extracted from a very large number of patents.
The reactions are associated with the patent from
which they are extracted. As the primary pur-
pose of the extraction is to populate a database of
chemical reactions (some of which are extracted
from non-textual sources) and not provide train-
ing data for NLP, it is not always possible to com-
pletely map back from the data to the source text.
However, the large database enabled us to auto-
matically create a potentially very large amount
of training data that can be used to train state-
of-the-art deep learning methods. For the exper-
iments presented in this paper, we created an an-
notated corpus from a subset of Reaxys® reactions

1Contact the authors for data requests.
2Copyright ©2019 Elsevier Limited, except certain con-

tent provided by third parties. Reaxys is a trademark of Else-
vier Limited.

and filtered out documents with low mapping cov-
erage from the database to text, in an attempt to
boost the fidelity of evaluation over that data. This
culminated in training, development, and test sets
consisting of 143 documents made up of >39,000
paragraphs in total.

2 Related Work

Patents are regarded as an important resource for
chemical information, and a large volume of NLP
research has focused on them (Fujii et al., 2007;
Tseng et al., 2007; Gurulingappa et al., 2013;
Southan, 2015; Rodriguez-Esteban and Bund-
schus, 2016; Akhondi et al., 2019). However,
most previous work on chemical information ex-
traction has focused on the NER task of extract-
ing chemical names or chemistry-related concepts
from literature (Kim et al., 2003; Corbett et al.,
2007; Böhme et al., 2014; Akhondi et al., 2014;
Krallinger et al., 2015). Some previous work
has attempted to extract not only chemical names
but also reaction procedures from the literature
(Lawson et al., 2011; Wei et al., 2015; Mayfield
et al., 2017; Krallinger et al., 2017). Among them,
Lowe (2012) presents an integrated system that de-
tects reaction text from chemical patents, and ex-
tracts chemicals and their roles in the correspond-
ing reaction. The system is heavily rule-based
and incorporates existing NLP libraries, and was
reported to detect reactions with high accuracy.
However, evaluation was limited to a small num-
ber of good-quality reaction texts, and the perfor-
mance of the reaction detection sub-task was not
evaluated in isolation.

Another line of work with an extensive litera-

58

ture is patent retrieval, where the task is to retrieve
patent documents or passages given a query in the
form of keywords, a sentence, or a document; Sha-
laby and Zadrozny (2019) survey this task exten-
sively. A relevant shared task was organized as
part of CLEF-IP 2012 (Piroi et al., 2012). In the
sub-task titled “Passage Retrieval Starting From
Claims”, participants were required to extract pas-
sages from chemical patents that are relevant to a
given claim. The difference between our task and
theirs is that the output of our task is all chem-
ical reactions mentioned in a given patent, inde-
pendent of any claim. In addition, the CLEF-IP
task does not require the identification of reaction
spans. That is, they deal with each passage inde-
pendently, ignoring ordering.

The proposed task can also be viewed as a text
segmentation problem. Koshorek et al. (2018)
formulated the text segmentation task on gen-
eral domain corpora such as Wikipedia as a su-
pervised learning problem, and proposed a two-
level bidirectional LSTM model to learn to de-
tect text spans. In particular, they used a softmax
layer on top of a standard BiLTSM architecture
for segmentation prediction. We experiment with
a BiLTSM-CRF architecture as a document-level
training method as described in Section 4, i.e. we
use a CRF layer to obtain the document-level label
sequence, instead of applying a softmax classifier
on top of the BiLSTM.

3 Task and Dataset

3.1 Task Formulation

A patent document usually describes the reactions
to produce the relevant compounds as part of its
claims. As shown in Figure 1, a reaction may
involve several steps to obtain the target com-
pounds.3 In our example, multiple contiguous
paragraphs are used to describe a single reaction,
and multiple reactions are necessary to obtain the
final compounds.

As a reaction consists of a series of sub-steps
executed over time, it is important to detect the
beginning and the end of each reaction text accu-
rately. Therefore, we define the task as a span de-
tection problem rather than the simpler task of bi-
nary classification (i.e., classifying each paragraph
as describing (part of) a reaction or not), which

3In this study we only focus on text data, although infor-
mation of reactions can also be present in images and tables.

Synthesis of 1-benzyl 8-methyl (E)-5-ethyloct-2-enedioate (6b)

In a 200 mL, 2-neck flame dried flask, copper(I)bromide dimethyl
sulfide (2.17 g, 10.56 mmol) was dissolved ...

Synthesis of methyl (E)-6-oxohex-4-enoate (4): The compound
was synthesized according to the reported procedure, with the
use of a different catalyst.57 Briefly, ...

II.A. Synthesis Procedures for 1a-1f

II. Synthesis Procedures

Unless otherwise noted, chemicals were purchased from Sigma-
Aldrich, Acros Organics, or Fisher Scientific. “Iron-free”
glassware was prepared ...

I. Materials and Instrumentation

paragraph ID

82

83

84

85

86

87

88

reaction span labels

O

O

B

I

I

B

I

Figure 2: Illustration of our reaction span detection
task.

would not be able to detect reactions as a whole or
capture reaction substructure.

Figure 2 shows an example of an input and gold-
standard output of the reaction span detection task.
A patent document is given as a sequence of para-
graphs. The task is to detect a span of contiguous
paragraphs that describe a single chemical reac-
tion. In our corpus, we provide paragraph-level
label sequences over paragraphs in patent docu-
ments, following the IOB2 tagging scheme (Tjong
et al., 1999).

The definition of “reaction spans” in our
dataset follows the extraction rules of the origi-
nal database. In principle, a reaction is extracted
from a patent if the requisite information about the
reaction (e.g., starting materials, reaction condi-
tions and target compounds) is provided within the
patent document and there is no obvious error or
inconsistency in the description. Typically a reac-
tion constitutes an example section or a subsection
beginning with a title paragraph such as Example
1, Step 1 and Preparation of [product name], as
shown in Figure 1. However, it is also commonly
the case that an example section contains multiple
reactions, in which case they have no title para-
graph.

3.2 Data Preparation

Our corpus contains patents from the European
Patent Office and the United States Patent and
Trademark Office, all of which are written in En-
glish and freely available in a digital format. The
corpus is based on the Reaxys® database, which
contains reaction entries for each patent document
manually created by experts in chemistry. A re-
action entry has “locations” of the reaction in the
corresponding patent document, mostly in terms

59

Synthesis of 1-benzyl 8-methyl ...

paragraph

paragraph encoder

B

...

I

...

O ...

...

...

...

paragraph label decoder

paragraph-level
softmax

B I O

Linear

Softmax

B

LSTM

CRF

LSTM LSTM

BiLSTM-CRF

B

Linear

Softmax

paragraph tri-gram
softmax

jj-1 j+1

Figure 3: Our model architecture. The left figure illustrates the general architecture of the whole model, while the
right figure details the decoder component.

of paragraph IDs (e.g., the reaction entry of syn-
thesis of methyl (E)-6-oxohex-4-enoate in Figure 2
has a location property with value 84, 85, 86). We
used this location information to automatically la-
bel the reaction text spans in the patent text. As
the reaction data available in the database is ex-
tracted and curated from text, images, and tables
based on specific guidelines and hence not directly
aligned with NLP requirements, it is not always
possible to completely map all the locations from
Reaxys® database to text. First, the annotation
was performed by a single expert worker for each
patent document, without redundancy or explicit
post-checking of the extraction. Second, some lo-
cations are missing in the original data. For ex-
ample, as the manual extraction process is at the
document level, a reaction is sometimes extracted
only once regardless of how many times it is men-
tioned in the patent. As part of the mapping
process, we filtered out potentially-incorrect para-
graph spans using a set of rules. For instance, we
discarded paragraph spans in which we could not
find any of the chemical compounds or related in-
formation associated with the corresponding reac-
tion in the database.

For evaluation, we applied the mapping pro-
cess to a part of the database and selected patent
documents with 100% mapping coverage (i.e. all
reaction records in the database can be mapped
to the text) and split them into training, develop-
ment, and test partitions. As a result, we obtained
training, development, and test sets consisting of
143 documents with >39,000 paragraphs in total.
Although the test set is singly-annotated and no
inter-annotator agreement is available, we man-
ually checked a small subset to confirm that the
annotation quality is sufficiently good to support
high-fidelity evaluation. Table 1 presents a break-
down of the dataset.

A patent document consists of three main parts:
title/abstract, claims, and description. We ex-

Train Dev Test

Documents 86 29 28
Paragraphs 24,402 7,194 7,481
Reaction spans 1,787 638 567
Tokens / Paragraph 72.9 74.5 75.7

Table 1: Composition of the evaluation dataset. “# To-
kens / Paragraph” stands for the average number of to-
kens in a paragraph based on OSCAR4 tokenization
(Jessop et al., 2011).

tracted the text of the description part, where
chemical reactions are described. For simplicity,
we only use textual information, and ignore other
types of data such as images describing chemi-
cal structures. Paragraphs that do not contain text
(e.g., tables or references to images) are also dis-
carded.

4 Our modeling approach

In this section, we describe our neural approach
to reaction span detection. As illustrated in Fig-
ure 3, our general model architecture is composed
of two main parts: a paragraph encoder and a para-
graph label decoder. The encoder represents each
paragraph as a vector that is then fed into the la-
bel decoder to determine the corresponding B/I/O
label of the paragraph.

4.1 Paragraph encoder
We use a paragraph encoder to encode each para-
graph p into vector vp. Assume that the paragraph
p consists of n tokens w1, w2, . . . , wn. We cre-
ate a vector ei to represent the ith word token wi

by concatenating its pre-trained word embedding
eWE
wi

, contextualized embedding eCW
wi|p, and an op-

tional embedding eFTfi representing additional fea-
tures fi associated with wi:

ei = e
WE
wi
⊕ eCW

wi|p ⊕ e
FT
fi

(1)

We then use a BiLSTM paragraph encoder to

60

learn the paragraph vector vp from a sequence
e1:n of vectors e1, . . . , en. We compute the hid-
den states of the LSTMs corresponding to the ith
token (i ∈ {1, . . . , n}) as follows:

−→ri =
−−−−−→
LSTMe(e1:i) (2)

←−ri =
←−−−−−
LSTMe(ei:n) (3)

where
−−−−−→
LSTMe and

←−−−−−
LSTMe denote forward and

backward LSTMs in the encoder, respectively.
We then concatenate the final states of these two
LSTMs to obtain the paragraph vector vp:

vp =
−→rn ⊕←−r1 (4)

4.2 Paragraph label decoder

Assume that we have an input document consist-
ing of m paragraphs p(1), p(2), ..., p(m). The de-
coder will assign a B/I/O label to the jth para-
graph p(j) based on the input paragraph vector rep-
resentation(s) vp(j) produced by the encoder as in
Equation (4). We explore the following settings.

Paragraph-level softmax classifier: In this set-
ting, we feed each vector vp(j) into a softmax clas-
sifier for paragraph label prediction:

P(j) = Softmax(WPSvp(j) + b
PS) (5)

where P(j) ∈ R3 is the final output of the network,
and WPS ∈ R3×2k and bPS ∈ R3 are a trans-
formation weight matrix and a bias factor, respec-
tively (here, k is the dimensionality of the

−−−−−→
LSTMe

and
←−−−−−
LSTMe hidden states).

Paragraph-trigram softmax classifier: The
paragraph-trigram softmax decoder extends the
paragraph-level softmax decoder by taking the
previous and next paragraphs of p(j) into account.4

In particular, it is formalized as:

up(j) = vp(j−1)
⊕ vp(j) ⊕ vp(j+1)

(6)

P(j) = Softmax(WPTup(j) + b
PT) (7)

where WPT ∈ R3×6k and bPT ∈ R3 are a trans-
formation weight matrix and a bias factor, respec-
tively.

We train each of the two softmax classifiers by
minimizing the model negative log likelihood (i.e.
cross-entropy loss). At inference time, we calcu-
late the label probabilities for every paragraph us-

4When j = 1 and j = m we use paragraphs p(0) and
p(m+1), each of which consist of two special symbols 〈S〉
and 〈/S〉.

ing the learned classifier, and construct the label
sequence with the highest joint probability score
under the constraint of a valid IOB2 output (i.e. an
I label must not come right after O).

BiLSTM-CRF classifier: In this setting, we
use a BiLSTM-CRF architecture (Huang et al.,
2015) to capture contextual information across
paragraphs as well as label transitions. We first
use another BiLSTM to learn latent feature vec-
tors representing input paragraphs from a se-
quence vp(1):p(m)

of vectors vp(1) ,vp(2) , ...,vp(m)
,

and then perform a linear transformation over each
latent feature vector. Then output vector hj for the
jth paragraph (j ∈ {1, . . . ,m}) is computed as:

−→rj =
−−−−−→
LSTMd(vp(1):p(j)) (8)

←−rj =
←−−−−−
LSTMd(vp(j):p(m)

) (9)

rj =
−→rj ⊕←−rj (10)

hj = WBCrj + b
BC (11)

where
−−−−−→
LSTMd and

←−−−−−
LSTMd denote forward and

backward LSTMs in the decoder, respectively.
WBC ∈ R3×2l and bBC ∈ R3 are a transforma-
tion weight matrix and a bias factor, respectively
(here, l is the dimensionality of the

−−−−−→
LSTMd and←−−−−−

LSTMd hidden states).
Output vectors hj are fed into a linear-chain

CRF layer (Lafferty et al., 2001) for final B/I/O
paragraph label prediction. A negative joint log
likelihood loss is minimized when training, while
the Viterbi algorithm is used for decoding.

5 Experimental Settings

5.1 Evaluation Metrics

We evaluate the model perfomance by using span-
based metrics as described below.

We find that calculating micro-averaged scores
over documents (i.e. the scores over the all spans
in the datasets) leads to biased results. This is be-
cause the development and test sets consist of a
small number of documents and style is consistent
within a document, meaning that errors caused by
the same writing style tend to accumulate and be
overestimated. To mitigate this effect, we evalu-
ate based on document-level macro-averaged re-
call, precision, and F-score, i.e. we compute the
scores for each document, and use the average of
document-level scores for model selection and fi-
nal evaluation.

For model selection we use the span-based

61

scores based on a strict match strategy, where an
output span is regarded as correct if the beginning
and ending paragraphs strictly match those of the
gold span. In some practical applications, it also
makes sense to understand if the model can iden-
tify the approximate region where a reaction is de-
scribed. Thus, for evaluation, we also compute the
scores based on a fuzzy match strategy, where we
calculate the number of matches by counting the
number of gold spans that have at least one corre-
sponding predicted output span whose beginning
and ending paragraph indices are at most 1 para-
graph away from the gold ones.

5.2 Implementation Details
5.2.1 Input Text
We use the text of each paragraph as input, with
a maximum length of 128 tokens.5 For tokeniza-
tion, we used the OSCAR4 tokenizer (Jessop et al.,
2011), as it is customized to chemical text mining.

Equation (1) formulates the input token-level
representation for the BiLSTM paragraph encoder
in the form of (context-insensitive) word embed-
dings, contextualized word embeddings, and fea-
ture embeddings. For the word embeddings eWE

wi

and contextualized embeddings eCW
wi|p, we employ

Word2Vec (Mikolov et al., 2013) and ELMo (Pe-
ters et al., 2018), respectively, both pre-trained
on chemical patent documents from Zhai et al.
(2019). These embeddings are fixed during train-
ing. We denote our encoder employing only the
pre-trained word and contextualized embeddings
(i.e. ei = eWE

wi
⊕ eCW

wi|p) as W2V +ELMO.
We also explore additional learnable feature

embeddings eFTfi (in Equation 1) based on the
output of a chemical named entity recognizer
(Zhai et al., 2019). This named entity rec-
ognizer was trained on a patent corpus named
Reaxys® Gold data (Akhondi et al., 2019). For
self-containment purpose we show the entity la-
bel set of Reaxys® Gold data in Table 4 in
the Appendix. As the label set has two levels
of granularity, we use the output in two differ-
ent ways: coarse-grained (left-hand side of the
table) and fine-grained (right-hand side). We
first obtain a token-level label sequence in the
IOB2 format such as [O, O, B-chemClass,
I-chemClass, O] for each paragraph and

5We also explored another option where we use only the
first sentence of each paragraph. However, the experimen-
tal results show better performance when we use the entire
paragraph in all cases.

then embed the labels into 5-dimensional vectors
eFTfi . We refer to the paragraph encoder with addi-
tional input of coarse-grained NER labels as W2V
+ELMO +NERCOARSE, and the one with the fine-
grained labels as W2V +ELMO +NERFINE.

5.2.2 Model Optimization

Our neural models are implemented using the Al-
lenNLP framework (Gardner et al., 2018). With
the paragraph-level and paragraph-trigram soft-
max classifiers, we train model parameters using
the training set for 20 epochs and apply early stop-
ping if no improvement in the loss over the devel-
opment set is observed for 3 continuous epochs.
With the BiLSTM-CRF classifier, we train model
parameters for 30 epochs, and early stopping is ap-
plied after 10 epochs of no improvement. Experi-
mental results with the decoder of paragraph-level
softmax on the development set show the high-
est score when using W2V +ELMO +NERFINE

input representation. Thus, for models with the
paragraph-trigram softmax and BiLSTM-CRF de-
coders, we only explore the use of the W2V

+ELMO +NERFINE input representation.
We use Adam (Kingma and Ba, 2015) as our

optimizer for all experiments. We apply a grid
search to select optimal hyper-parameters based
on the document-level macro F-score over the de-
velopment set. Table 5 in the Appendix shows the
model hyper-parameters used for evaluation. For
the model with the BiLSTM-CRF decoder, we ini-
tialize parameters of its paragraph encoder with
those from the model trained with the paragraph-
level softmax classifier, and fine-tune them to-
gether with the decoder parameters.

5.3 Baselines

5.3.1 Rule-based baseline

We additionally implement a rule-based baseline,
based on common patterns in the first paragraphs
of chemical reactions. For example, in the case
where a chemical reaction description constitutes
an Example part in a patent document, the first
paragraph begins with phrases such as Example 1,
Step 1, and Preparation of [product name]. We
use a list of frequent patterns in the first paragraphs
of chemical reaction descriptions to distinguish B
paragraphs from I or O. Once a B paragraph is de-
tected, we label succeeding paragraphs as I until
a new B paragraph is detected.

62

Decoder Input token representation
Strict match Fuzzy match

P R F1 P R F1

Rule-based .205 .381 .241 .278 .482 .319
Logistic .421 .380 .376 .521 .462 .461

Paragraph-level softmax W2V +ELMO .352 .365 .336 .475 .457 .437
W2V +ELMO +NERCOARSE .340 .389 .337 .446 .468 .415
W2V +ELMO +NERFINE .345 .383 .341 .479 .485 .447

Paragraph-trigram softmax W2V +ELMO +NERFINE .513 .488 .482 .643 .573 .574

BiLSTM-CRF W2V +ELMO +NERFINE .658 .653 .640 .718 .708 .696

Table 2: Performance of the baseline methods on reaction span detection, in terms of document-level macro-
averaged precision (“P”), recall (“R”), and F-score (“F1”). “NERCOARSE” and “NERFINE” indicate NER embed-
dings based on coarse- and fine-grained entity types, respectively.

5.3.2 Feature-based logistic regression
Another baseline we explore is the logistic regres-
sion classifier, where the output is calculated as:

P(j) = Softmax(WLφp(j)
+ bL) (12)

where P(j) ∈ R3 is the final output of the network,
WL ∈ R3×d and bL ∈ R3 are a transformation
weight matrix and a bias factor, and φp(j)

∈ Rd is
the concatenation of the following features:

• word count vectors of p(j−1), p(j) and p(j+1),
where the ith entry of each vector is the num-
ber of times the ith token appears in the cor-
responding paragraph, and;

• 2-dimensional one-hot vectors for p(j−1),
p(j) and p(j+1) indicating if the paragraph is
a heading or a body paragraph.6

As preprocessing, we apply lowercasing and
lemmatization using the NLTK WordNet Lemma-
tizer.7 We also replace all numeric characters with
a special character. We further apply the named
entity recognizer presented in Section 5.2.1 with
the fine-grained label set to replace all chemical
names with special tokens corresponding to their
entity types. The vocabulary consists of tokens
that appear at least three times in the training set.

6 Results and Discussion

6.1 Overall Results
Table 2 shows the overall results on the test set.
On the left-hand side of the table we show the re-

6The paragraph type information is also available in the
original database.

7https://www.nltk.org/

(a) paragraph tri-gram softmax (b) BiLSTM-CRF

Figure 4: Confusion matrices of the paragraph-trigram
softmax vs. BiLSTM-CRF model outputs, based on
paragraph-level B/I/O labels.

sults in terms of strict match. The BiLSTM-CRF
classifier achieves by far the best score in terms
of both precision and recall, indicating that con-
textual information over paragraphs is key in this
task. While the rule-based baseline achieves an
exact-match recall of nearly 0.4, the precision is
half this value, indicating a high number of false
positives. Comparing the three different input fea-
tures for paragraph-level softmax, we can see that
the named entity features improve the recall very
slightly, but overall have little impact on results.

The right-hand side of the table shows the re-
sults in terms of fuzzy match, where the BiLSTM-
CRF model achieves an F-score around 70%.

6.2 Error Analysis

Figure 4 shows the confusion matrices of the
model output based on the paragraph-level B/I/O
labels. We compare the paragraph-trigram soft-
max and BiLSTM-CRF models, both with the
W2V +ELMO +NERFINE input representation.
We can observe that the BiLSTM-CRF output
shows a large improvement in distinguishing be-

63

Ex. Gold ParSoftmax Trigram BiLSTM-CRF Text

1

B B B B SYNTHETIC EXAMPLE 2
I B I I Compound A2
I I I I 1,4-dibromonaphthalene (7 g, 24.48 mmol) and 4-cyclohexyl-N-(4-isopropylphenyl)aniline ...
I I I I 1H NMR (400 MHz, CDCl3, δ):
I I I I δ 8.04-7.985 (dd, 5H); 7.345-7.275 (m, 10H); 7.086-7.028 (m, 23H); 7.028-6.958 (m, 20H).

2
B B B B Example 5. Preparation of SM-5: 2-Hydroxy-4’-trifluoromethylacetophenone
I I I I Step A. A 200 mL flask was charged with 4’-trifluoromethylacetophenone ...
B I I B Step B. A 200 mL flask was charged with the crude of 2-Bromo-4’...

3

B B O B Example 5
I I O I The following Example illustrates a method for producing (R,Z)-dodec-5-ene-1,3-diol ...
I I O I To a -78 C. solution of oct-1-yne (1.8 equiv.) in THF (0.5M) will be added ...
B I B B (R)-1-(benzyloxy)dodec-5-yn-3-ol will then taken up in hexane to generate ...
B I I B (R,Z)-1-(benzyloxy)dodec-5-en-3-ol will be taken up in CH2Cl2 to generate ...
B O B B Alternatively, the secondary alcohol of (R,Z)-1-(benzyloxy)dodec-5-en-3-ol may be ...
B B I B (R,Z)-((1-(benzyloxy)dodec-5-en-3-yl)oxy)(tert-butyl)dimethylsilane will be taken up ...
B I I B To a stirring 2.0M solution of (R,Z)-3-((tert-butyldimethylsilyl)oxy)dodec-5-en-1-ol ...

4

O I B B 7-(2-Methylphenylethyl)-Sancycline
O I I I 7-(2-Methylphenylethynyl)-sancycline (1 mmol) was taken in saturated ...
B I B B 9-(4’-Acetyl phenyl) Minocycline
I I I I In a clean, dry reaction vessel, was placed 9-iodominocycline (0.762 mmoles) ...
B I B I 7-(n-Propyl)-Sancycline
I I I I 7-propynyl sancycline was dissolved in a saturated methanol hydrochloric acid solvent. ...

5

B B B B Example 25: Synthesis of Compound 15-Br-Boc
I I I I In a three-necked flask, compound 13-Br (3.4 g, 5.675 mmol), DMAP (0.139 g, ...
O B B B Example 26: Synthesis of Compound 16-B-Boc
O I I I In a three-necked flask, compound 14-B (2.726 g, 5.675 mmol), DMAP (0.139 g, ...

Table 3: Output examples. Columns “ParSoftmax”, “Trigram”, and “BiLSTM-CRF” show the output of paragraph-
level softmax, paragraph-trigram softmax and BiLSTM-CRF decoders, respectively, with the W2V +ELMO
+NERFINE encoder.

tween B and I labels, indicating that long-term
contextual information is crucial to correctly de-
tecting the beginning of the reaction spans.

Table 3 shows system output examples from the
test set. In Example 1, the first two paragraphs
of the reaction span are its title and subtitle. The
paragraph-level softmax model labels both the title
and the subtitle as B, while the paragraph-trigram
and BiLSTM-CRF model successfully classify the
subtitle paragraph as I. In Example 2 and 3, there
are multiple independent reactions in an Exam-
ple part. In this case, the paragraph-level and
paragraph-trigram classifiers often regard several
reaction steps as one single reaction, while the
BiLSTM-CRF model correctly separates out the
individual reactions in both cases. Without con-
text, it would be hard to distinguish the indepen-
dent reactions from reaction steps inside a single
reaction, as they have a common writing style (an
example where a single reaction has several reac-
tion steps can be found in Figure 1). As shown
in Example 4, it is often the case that the title of
a reaction span is the name of a chemical com-
pound. All baseline classifiers often fail to de-
tect such spans, even when chemical named en-
tities are used as input features. Presumably, the

fact that the paragraph beginning with a compound
name can occur at the beginning, within or out-
side a reaction span, makes it hard to leverage
such patterns for span detection. In Example 5,
the text span beginning with Example 26 is written
in exactly the same way as the previous Example
25 except that compound 14-B is used instead of
compound 13-Br. However, Example 26 is not ex-
tracted as a reaction by the gold annotation while
Example 25 is extracted. This would be because
the reaction was regarded as incorrect for technical
reasons (e.g., the compound used in the paragraph
is clearly incorrect), or was just discarded by the
human expert because it is not an important reac-
tion. Such cases are hard for the system to pick
up on, as they require deep understanding of the
context and background knowledge.

7 Conclusions

In this paper we introduced the chemical reac-
tion detection task and formulated this task as a
paragraph-level sequence tagging problem. We
proposed heuristic and machine-learning based
baseline methods to measure the feasibility of the
task as well as to identify the key challenges.
We also created an annotated dataset by map-

64

ping back reactions from the Reaxys® database
to their source patents. We used this corpus to
train and evaluate our baseline methods. The ex-
perimental results show that this task requires a
deep understanding of patent document context, as
well as chemical background knowledge. Indeed,
the BiLSTM-CRF model trained at the document-
level performed much better than the paragraph-
level classification methods.

The performance of the baseline methods pre-
sented in this paper is still not satisfactory con-
sidering the complex downstream tasks such as
event extraction. We believe that both the mod-
els and the corpus have potential to be improved.
As future work, we plan to explore more efficient
document-level training methods, and, in particu-
lar, methods that work well on noisy training sets.
For instance, techniques successfully used for dis-
tant supervision (Mintz et al., 2009) may be ef-
fective. Furthermore, although we used only tex-
tual information, patent documents contain sub-
stantial visual information (e.g., images of com-
pounds, or tables) that may be helpful to properly
understand a reaction description. Longer term,
we will also tackle finer-grained information ex-
traction for chemical reactions utilizing the output
of this task. This step involves extracting the de-
tails of the detected reactions, that is, inferring the
underlying structure of the reactions themselves.

Acknowledgments

We would like to thank the anonymous reviewers
for their valuable comments. This work was sup-
ported by an Australian Research Council Link-
age Project grant (LP160101469). The computa-
tions in this paper were performed using the Spar-
tan HPC-Cloud Hybrid (Lafayette et al., 2017) at
the University of Melbourne.

References
Saber A. Akhondi, Alexander G. Klenner, Christian

Tyrchan, Anil K. Manchala, Kiran Boppana, Daniel
Lowe, Marc Zimmermann, Sarma A. R. P. Jagarla-
pudi, Roger Sayle, Jan A. Kors, and Sorel Mure-
san. 2014. Annotated Chemical Patent Corpus:
A Gold Standard for Text Mining. PLOS ONE,
9(9):e107477.

Saber A. Akhondi, Hinnerk Rey, Markus Schwörer,
Michael Maier, John Toomey, Heike Nau, Gabriele
Ilchmann, Mark Sheehan, Matthias Irmer, Claudia
Bobach, Marius Doornenbal, Michelle Gregory, and

Jan A. Kors. 2019. Automatic identification of rel-
evant chemical compounds from patents. Database,
2019.

Timo Böhme, Matthias Irmer, Anett Püschel, Clau-
dia Bobach, Ulf Laube, and Lutz Weber. 2014.
OCMiner: Text processing, annotation and relation
extraction for the life sciences. In SWAT4LS.

Peter Corbett, Colin Batchelor, and Simone Teufel.
2007. Annotation of Chemical Named Entities.
In Proceedings of the Workshop on BioNLP 2007,
BioNLP ’07, pages 57–64.

Atsushi Fujii, Makoto Iwayama, and Noriko Kando.
2007. Introduction to the special issue on patent pro-
cessing. Information Processing & Management,
43(5):1149–1153.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 1–6.

Harsha Gurulingappa, Anirban Mudi, Luca Toldo,
Martin Hofmann-Apitius, and Jignesh Bhate. 2013.
Challenges in mining the literature for chemical in-
formation. RSC Advances, 3(37):16194–16211.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional LSTM-CRF Models for Sequence Tagging.
arXiv:1508.01991 [cs].

David M. Jessop, Sam E. Adams, Egon L. Willigha-
gen, Lezan Hawizy, and Peter Murray-Rust. 2011.
OSCAR4: A flexible architecture for chemical text-
mining. Journal of Cheminformatics, 3(1):41.

J.-D. Kim, T. Ohta, Y. Tateisi, and J. Tsujii. 2003. GE-
NIA corpus—a semantically annotated corpus for
bio-textmining. Bioinformatics, 19(suppl 1):i180–
i182.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Omri Koshorek, Adir Cohen, Noam Mor, Michael Rot-
man, and Jonathan Berant. 2018. Text Segmenta-
tion as a Supervised Learning Task. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 2
(Short Papers), pages 469–473.

Martin Krallinger, Obdulia Rabal, Saber A Akhondi,
et al. 2017. Overview of the BioCreative VI
chemical-protein interaction Track. In Proceed-
ings of the Sixth BioCreative Challenge Evaluation
Workshop, volume 1, pages 141–146.

65

Martin Krallinger, Obdulia Rabal, Florian Leit-
ner, Miguel Vazquez, David Salgado, Zhiyong
Lu, Robert Leaman, Yanan Lu, Donghong Ji,
Daniel M. Lowe, Roger A. Sayle, Riza Theresa
Batista-Navarro, Rafal Rak, Torsten Huber, Tim
Rocktäschel, Sérgio Matos, David Campos, Buzhou
Tang, Hua Xu, Tsendsuren Munkhdalai, Keun Ho
Ryu, SV Ramanan, Senthil Nathan, Slavko Žitnik,
Marko Bajec, Lutz Weber, Matthias Irmer, Saber A.
Akhondi, Jan A. Kors, Shuo Xu, Xin An, Ut-
pal Kumar Sikdar, Asif Ekbal, Masaharu Yoshioka,
Thaer M. Dieb, Miji Choi, Karin Verspoor, Ma-
dian Khabsa, C. Lee Giles, Hongfang Liu, Koman-
dur Elayavilli Ravikumar, Andre Lamurias, Fran-
cisco M. Couto, Hong-Jie Dai, Richard Tzong-
Han Tsai, Caglar Ata, Tolga Can, Anabel Usié,
Rui Alves, Isabel Segura-Bedmar, Paloma Martı́nez,
Julen Oyarzabal, and Alfonso Valencia. 2015. The
CHEMDNER corpus of chemicals and drugs and its
annotation principles. Journal of Cheminformatics,
7(1):S2.

Lev Lafayette, Greg Sauter, Linh Vu, and Bernard
Meade. 2017. Spartan HPC-Cloud Hybrid: Deliv-
ering Performance and Flexibility.

John D Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional Random Fields: Prob-
abilistic Models for Segmenting and Labeling Se-
quence Data. In Proceedings of the Eighteenth In-
ternational Conference on Machine Learning, pages
282–289. Morgan Kaufmann Publishers Inc.

Alexander Johnston Lawson, Stefan Roller, Helmut
Grotz, Janusz L. Wisniewski, and Libuse Goebels.
2011. Method and software for extracting chemical
data.

Daniel M. Lowe. 2012. Extraction of Chemical Struc-
tures and Reactions from the Literature. Ph.D. the-
sis, University of Cambridge.

John Mayfield, Daniel Lowe, and Roger Sayle. 2017.
CINF 13: Pistachio - Search and Faceting of Large
Reaction Databases.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed Representa-
tions of Words and Phrases and their Composition-
ality. In Advances in Neural Information Processing
Systems 26, pages 3111–3119.

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf-
sky. 2009. Distant supervision for relation extrac-
tion without labeled data. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, vol-
ume 2, pages 1003–1011.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep Contextualized Word Rep-
resentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association

for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237.

Florina Piroi, Mihai Lupu, Allan Hanbury, Alan P. Sex-
ton, Friedemann Magdy, and Igor V. Filippov. 2012.
CLEF-IP 2012: Retrieval Experiments in the Intel-
lectual Property Domain. In CLEF 2012 Evaluation
Labs and Workshop, Online Working Notes.

Raul Rodriguez-Esteban and Markus Bundschus. 2016.
Text mining patents for biomedical knowledge.
Drug Discovery Today, 21(6):997–1002.

Stefan Senger, Luca Bartek, George Papadatos, and
Anna Gaulton. 2015. Managing expectations:
Assessment of chemistry databases generated by
automated extraction of chemical structures from
patents. Journal of Cheminformatics, 7(1):49.

Walid Shalaby and Wlodek Zadrozny. 2019. Patent Re-
trieval: A Literature Review. Knowledge and Infor-
mation Systems, 61(2):631–660.

Christopher Southan. 2015. Expanding opportunities
for mining bioactive chemistry from patents. Drug
Discovery Today: Technologies, 14:3–9.

Erik F. Tjong, Kim Sang, and Jorn Veenstra. 1999.
Representing Text Chunks. In Ninth Conference of
the European Chapter of the Association for Com-
putational Linguistics.

Yuen-Hsien Tseng, Chi-Jen Lin, and Yu-I Lin. 2007.
Text mining techniques for patent analysis. In-
formation Processing & Management, 43(5):1216–
1247.

Chih-Hsuan Wei, Yifan Peng, Robert Leaman, Al-
lan Peter Davis, Carolyn J Mattingly, Jiao Li,
Thomas C Wiegers, and Zhiyong Lu. 2015.
Overview of the BioCreative V chemical disease
relation (CDR) task. In Proceedings of the Fifth
BioCreative Challenge Evaluation Workshop, vol-
ume 14.

Zenan Zhai, Dat Quoc Nguyen, Saber Akhondi,
Camilo Thorne, Christian Druckenbrodt, Trevor
Cohn, Michelle Gregory, and Karin Verspoor. 2019.
Improving Chemical Named Entity Recognition in
Patents with Contextualized Word Embeddings. In
Proceedings of the 18th BioNLP Workshop and
Shared Task, pages 328–338.

66

Decoder Input token representation Layers (enc) Dim (enc) LR

Paragraph-level W2V +ELMO 1 200 5× 10−5

softmax W2V +ELMO +NERCOARSE 2 200 5× 10−5

W2V +ELMO +NERFINE 2 100 5× 10−5

Decoder Input token representation Layers (dec) Dim (dec) LR

BiLSTM-CRF W2V +ELMO +NERFINE 2 100 1× 10−3

Table 5: The best hyperparameters on the development set. “LR” is the initial learning rate, “Layers (enc/dec)”
is the number of LSTM layers; and “Dim (enc/dec)” is the dimensionality of the LSTM hidden states, where
“enc/dec” indicate the LSTMs in the paragraph encoder and paragraph label decoder, respectively. “NERCOARSE”
and “NERFINE” mean NER tag embeddings based on coarse- and fine-grained entity types, respectively. The
structure of the paragraph encoder used for the paragraph-trigram softmax and BiLSTM-CRF classifier is the same
as the one for the paragraph-level softmax classifier, thus omitted from the table.

Coarse-grained Fine-grained

chemClass chemClass

chemClassbiomolecule
chemClassmarkush
chemClassmixture
chemClassmixture−part
chemClasspolymer

chemCompound chemCompound

chemCompoundmixture−part
chemCompoundprophetics

Table 4: Entity types from Reaxys® gold-standard data.

Appendix

NER label sets
Table 4 shows the NER label sets that we used as
additional features to include in the input repre-
sentation as described in Section 5.2.1.

Hyper-parameters
Table 5 shows the optimal hyper-parameters we
used for the final evaluation.

67

Identifying Patients with Pain in Emergency Departments using
Conventional Machine Learning and Deep Learning

Thanh Vu1, Anthony Nguyen1, Nathan J Brown2,3, James Hughes2,4
1 Australian e-Health Research Centre, CSIRO, Brisbane, Australia

2 Emergency & Trauma Centre, Royal Brisbane & Women’s Hospital, Brisbane, Australia
3 Faculty of Medicine, University of Queensland, Brisbane, Australia

4 School of Nursing, Queensland University of Technology, Brisbane, Australia
{thanh.vu, anthony.nguyen}@csiro.au

{nathan.brown3, james.hughes}@health.qld.gov.au

Abstract

Pain is the main symptom that patients present
with to the emergency department (ED). Pain
management, however, is often poorly done
aspect of emergency care and patients with
painful conditions can endure long waits be-
fore their pain is assessed or treated. To im-
prove pain management quality, identifying
whether or not an ED patient presents with
pain is an important task and allows for further
investigation of the quality of care provided.
In this paper, machine learning was utilised to
handle the task of automatically detecting pa-
tients who present at EDs with pain from retro-
spective data. Experimental results on a manu-
ally annotated dataset show that our proposed
machine learning models achieve high perfor-
mances, in which the highest accuracy and
macro-averaged F1 are 91.00% and 90.96%,
respectively.

1 Introduction

There are over 8 million presentations to Aus-
tralian public hospital emergency departments
(EDs) each year (AIHW, 2018). Pain is the
most common symptom for patients seeking care
in EDs (Karwowski-Soulié et al., 2006; Hather-
ley et al., 2016; Todd, 2017; Varndell et al.,
2018). In particular, a study of 726 presentations
(Karwowski-Soulié et al., 2006) showed that 78%
of patients presented to EDs with pain. Despite
the large number of ED patients with pain, pain
is often poorly assessed and treated within the ED
(Hatherley et al., 2016; Varndell et al., 2018). This
leads to increases in waiting times for patients un-
til pain is assessed and pharmacological analgesia
is offered (Hatherley et al., 2016; Varndell et al.,
2018).

In this paper, we propose the task of identifying
patients presenting to EDs with pain, with the view
of improving care quality and the management of

pain. In particular, the identification of patients
presenting to EDs with pain allows for the scop-
ing of groups who may be receiving poor pain care
(Pletcher et al., 2008; Hwang et al., 2014; Todd,
2017). The ease of identification of patients with
pain also allows for the evaluation of targeted in-
terventions to improve care using large datasets.

However, manually handling the identification
task at a large scale, such as tens, hundreds
of thousands of ED patients is challenging as
it requires expensive human effort to determine
whether a patient presented to the ED with pain
or not. To handle this problem, we propose
to use machine learning including both conven-
tional feature-based and deep learning models
(Scholkopf and Smola, 2001; Liaw et al., 2002; El-
man, 1990; LeCun et al., 1998; Chung et al., 2014)
to automatically learn the hidden patterns to solve
the task.

Machine learning research in healthcare has
shown success in handling many other predictive
tasks, such as cancer staging from pathology re-
ports (McCowan et al., 2007), disease or diagno-
sis coding from health records (Koopman et al.,
2015; Mullenbach et al., 2018), predicting in-
hospital mortality, unplanned readmissions (Ra-
jkomar et al., 2018), atrial fibrillation risk (Nguyen
et al., 2019), and opioid overdose risk (Che et al.,
2017; Lo-Ciganic et al., 2019). To this end, we
construct a dataset of ED patients from an Aus-
tralian hospital in order to evaluate our proposed
machine learning models, in which each patient is
assigned with either a “Pain” or “No-Pain” label
if the patient is with or without the presence of
pain, respectively. Our main contributions are as
follows:

• We formally introduce the task of identifying
whether or not a patient presented at an ED
with pain.

68

• We propose conventional machine learning
as well as deep learning models to handle the
task.

• We perform extensive experiments on the
task-specific annotated dataset to show the ef-
fectiveness of the models.

The remainder of the paper is structured as fol-
lows. In Section 2, we present related work on
improving the pain management and care quality,
as well as the application of machine learning in
healthcare predictive tasks. Section 3 describes
the pain identification task as well as how we con-
structed the annotated dataset. In Section 4, we
first describe our machine learning models. We
then report the experimental results of the models
on the annotated dataset. Section 5 concludes the
paper.

2 Related Work

An overview of research to help improve the pain
management and care quality at emergency de-
partments, as well as the application of machine
learning in the healthcare domain, will be pre-
sented.

2.1 Pain-related Studies
Pain is the most common symptom of patients pre-
senting at EDs (Cordell et al., 2002; Karwowski-
Soulié et al., 2006). In particular, Cordell et al.
(2002) and Karwowski-Soulié et al. (2006) re-
vealed that pain accounts for up to 70% and 78%
of ED visits, respectively. Much research atten-
tion has focused on the need for improving the
pain management and care quality (Doherty et al.,
2013; Georgiou et al., 2015; Hatherley et al., 2016;
Todd, 2017; Varndell et al., 2018). Historically,
the detection, assessment and management of pain
are often neglected (Georgiou et al., 2015; Varn-
dell et al., 2018). This results in patients be-
ing forced to wait extra time before getting as-
sessed and/or treated (Doherty et al., 2013), which
leads to negative outcomes for the patient and the
healthcare system.

The use of opioids is a popular approach for
pain treatment (Todd, 2017). However, recent
studies of prescription opioid misuse and abuse re-
vealed that in Australia, it has been increasing to
levels of harm (Häuser et al., 2017). This leads
to a more urgent need of improving the pain man-
agement and care quality in Australia, which mo-
tivates this study.

2.2 Machine Learning in Healthcare

With the availability of Electronic Medical Record
(EMR) systems, electronic health records (EHRs)
of patients, collected during the patient clinical en-
counters, have been increasingly available. This
creates a great opportunity for using machine
learning to improve care management and qual-
ity (McCowan et al., 2007; Koopman et al., 2015;
Rajkomar et al., 2018; Mullenbach et al., 2018;
Che et al., 2017). In particular, McCowan et al.
(2007) utilised Support Vector Machine (SVM)
(Scholkopf and Smola, 2001) to automatically in-
fer and classify cancer stages from patient pathol-
ogy reports. (Koopman et al., 2015) applied SVM
to classify cancer-related International Classifica-
tion of Diseases (ICD) codes from free-text death
certificates.

Especially, with the huge amount of EHR data,
deep learning has shown to obtain state-of-the-
art (SOTA) results in many predictive tasks (Che
et al., 2017; Rajkomar et al., 2018; Mullenbach
et al., 2018). In particular, deep learning models
based on recurrent neural network (RNN) (Elman,
1990) and convolutional neural network (CNN)
(LeCun et al., 1998) have achieved SOTA perfor-
mances in a number of tasks, such as large-scale
ICD coding from hospital free-text discharge sum-
maries (Mullenbach et al., 2018) and prediction
of opioid overdose risk (Che et al., 2017). Che
et al. (2017) presented an RNN-based model for
classifying categories of opioid users and achieved
robust results on a large-scale dataset of over a
hundred thousand opioid users. Mullenbach et al.
(2018) proposed a CNN-based model to tackle
the ICD coding task and showed that the model
yielded SOTA performances on the MIMIC III
dataset (Johnson et al., 2016). Rajkomar et al.
(2018) demonstrated that deep learning models
achieved high accuracy for predictive tasks, such
as in-hospital mortality, unplanned readmission
and prolonged length of stay. In this study, we
take the advantages of both conventional machine
learning and deep learning models to handle a
new task of pain-related identification which is de-
scribed in Section 3.

3 Task Description and Dataset

In this section, the formulation of the task and the
dataset used for the task evaluation is presented.

69

3.1 Task Description
Given a patient who presents at an ED, the aim
is to identify whether or not that patient is with
the presence of pain on admission. This task can
be formulated as a two-class (binary) classification
problem, in which the ED data of the patient was
used to predict the pain class (i.e., either “Pain” to
represent patients with pain or “No-Pain” to rep-
resent patients without pain).

Unstructured free-text ED data fields, namely
“presenting problem” and “nurse assessment”,
were used for the classification task. These were
the two free text fields that ED nurses fill out on a
patient’s arrival to the ED. Table 1 illustrates ex-
amples of patients with and without pain. Note
that short-hand notations, abbreviations and typo-
graphical errors are common in the patient ED
data, which presents additional challenges to the
task.

Table 1: Examples of the ED data associated with pa-
tients with/without pain. The class of each patient was
manually annotated.

Patient ED Data Class
Presenting problem: 4/7 cough,
tight chest , myalgia// recent dx t2dm;

Nurse assessment: a=patent b= sponta-
neous, rr 19, reports it hurts to breath
and having difficulty breathing c= strong
reg radial pulse, tachycardic 120 very dry
mucous membranes not maintaining oral
intake d= gcs 15;

Pain

Presenting problem: mdma yesterday anx-
ious insomnia subjective tongue swelling
tachycardic; Nurse assessment: hr 120bpm
dry tongue doe not appear swollen;

No-Pain

It is worth noting that the focus was on identi-
fying patients with pain at admission. Other po-
tentially useful ED information, such as ICD-10
diagnosis codes, would not be available until the
patient is discharged.

3.2 Dataset
A dataset of patients presenting at EDs was con-
structed by randomly extracting 2,000 ED adult
patients from an Australian hospital with the ar-
rival date from August to October 20181. The
dataset was annotated by an experienced medi-
cal student under the supervision of a senior med-
ical nurse, in which a patient was assigned a
“Pain” label if the patient presented with pain,

1Research ethics was obtained from the Metro North Hos-
pital and Health Service Human Research Ethics Committee.

Table 2: Basic dataset statistics

Dataset #Patients #Pain #No-Pain
Training 1,200 574 626
Development 400 171 229
Test 400 193 207

and “No-Pain” otherwise. In particular, the an-
notator was provided with a list of pain related
keywords (Hughes et al., 2019) to look for when
reviewing the triage nursing assessment. In ad-
dition to these keywords, the annotator also re-
viewed the documentation for a pain score, such
as “xx/10”, “severe pain”. When the annotator be-
lieved that the triage nursing assessment indicated
pain but was outside of the definition, discussion
was held between the student and the senior med-
ical nurse about whether this indicated the patient
arrived in pain. After annotating the data, the an-
notated dataset contained a total of 938 and 1,062
instances of “Pain” and “No-Pain” labels, respec-
tively.

The annotated dataset was split into training,
development and test sets containing 60%, 20%,
20% instances of the annotated dataset, respec-
tively. Table 2 shows the dataset statistics.

4 Methods

This section details the machine learning mod-
els used for the pain classification task. Specif-
ically, Support Vector Machine (SVM) and Ran-
dom Forest (RF) were used as our conventional
feature-based models, and Recurrent Neural Net-
work (RNN) and Convolutional Neural Networks
(CNN) were used as our deep learning models.

4.1 Conventional feature-based models

SVM (Scholkopf and Smola, 2001) and RF (Liaw
et al., 2002) were used as our conventional feature-
based models to handle the classification task.
Figure 1 shows the general architecture of the con-
ventional models. Here, both the models used the
same set of lexical and semantic features accord-
ing to (Yang et al., 2016; Vu et al., 2018) as fol-
lows:

Lexical features: Lexical features included n-
grams at both word and character levels (i.e. se-
quences of n words or characters). n-grams
at the character level were used to handle out-
of-vocabulary (OOV) words. For each type of
n-gram, only the top k most frequent n-grams
from the training set were kept. The value of

70

Lexical features Semantic features

Patient ED data

SVM / RF

Features

ML Model

Output

denies any chest pain

Pain No-Pain

Figure 1: Conventional machine learning models. The
model output is “No-Pain” for the input of “denies any
chest pain”.

each n-gram feature was calculated using the
term frequency-inverse document frequency (tf-
idf) weighting scheme.

Semantic features: Two approaches were applied
to semantically represent the patient. Firstly, the
average of pre-trained embeddings of words in the
patient ED data was used as the representation of
that patient. Secondly, latent semantic indexing
(LSI) (Papadimitriou et al., 2000) was used to cap-
ture the underlying semantics of the dataset.

Implementation details: For the experimental
dataset, tokens that contained no alphabetic or nu-
meric characters were removed (for example, re-
moving “//” but keeping “3/7”). All the remaining
tokens were lowercased. The “presenting prob-
lem” and “nurse assessment” fields of a patient
were concatenated to form the single text for the
patient. Regarding lexical features, we set k, the
top most frequent n-grams to 2,000 for both word
and character levels. For the semantic features,
fastText (Bojanowski et al., 2016) was applied to
train a subword embedding model on a large-scale
dataset of 8 million hospital clinical notes. We
found that the best experimental results on the de-
velopment set were achieved with the pre-trained
embedding size of 200. Moreover, we set the LSI
output size to 100.

The Scikit-learn implementations for both the
SVM and RF models (Pedregosa et al., 2011) were
used. For each model, a grid-search on hyper-
parameters was performed to find the best per-
forming model on the development set. Specifi-
cally, for each hyper-parameter setting, we trained
the machine learning model using the training set

and then evaluate the trained model on the devel-
opment set. The best-trained model was selected
using the macro-averaged F1 scores of “Pain” and
“No-Pain” labels on the development set. After
that, the best model was used for the evaluation on
the test set.

For SVM, the “linear” kernel performed bet-
ter than the “polynomial”, “radial basis function
(rbf)” and “sigmoid” kernels. The grid search was
performed over loss function ∈ {“squared hinge”,
“hinge”}; C ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1.0, 3.0,
5.0}; max iteration ∈ {100, 200, 500, 1000,
2000}. We also set the penalty norm parameter
to l2. The highest average-macro F1 score was
archived with loss function = “hinge”, C = 0.3,
and max iteration = 1000.

For RF, the grid search was performed over
max depth ∈ [1− 10] and number of trees ∈ {10,
50, 100, 200, 300, 500, 1000}. A max depth = 6
and number of trees = 500 produced the highest
F1 score on the development set.

4.2 Deep learning models

RNN (Elman, 1990) and CNN (LeCun et al.,
1998) were used as deep learning models as they
have proved to work well in the tasks of mod-
elling sequence data (Mikolov et al., 2010) and
text classification (Kim, 2014; Yang et al., 2016).
Figure 2 shows the architecture of the deep learn-
ing models. For both models, the base/embedding
layer was obtained by concatenating the pre-
trained word embeddings (from a large-scale hos-
pital clinical note dataset) with the character-level
embeddings of that word (Kim et al., 2016). The
pre-trained word embeddings were fixed, while
character-level word embeddings were simultane-
ously trained with the other model parameters.
The character-level word embeddings help handle
the OOV words. The representations of words in
the ED data of a patient were concatenated to form
a sequence of word representation vectors.

RNN model: The sequence of word vectors were
fed into an RNN encoder to learn the represen-
tation of the patient. As RNN has struggled
with long-term dependencies, we applied a promi-
nent variant of RNN, Gated recurrent unit (GRU)
(Chung et al., 2014), which can handle the prob-
lem.2 The hidden state vector of the last word in

2GRU performed better than long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997) as well as their
bi-directional counterparts for this task in our experiments.

71

Patient ED data
generalised abdominal pain

RNN/CNN

MLP
(softmax activation)

Word
representations

Deep learning
encoder

Patient
representation

Output

Pre-trained word embedding

Character-level word embedding

Pain No-Pain

Figure 2: Deep learning models. The model output is
“Pain” for the input of “generalised abdominal pain”.

the patient data produced by GRU was used as the
patient representation. Finally, the representation
vector was fed into a one-hidden layer multilayer
perceptron (MLP) with softmax output for classifi-
cation which returns the class probabilities for the
patient.

CNN model: The sequence of word vectors was
fed into a CNN encoder which performed convo-
lution operations and max-pooling to produce the
representation vector of the patient. Similar to the
RNN model, the representation vector was fed into
a one-hidden layer MLP with softmax output to
produce the class prediction.

Implementation details: The same pre-trained em-
beddings model and data preprocessing detailed
in Section 4.1 was used. The deep learning mod-
els were implemented using Pytorch (Paszke et al.,
2017). We trained each model using the Adam op-
timiser (Kingma and Ba, 2014) with the default
learning rate of 0.001 and a fixed random seed.
The batch size and the number of training epochs
were respectively set to 32 and 50. The CNN-
based model proposed by (Kim et al., 2016) was
used to learn the character-level embeddings for
each word, in which the window size and the num-

ber of filters were set to 2 and 50, respectively. For
both models, we applied a dropout mechanism to
both the word representations (before the encoder)
and the patient representation (before MLP) with
the probability of 0.5.

For RNN, a grid search was performed over hid-
den size∈ {100, 200, 300, 400, 500} and the num-
ber of layers, n layers ∈ {1, 2, 3, 4, 5}. The best
performance was achieved with hidden size = 400
and n layers = 5. For CNN, we performed a grid
search of the number of filters, n filters ∈ {100,
200, 300, 400, 500} and the window sizes, ker-
nel sizes ∈ {2, 3, 4, 5, (2, 3), (4, 5), (3, 4, 5)}.
The setting of n filters = 400 and kernel sizes = 3
produced best performances.

4.3 Evaluation
Baseline: The proposed machine learning models
were compared with a rule-based baseline, RULE.
Specifically, the baseline used inclusion and ex-
clusion criteria predefined by a senior ED nurse
as detailed in a recent publication (Hughes et al.,
2019), for example, terms containing “pain’, “dis-
comfort”, “stab”, “burn”, “ache”. In the baseline,
Context/Negex (Chapman et al., 2011) was also
used to handle negation in the patient ED data, for
example, “denies neck pain”.
Metrics: The metrics used to evaluate the models
included accuracy, precision, recall and F1 which
are standard evaluation metrics for classification
tasks. For all metrics, higher values represent bet-
ter performances.

4.4 Results
Overall performance: Table 3 shows the main
experimental results of the models on the test set.
The rule-based model, RULE, achieves an accu-
racy of 84.75% indicating that the model per-
formed well for this task. The drawback of this
model is that it required expert knowledge for
the construction of the inclusion and exclusion
criteria. The results also show that all the pro-
posed machine learning models achieved higher
performances than RULE. Specifically, the ma-
chine learning models achieve absolute improve-
ments of at least 3.3% over the RULE baseline
with respect to the macro-averaged F1 scores. This
indicates that the proposed machine learning mod-
els can handle the task well even without expert
knowledge.

Noteworthy, without feature engineering, the
deep learning models (i.e., CNN and RNN) per-

72

Table 3: Experimental results (%) on the test set. ∗ indicates that the performance difference between the machine
learning model and the RULE baseline is significant at the significance level α of 0.1 using the Approximate
Randomisation test (Chinchor, 1992; Dror et al., 2018), with N= 5,000.

Model Accuracy Macro-averaged Pain No-Pain
Precision Recall F1 Precision Recall F1 Precision Recall F1

RULE 84.75 84.87 84.63 84.69 86.26 81.35 83.73 83.49 87.92 85.65
SVM 88.00 88.13∗ 87.90∗ 87.96∗ 89.62 84.97 87.23∗ 86.64 90.82 88.68∗

RF 88.00 88.31∗ 87.85∗ 87.93∗ 90.96∗ 83.42 87.03∗ 85.65 92.27∗ 88.84∗

RNN 91.00∗ 91.21∗ 90.88∗ 90.96∗ 93.37∗ 87.56∗ 90.37∗ 89.04∗ 94.20∗ 91.55∗

CNN 88.25 88.25∗ 88.30∗ 88.25∗ 86.50 89.64∗ 88.04∗ 90.00∗ 86.96 88.45

formed competitively or better than conventional
models (i.e., SVM and RF). RNN produced the
highest performance with an accuracy and macro-
averaged F1 score of 91.00% and 90.96%, which
were 6.25% and 6.27% absolute higher than
RULE, respectively. With regards to the “Pain”
label, RNN achieved the highest precision of
93.37% and F1 score of 90.37%. Meanwhile,
CNN achieved the highest recall of 89.64%. In
terms of the “No-Pain” label, CNN obtained the
highest precision of 90.00%, while RNN achieved
the highest recall of 94.20% and F1 of 91.55%.

Table 3 also presents the statistical significance
between the difference in performances between
the machine learning models and the RULE base-
line, using the Approximate Randomisation test
(Chinchor, 1992; Dror et al., 2018), with N =
5,000 and the significance level α of 0.1. The Ap-
proximate Randomisation test is a popular non-
parametric statistical significance test for NLP
tasks (Chinchor, 1992; Dror et al., 2018). We
found that the difference in performances be-
tween RNN and RULE were statistically signif-
icant across all classes as well as metrics. The
deep learning models were also consistently bet-
ter in terms of absolute values when compared to
conventional models.

Ablation study: In the previous sections, deep
learning models were shown to work better than
conventional machine learning models. In this
section, we evaluate the effectiveness of the
pre-trained and character-level word embeddings
on the performance of the deep learning mod-
els. Specifically, we perform an ablation study
on the development set, in which we evaluate
the best performing model, RNN, with differ-
ent ablation settings as follows: w/o char embeds,
w/o word embeds and w/o both denoting that the
model was trained without character-level word
embeddings, without pre-trained word embed-

dings3 and neither the embeddings, respectively.
We also presented the results of RNN when using
only the “presenting problem”, namely only PP
and using only the nurse assessment, namely
only NA ED data fields.4

As can be seen from Table 4, without character-
level word embeddings slightly decreases the
RNN performance. Without pre-trained word em-
bedding significantly degrades the RNN perfor-
mances by about 4%. The largest decline in the
performance of about 4.8% was observed when
both embedding types were not used. We further
see that without using presenting problem data
(i.e. “only NA”) results in a significant decrease
of more than 23% in the performance. This is per-
haps caused by the fact that there were 276 out
of 2,000 (∼ 14%) patients who did not have any
nursing assessment data. Another reason may be
due to the presenting problem field being more in-
formative in terms of containing more pain-related
information than in the nurse assessment field.
Further investigation revealed that 38% of the pre-
senting problems in the development set contained
pain-related keywords (detailed in the baseline,
RULE) compared to 25.50% of the non-empty
nurse assessment data. We also found that with-
out using nurse assessment (i.e. “only PP”) de-
grades the performance by about 3.8%. This in-
dicates that the concatenation of the two free-text
fields was important to the task.

4.5 Application

The immediate application of the research is to
provide machine learning assistance to process
and analyse very large datasets for the purposes of
research or clinical audit. Apart from that, it can
also be a potential real-time clinical application,

3In this case, the word embeddings were initialised ran-
domly and then fine-tuned with the training of other model
parameters.

4For the ED data field ablation study, we used the RNN
with both pre-trained word and character-level embeddings.

73

Table 4: Ablation study performance (%) on the devel-
opment set.

Model Accuracy F1

RNN 90.00 89.80
w/o char embeds 89.75−0.25 89.61−0.19

w/o word embeds 86.00−4.00 85.50−4.30

w/o both 85.25−4.75 84.99−4.81

only PP 86.25−3.75 85.88−3.92

only NA 67.42−22.58 66.32−23.48

such as a smart support assistant to help improve
the quality of triage related to presentations that
involve or are likely to involve pain. Specifically,
in the scenario of a patient who presents to triage,
the triage nurse asks about the problem/symptoms
and records in electronic notes. If pain or a con-
dition likely to be associated with pain is recorded
then the triage nurse should also ask the patient
about the level of pain and record a pain score.
The smart support assistant will monitor the elec-
tronic notes in real-time and if a pain score is not
recorded in the notes when it should be, then it will
provide a suggestion of adding the information to
the triage nurse. Pain is a common symptom that
the ED sees everyday but still does not do a good
job at assessing. These applications are able to
be expanded to different hospital departments and
units, such as Intensive Care Units where assess-
ing pain may also be challenging (Suominen et al.,
2009).

4.6 Limitations and Future Work

As in the previous section, the best accuracy on the
development set was 90%, achieved using RNN.
This meant that there were 10% ∼ 40 instances,
namely the “error” set, where RNN produced in-
correct labels. The “error” set was reviewed by a
senior ED nurse to determine the underlying rea-
sons for the system discrepancies.

On review, we found cases where the ED nurse
had difficultly in classifying pain. In these more
difficult cases, half of the “error” cases could have
been classified differently.5 This shows that even
with a medical background, there exist the more
difficult cases where there may be uncertainty in
the labels. In future, we plan to handle the uncer-
tainty problem by involving multiple annotators
and an adjudicator.

5This indicates that our proposed machine learning ap-
proaches could have achieved higher performances if the
dataset labels relating to “error” cases were corrected.

Another limitation of the proposed deep learn-
ing model was that although it produced the high-
est performance, it was still difficult to understand
and locate the evidence it used for prediction,
which is an important aspect of text analytics in
the healthcare domain. In future work, we aim to
integrate neural attention mechanisms to our deep
learning models to make it interpretable (Bah-
danau et al., 2014; Luong et al., 2015; Vaswani
et al., 2017).

5 Conclusions

In this paper, we presented the task of identifying
patients who presented to EDs with pain. Both
conventional feature-based machine learning and
deep learning models were proposed to handle the
task. Experimental results on a 2,000 ED patient
annotated dataset showed that our machine learn-
ing models performed well on this task with the
highest accuracy and macro-averaged F1 score of
91.00% and 90.96%, respectively.

It was shown that the machine learning mod-
els achieved higher results than a rule-based base-
line. Moreover, deep learning models performed
competitively or better than conventional models.
The ablation study indicated that pre-trained word
embeddings and character-level word embeddings
played an important role leading to the success of
the deep learning models. These learnings are ben-
eficial for similar research on other clinical tasks
but also sets a solid foundation for further improv-
ing performances on the “pain” models as well as
improve the clinical utility of the model through
explainability, with the aim to scale the “pain”
study to other hospitals and regions.

References
AIHW. 2018. Emergency department care 2017-2018:

Australian hospital statistics. Australian Institute of
Health and Welfare.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Brian E Chapman, Sean Lee, Hyunseok Peter Kang,
and Wendy W Chapman. 2011. Document-level
classification of ct pulmonary angiography reports

74

based on an extension of the context algorithm.
Journal of biomedical informatics, 44(5):728–737.

Zhengping Che, Jennifer St Sauver, Hongfang Liu, and
Yan Liu. 2017. Deep learning solutions for classify-
ing patients on opioid use. In AMIA Annual Sympo-
sium Proceedings, volume 2017, page 525. Ameri-
can Medical Informatics Association.

Nancy Chinchor. 1992. The statistical significance of
the muc-4 results. In Proceedings of the 4th confer-
ence on Message understanding, pages 30–50. As-
sociation for Computational Linguistics.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

William H Cordell, Kelly K Keene, Beverly K Giles,
James B Jones, James H Jones, and Edward J
Brizendine. 2002. The high prevalence of pain in
emergency medical care. The American journal of
emergency medicine, 20(3):165–169.

Steven Doherty, Jonathan Knott, Scott Bennetts, Mitra
Jazayeri, and Sue Huckson. 2013. National project
seeking to improve pain management in the emer-
gency department setting: Findings from the nhmrc-
nics n ational p ain m anagement i nitiative. Emer-
gency Medicine Australasia, 25(2):120–126.

Rotem Dror, Gili Baumer, Segev Shlomov, and Roi Re-
ichart. 2018. The hitchhikers guide to testing statis-
tical significance in natural language processing. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1383–1392.

Jeffrey L Elman. 1990. Finding structure in time. Cog-
nitive science, 14(2):179–211.

Evanthia Georgiou, Maria Hadjibalassi, Ekaterini
Lambrinou, Panayiota Andreou, and Elizabeth DE
Papathanassoglou. 2015. The impact of pain assess-
ment on critically ill patients outcomes: a systematic
review. BioMed research international, 2015.

Claire Hatherley, Natasha Jennings, and Rachel Cross.
2016. Time to analgesia and pain score docu-
mentation best practice standards for the emergency
department–a literature review. Australasian Emer-
gency Nursing Journal, 19(1):26–36.

Winfried Häuser, Stephan Schug, and Andrea D Furlan.
2017. The opioid epidemic and national guidelines
for opioid therapy for chronic noncancer pain: a
perspective from different continents. Pain reports,
2(3).

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

James A. Hughes, Nathan J. Brown, Jacqui Chiu, Bran-
don Allwood, and Kevin Chu. 2019. The relation-
ship between time to analgesic administration and
emergency department length of stay: A retrospec-
tive review. Journal of Advanced Nursing, 0(0):1–8.

Ula Hwang, Laura K Belland, Daniel A Han-
del, Kabir Yadav, Kennon Heard, Laura Rivera-
Reyes, Amanda Eisenberg, Matthew J Noble, Sudha
Mekala, Morgan Valley, et al. 2014. Is all pain is
treated equally? a multicenter evaluation of acute
pain care by age. Pain R©, 155(12):2568–2574.

Alistair EW Johnson, Tom J Pollard, Lu Shen,
H Lehman Li-wei, Mengling Feng, Moham-
mad Ghassemi, Benjamin Moody, Peter Szolovits,
Leo Anthony Celi, and Roger G Mark. 2016.
Mimic-iii, a freely accessible critical care database.
Scientific data, 3:160035.

Fabienne Karwowski-Soulié, Stéphanie Lessenot-
Tcherny, Agathe Lamarche-Vadel, Sébastien
Bineau, Christine Ginsburg, Olivier Meyniard,
Brigitte Mendoza, Pascale Fodella, Gwenaelle
Vidal-Trecan, and Fabrice Brunet. 2006. Pain in an
emergency department: an audit. European Journal
of Emergency Medicine, 13(4):218–224.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Thirtieth AAAI Conference on Artificial
Intelligence.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Bevan Koopman, Guido Zuccon, Anthony Nguyen,
Anton Bergheim, and Narelle Grayson. 2015. Auto-
matic icd-10 classification of cancers from free-text
death certificates. International journal of medical
informatics, 84(11):956–965.

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick
Haffner, et al. 1998. Gradient-based learning ap-
plied to document recognition. Proceedings of the
IEEE, 86(11):2278–2324.

Andy Liaw, Matthew Wiener, et al. 2002. Classifi-
cation and regression by randomforest. R news,
2(3):18–22.

Wei-Hsuan Lo-Ciganic, James L Huang, Hao H Zhang,
Jeremy C Weiss, Yonghui Wu, C Kent Kwoh,
Julie M Donohue, Gerald Cochran, Adam J Gor-
don, Daniel C Malone, et al. 2019. Evaluation
of machine-learning algorithms for predicting opi-
oid overdose risk among medicare beneficiaries
with opioid prescriptions. JAMA network open,
2(3):e190968–e190968.

75

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

Iain A McCowan, Darren C Moore, Anthony N
Nguyen, Rayleen V Bowman, Belinda E Clarke, Ed-
wina E Duhig, and Mary-Jane Fry. 2007. Collection
of cancer stage data by classifying free-text medical
reports. Journal of the American Medical Informat-
ics Association, 14(6):736–745.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
Černockỳ, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In Eleventh
annual conference of the international speech com-
munication association.

James Mullenbach, Sarah Wiegreffe, Jon Duke, Jimeng
Sun, and Jacob Eisenstein. 2018. Explainable pre-
diction of medical codes from clinical text. arXiv
preprint arXiv:1802.05695.

Dat Quoc Nguyen, Karin Verspoor, and Blanca Gal-
lego Luxan. 2019. Risk prediction using electronic
health records of patients with atrial fibrillation. In
Proceedings of the Advances in Data Science con-
ference abstracts.

Christos H Papadimitriou, Prabhakar Raghavan, Hisao
Tamaki, and Santosh Vempala. 2000. Latent seman-
tic indexing: A probabilistic analysis. Journal of
Computer and System Sciences, 61(2):217–235.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in PyTorch.
In NIPS Autodiff Workshop.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Mark J Pletcher, Stefan G Kertesz, Michael A Kohn,
and Ralph Gonzales. 2008. Trends in opioid pre-
scribing by race/ethnicity for patients seeking care
in us emergency departments. Jama, 299(1):70–78.

Alvin Rajkomar, Eyal Oren, Kai Chen, Andrew M Dai,
Nissan Hajaj, Michaela Hardt, Peter J Liu, Xiaobing
Liu, Jake Marcus, Mimi Sun, et al. 2018. Scalable
and accurate deep learning with electronic health
records. NPJ Digital Medicine, 1(1):18.

Bernhard Scholkopf and Alexander J Smola. 2001.
Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT
press.

Hanna Suominen, Heljä Lundgrén-Laine, Sanna
Salanterä, and Tapio Salakoski. 2009. Evaluating
pain in intensive care. In Nursing Informatics, pages
192–196.

Knox H Todd. 2017. A review of current and emerging
approaches to pain management in the emergency
department. Pain and therapy, 6(2):193–202.

Wayne Varndell, Margaret Fry, and Doug Elliott. 2018.
Quality and impact of nurse-initiated analgesia in
the emergency department: A systematic review. In-
ternational emergency nursing, 40:46–53.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Thanh Vu, Dat Quoc Nguyen, Xuan-Son Vu, Dai Quoc
Nguyen, Michael Catt, and Michael Trenell. 2018.
Nihrio at semeval-2018 task 3: A simple and ac-
curate neural network model for irony detection in
twitter. arXiv preprint arXiv:1804.00520.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 conference of the North
American chapter of the association for computa-
tional linguistics: human language technologies,
pages 1480–1489.

76

A neural joint model for Vietnamese word segmentation, POS tagging
and dependency parsing

Dat Quoc Nguyen1,2

1The University of Melbourne, Australia
dqnguyen@unimelb.edu.au
2VinAI Research, Hanoi, Vietnam

v.datnq9@vinai.io

Abstract
We propose the first multi-task learning model
for joint Vietnamese word segmentation, part-
of-speech (POS) tagging and dependency
parsing. In particular, our model extends the
BIST graph-based dependency parser (Kiper-
wasser and Goldberg, 2016) with BiLSTM-
CRF-based neural layers (Huang et al., 2015)
for word segmentation and POS tagging. On
Vietnamese benchmark datasets, experimental
results show that our joint model obtains state-
of-the-art or competitive performances.

1 Introduction

Dependency parsing (Kübler et al., 2009) is ex-
tremely useful in many downstream applications
such as relation extraction (Bunescu and Mooney,
2005) and machine translation (Galley and Man-
ning, 2009). POS tags are essential features used
in dependency parsing. In real-world parsing,
most parsers are used in a pipeline process with
a precursor POS tagging model for producing pre-
dicted POS tags. In English where white space is
a strong word boundary indicator, POS tagging is
considered to be the first important step towards
dependency parsing (Ballesteros et al., 2015).

Unlike English, for Vietnamese NLP, word seg-
mentation is considered to be the key first step.
This is because when written, white space is used
in Vietnamese to separate syllables that consti-
tute words, in addition to marking word bound-
aries (Nguyen et al., 2009). For example, a 4-
syllable written text “Tôi là sinh viên” (I am stu-
dent) forms 3 words “TôiI làam sinh viênstudent”.1

When parsing real-world Vietnamese text where
gold word segmentation is not available, a pipeline
process is defined that starts with a word seg-
menter to segment the text. The segmented text

1About 85% of Vietnamese word types are composed of
at least two syllables and 80%+ of syllable types are words by
themselves (Thang et al., 2008). For Vietnamese word seg-
mentation, white space is only used to separate word tokens
while underscore is used to separate syllables inside a word.

LSTM LSTM LSTM

IBO

Tôi là sinh viên

Initial word-boundary tag embedding

Syllable vector
representation

Word
segmentation

OCRF

BiLSTMWS

Syllable embedding

LSTM

LSTM LSTM LSTM

PRON

BiLSTMDEP

LSTM

POS tagging

Dependency
parsing

VERB

LSTM

CRF

BiLSTMPOS

Word vector
representation Tôi là sinh_viên

Word embedding

LSTM

NOUN

sub vmod

softmax

FFNN
softmax

FFNN

ID Form POS Head DepRel
1 Tôi I PRON 2 sub
2 là am VERB 0 root
3 sinh viên student NOUN 2 vmod

Figure 1: Illustration of our joint model. Linear trans-
formations are not shown for simplification.

(e.g. “Tôi là sinh viên”) is provided as the input
to the POS tagger, which automatically generates
POS-annotated text (e.g. “Tôi/PRON là/VERB
sinh viên/NOUN”) which is in turn fed to the
parser. See Figure 1 for the final parsing output.

However, Vietnamese word segmenters and
POS taggers have a non-trivial error rate, thus
leading to error propagation. A solution to these
problems is to develop models for jointly learn-
ing word segmentation, POS tagging and depen-
dency parsing, such as those that have been ac-
tively explored for Chinese. These include tradi-
tional feature-based models (Hatori et al., 2012;
Qian and Liu, 2012; Zhang et al., 2014, 2015)
and neural models (Kurita et al., 2017; Li et al.,
2018). These models construct transition-based
frameworks at character level.

In this paper, we present a new multi-task learn-
ing model for joint word segmentation, POS tag-
ging and dependency parsing. More specifically,
our model can be viewed as an extension of
the BIST graph-based dependency parser (Kiper-

77

wasser and Goldberg, 2016), that incorporates
BiLSTM-CRF-based architectures (Huang et al.,
2015) to predict the segmentation and POS tags.
To the best of our knowledge, our model is the first
one which is proposed to jointly learn these three
tasks for Vietnamese. Experiments on Vietnamese
benchmark datasets show that our model produces
state-of-the-art or competitive results.

2 Our proposed model

As illustrated in Figure 1, our joint multi-task
model can be viewed as a hierarchical mixture
of three components: word segmentation, POS
tagging and dependency parsing. In particular,
our word segmentation component formalizes the
Vietnamese word segmentation task as a sequence
labeling problem, thus uses a BiLSTM-CRF ar-
chitecture (Huang et al., 2015) to predict BIO
word boundary tags from input syllables, result-
ing in a word-segmented sequence. As for word
segmentation, our POS tagging component also
uses a BiLSTM-CRF to predict POS tags from
the sequence of segmented words. Based on the
input segmented words and their predicted POS
tags, our dependency parsing component uses a
graph-based architecture similarly to the one from
Kiperwasser and Goldberg (2016) to decode de-
pendency arcs and labels.

Syllable vector representation: Given an in-
put sentence S of m syllables s1, s2, ..., sm, we
apply an initial word segmenter to produce ini-
tial BIO word-boundary tags b1, b2, ..., bm. Fol-
lowing the state-of-the-art Vietnamese word seg-
menter VnCoreNLP’s RDRsegmenter (Nguyen
et al., 2018b), our initial word segmenter is based
on the lexicon-based longest matching strategy
(Poowarawan, 1986). We create a vector vi to rep-
resent each ith syllable in the input sentence S by
concatenating its syllable embedding e

(S)
si and its

initial word-boundary tag embedding e
(B)
bi

:

vi = e(S)
si ◦ e

(B)
bi

(1)

Word segmentation (WSeg): The WSeg com-
ponent uses a BiLSTM (BiLSTMWS) to learn a
latent feature vector representing the ith syllable
from a sequence of vectors v1:m:

r
(WS)
i = BiLSTMWS(v1:m, i) (2)

The WSeg component then uses a single-layer
feed-forward network (FFNNWS) to perform lin-

ear transformation over each latent feature vector:

h
(WS)
i = FFNNWS

(
r
(WS)
i

)
(3)

Next, the WSeg component feeds output vectors
h
(WS)
i into a linear-chain CRF layer (Lafferty et al.,

2001) for final BIO word-boundary tag prediction.
A cross-entropy objective loss LWS is computed
during training, while the Viterbi algorithm is used
for decoding.

Word vector representation: Assume that we
form n words w1, w2, ..., wn based on m syllables
in the input sentence S. Note that we use gold
word segmentation when training, and use pre-
dicted segmentation produced by the WSeg com-
ponent when decoding. We create a vector xj to
represent each jth word wj by concatenating its
word embedding e

(W)
wj and its syllable-level word

embedding e
(SW)
wj :

xj = e(W)
wj
◦ e(SW)

wj
(4)

Here, inspired by Bohnet et al. (2018), to obtain
e
(SW)
wj , we combine sentence-level context sensi-

tive syllable encodings (from Equation 2) and feed
it into a FFNN (FFNNSW):

e(SW)
wj

= FFNNSW

(
r
(WS)
f(wj)

◦ r(WS)
l(wj)

)
(5)

where f(wj) and l(wj) denote indices of the first
and last syllables of wj in S, respectively.

POS tagging: The POS tagging component first
feeds a sequence of vectors x1:n into a BiLSTM
(BiLSTMPOS) to learn latent feature vectors rep-
resenting input words, and passes each of these la-
tent vectors as input to a FFNN (FFNNPOS):

r
(POS)
j = BiLSTMPOS(x1:n, j) (6)

h
(POS)
j = FFNNPOS

(
r
(POS)
j

)
(7)

Output vectors h
(POS)
j are then fed into a CRF

layer for POS tag prediction. A cross-entropy loss
LPOS is computed for POS tagging when training.

Dependency parsing: Assume that the POS
tagging component produces p1, p2, ..., pn as pre-
dicted POS tags for the input words w1, w2, ...,
wn, respectively. Each jth predicted POS tag pj

is represented by an embedding e
(P)
pj . We create

a sequence of vectors z1:n as input for the depen-
dency parsing component, in which each zj is re-
sulted by concatenating the word vector represen-
tation xj (from Equation 4) and the corresponding
POS tag embedding e

(P)
pj . The dependency parsing

78

component uses a BiLSTM (BiLSTMDEP) to learn
latent feature representations from the input z1:n:

zj = xj ◦ e(P)
pj (8)

r
(DEP)
j = BiLSTMDEP(z1:n, j) (9)

Based on latent feature vectors r
(DEP)
j , either

a transition-based or graph-based neural architec-
ture can be applied for dependency parsing (Kiper-
wasser and Goldberg, 2016).

Nguyen et al. (2016) show that in both neural
network-based and traditional feature-based cat-
egories, graph-based parsers perform better than
transition-based parsers for Vietnamese. Thus, our
parsing component is constructed similarly to the
BIST graph-based dependency parser from Kiper-
wasser and Goldberg (2016). A difference is that
we use FFNNs to split r(DEP)

j into head and depen-
dent representations:

h
(A-H)
j = FFNNArc-Head

(
r
(DEP)
j

)
(10)

h
(A-D)
j = FFNNArc-Dep

(
r
(DEP)
j

)
(11)

h
(L-H)
j = FFNNLabel-Head

(
r
(DEP)
j

)
(12)

h
(L-D)
j = FFNNLabel-Dep

(
r
(DEP)
j

)
(13)

To score a potential dependency arc, we use a
FFNN (FFNNARC) with a one-node output layer:

score(i, j) = FFNNARC

(
h
(A-H)
i ◦ h

(A-D)
j

)
(14)

Given scores of word pairs, we predict the highest
scoring projective parse tree by using the Eisner
(1996) decoding algorithm. This unlabeled pars-
ing model is trained with a margin-based hinge
loss LARC (Kiperwasser and Goldberg, 2016).

To label predicted arcs, we use another FFNN
(FFNNLABEL) with softmax output:

v(i,j) = FFNNLABEL

(
h
(L-H)
i ◦ h

(L-D)
j

)
(15)

Based on vectors v(i,j), a cross entropy loss
LLABEL for dependency label prediction is com-
puted when training, using the gold labeled tree.

Joint multi-task learning: We train our model
by summing LWS, LPOS, LARC and LLABEL losses
prior to computing gradients. Model parameters
are learned to minimize the sum of the losses.

Discussion: Our model is inspired by stack
propagation based methods (Zhang and Weiss,
2016; Hashimoto et al., 2017) which are joint
models for POS tagging and dependency parsing.
For dependency parsing, the Stack-propagation

model (Zhang and Weiss, 2016) uses a transition-
based approach, and the joint multi-task model
JMT (Hashimoto et al., 2017) uses a head selec-
tion based approach which produces a probabil-
ity distribution over possible heads for each word
(Zhang et al., 2017), while our model uses a graph-
based approach.

Our model can be viewed as an extension of the
joint POS tagging and dependency parsing model
jPTDP-v2 (Nguyen and Verspoor, 2018),2 where
we incorporate a BiLSTM-CRF for word bound-
ary prediction. Other improvements to jPTDP-v2
include: (i) instead of using ‘local’ single word-
based character-level embeddings, we use ‘global’
sentence-level context for learning word embed-
dings (see equations 2 and 5), (ii) we use a CRF
layer for POS tagging instead of a softmax layer,
and (iii) following Dozat and Manning (2017), we
employ head and dependent projection represen-
tations (in Equations 10–13) as feature vectors for
dependency parsing rather than the top recurrent
states (in Equation 9).

3 Experimental setup

Datasets: We follow the setup used in the Viet-
namese NLP toolkit VnCoreNLP (Vu et al., 2018).

For word segmentation and POS tagging, we
use standard datasets from the Vietnamese Lan-
guage and Speech Processing (VLSP) 2013 shared
tasks.3 To train the word segmentation layer, we
use 75K manually word-segmented sentences in
which 70K sentences are used for training and
5K sentences are used for development. For POS
tagging, we use 27,870 manually word-segmented
and POS-annotated sentences in which 27K and
870 sentences are used for training and develop-
ment, respectively. For both tasks, the test set con-
sists of 2120 manually word-segmented and POS-
annotated sentences.

To train the dependency parsing layer, we use
the benchmark Vietnamese dependency treebank
VnDT (v1.1) of 10,197 sentences (Nguyen et al.,
2014), and follow a standard split to use 1,020 sen-
tences for test, 200 sentences for development and
the remaining 8,977 sentences for training.

Implementation: We implement our model
(namely, jointWPD) using DYNET (Neubig et al.,

2On the benchmark English PTB-WSJ corpus, jPTDP-v2
does better than Stack-propagation, while obtaining similar
performance to JMT.

3http://vlsp.org.vn/vlsp2013

79

Model WSeg PTag LAS UAS

U
ns

eg
m

en
te

d Our jointWPD 97.81 94.05 71.50 77.23
VnCoreNLP 97.90 94.06 68.84∗∗ 74.52∗∗

jPTDP-v2 97.90 93.82∗ 70.78∗∗ 76.80∗

Biaffine 97.90 94.06 72.59∗∗ 78.54∗∗

Table 1: F1 scores (in %) for word segmentation
(WSeg), POS tagging (PTag) and dependency parsing
(LAS and UAS) on test sets of unsegmented sentences.
Scores are computed on all tokens (including punctua-
tion), employing the CoNLL 2017 shared task evalua-
tion script (Zeman et al., 2017). In all tables, ∗ and ∗∗
denote the statistically significant differences against
jointWPD at p ≤ 0.05 and p ≤ 0.01, respectively. We
compute sentence-level scores for each model and task,
then use paired t-test to measure the significance level.

2017). We learn model parameters using Adam
(Kingma and Ba, 2014), and run for 50 epochs.
We compute the average of F1 scores computed
for word segmentation, POS tagging and (LAS)
dependency parsing after each training epoch. We
choose the model with the highest average score
over the development sets to apply to the test sets.
See Appendix for implementation details.

4 Main results

End-to-end results: Our scores on the test sets
are presented in Table 1. We compare our scores
with the VnCoreNLP toolkit (Vu et al., 2018)
which produces the previous highest reported re-
sults on the same test sets for the three tasks. Note
that published scores of VnCoreNLP for POS tag-
ging and dependency parsing were reported using
gold word segmentation, and its published scores
for dependency parsing were reported using the
previous VnDT v1.0. As the current released
VnCoreNLP version is retrained using the VnDT
v1.1 and we also use the same experimental setup,
we thus rerun VnCoreNLP on the unsegmented
test sentences and compute its scores.4 Our join-
tWPD obtains a slightly lower word segmentation
score and a similar POS tagging score against Vn-
CoreNLP. However, jointWPD achieves 2.7% ab-
solute higher LAS and UAS than VnCoreNLP.

We also show in Table 1 scores of the joint POS
tagging and dependency parsing model jPTDP-v2
(Nguyen and Verspoor, 2018) and the state-of-the-
art Biaffine dependency parser (Dozat and Man-
ning, 2017). For Biaffine which requires auto-
matically predicted POS tags, following Vu et al.

4See accuracy results w.r.t. the gold word segmentation in
Table 3 in the Appendix.

Model WSeg PTag LAS UAS
WS 7→ Pos 7→ Dep 98.48∗ 95.09∗ 70.68∗ 76.70∗

Our jointWPD 98.66 95.35 71.13 77.01
(a) w/o InitialBIO 98.25∗∗ 95.01∗ 70.34∗∗ 76.36∗∗

(b) w/o CRFWSeg 98.32∗∗ 95.06∗ 70.48∗∗ 76.47∗∗

(c) w/o CRFPTag 98.65 95.14∗ 71.00 76.94
(d) w/o PTag 98.63 95.10∗ 69.78∗∗ 76.03∗∗

Table 2: F1 scores on development sets of unsegmented
sentences. (a): Without using initial word-boundary
tag embedding, i.e., Equation 1 becomes vi = e

(S)
si ;

(b): Using a softmax layer for word-boundary tag pre-
diction instead of a CRF layer; (c): Using a softmax
layer for POS tag prediction instead of a CRF layer;
(d): Without using the POS tag embeddings for the
parsing component, i.e. Equation 8 becomes zj = xj .

(2018), we produce the predicted POS tags on
the whole VnDT treebank by using VnCoreNLP.
We train both jPTDP-v2 and Biaffine with gold
word segmentation.5 For test, these models are fed
with predicted word-segmented test sentences pro-
duced by VnCoreNLP. Our jointWPD performs
significantly better than jPTDP-v2 on both POS
tagging and dependency parsing tasks. However,
jointWPD obtains 1.1+% lower LAS and UAS
than Biaffine which uses a “biaffine” attention
mechanism for predicting dependency arcs and la-
bels. We will extend our parsing component with
the biaffine attention mechanism to investigate the
benefit for our joint model in future work.

Ablation analysis: Table 2 shows performance
of a Pipeline strategy WS 7→ Pos 7→ Dep where
we treat our word segmentation, POS tagging and
dependency parsing components as independent
networks, and train them separately. We find
that jointWPD does significantly better than the
Pipeline strategy on all three tasks.

Table 2 also presents ablation tests over 4
factors. When not using either initial word-
boundary tag embeddings or the CRF layer for
word-boundary tag prediction, all scores degrade
by about 0.3+% absolutely. The 2 remaining fac-
tors, including (c) using a softmax classifier for

5We reimplement jPTDP-v2 such that its POS tagging
layer makes use of the VLSP 2013 POS tagging training set
of 27K sentences, and then perform hyper-parameter tuning.
The original jPTDP-v2 implementation only uses gold POS
tags available in 8,977 training dependency trees, thus giv-
ing lower parsing performance than ours. For Biaffine, we
use its updated version (Dozat et al., 2017) which won the
CoNLL 2017 shared task on multilingual Universal Depen-
dencies (UD) parsing from raw text (Zeman et al., 2017). Bi-
affine was also employed in all the top systems at the follow-
up CoNLL 2018 shared task (Zeman et al., 2018).

80

POS tag prediction rather than a CRF layer and
(d) removing POS tag embeddings, do not effect
the word segmentation score. Both factors notably
decrease the POS tagging score. Factor (c) slightly
decreases LAS and UAS parsing scores. Factor
(d) degrades the parsing scores by about 1.0+%,
clearly showing the usefulness of POS tag infor-
mation for the dependency parsing task.

5 Related work

Nguyen et al. (2018b) propose a transforma-
tion rule-based learning model RDRsegmenter for
Vietnamese word segmentation, which obtains the
highest performance to date. Nguyen et al. (2017)
briefly review word segmentation and POS tag-
ging approaches for Vietnamese. In addition,
Nguyen et al. (2017) also present an empirical
comparison between state-of-the-art feature- and
neural network-based models for Vietnamese POS
tagging, and show that a conventional feature-
based model performs better than neural network-
based models. In particular, on the VLSP 2013
POS tagging dataset, MarMoT (Mueller et al.,
2013) obtains better accuracy than BiLSTM-CRF-
based models with LSTM- and CNN-based char-
acter level word embeddings (Lample et al., 2016;
Ma and Hovy, 2016). Vu et al. (2018) incorpo-
rate RDRsegmenter and MarMoT as the word seg-
mentation and POS tagging components of Vn-
CoreNLP, respectively.

Thi et al. (2013) propose a conversion method
to automatically convert the manually built Viet-
namese constituency treebank (Nguyen et al.,
2009) into a dependency treebank. However, Thi
et al. (2013) do not clarify how dependency la-
bels are inferred; also, they ignore syntactic infor-
mation encoded in grammatical function tags, and
unable to deal with coordination and empty cat-
egory cases.6 Nguyen et al. (2014) later present
a new conversion method to tackle all those is-
sues, producing the high quality dependency tree-
bank VnDT which is then widely used in Viet-
namese dependency parsing research (Nguyen
and Nguyen, 2015, 2016; Nguyen et al., 2016,
2018a; Vu et al., 2018). Recently, Nguyen (2018)

6Thi et al. (2013) reformed their dependency treebank
with the UD annotation scheme to create a Vietnamese UD
treebank in 2017. Note that the CoNLL 2017 & 2018 mul-
tilingual parsing shared tasks also provided F1 scores for
word segmentation, POS tagging and dependency parsing on
this Vietnamese UD treebank. However, this UD treebank
is small (containing about 1,400 training sentences), thus it
might not be ideal to draw a reliable conclusion.

manually builds another Vietnamese dependency
treebank—BKTreebank—consisting of about 7K
sentences based on the Stanford Dependencies an-
notation scheme (Marneffe and Manning, 2008).

6 Conclusions and future work

In this paper, we have presented the first multi-task
learning model for joint word segmentation, POS
tagging and dependency parsing in Vietnamese.
Experiments on Vietnamese benchmark datasets
show that our joint multi-task model obtains re-
sults competitive with the state-of-the-art.

Che et al. (2018) show that deep contextual-
ized word representations (Peters et al., 2018; De-
vlin et al., 2019) help improve the parsing per-
formance. We will evaluate effects of the con-
textualized representations to our joint model. A
Vietnamese syllable is analogous to a character
in other languages such as Chinese and Japanese.
Thus we will also evaluate the application of our
model to those languages in future work.

Acknowledgments

I would like to thank Karin Verspoor and Vu Cong
Duy Hoang as well as the anonymous reviewers
for their feedback.

References
Miguel Ballesteros, Chris Dyer, and Noah A. Smith.

2015. Improved transition-based parsing by mod-
eling characters instead of words with LSTMs. In
Proceedings of EMNLP, pages 349–359.

Bernd Bohnet, Ryan McDonald, Gonçalo Simões,
Daniel Andor, Emily Pitler, and Joshua Maynez.
2018. Morphosyntactic Tagging with a Meta-
BiLSTM Model over Context Sensitive Token En-
codings. In Proceedings of ACL, pages 2642–2652.

Razvan Bunescu and Raymond Mooney. 2005. A
Shortest Path Dependency Kernel for Relation Ex-
traction. In Proceedings of HLT-EMNLP, pages
724–731.

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng,
and Ting Liu. 2018. Towards better UD parsing:
Deep contextualized word embeddings, ensemble,
and treebank concatenation. In Proceedings of the
CoNLL 2018 Shared Task, pages 55–64.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of NAACL-HLT.

Timothy Dozat and Christopher D. Manning. 2017.
Deep Biaffine Attention for Neural Dependency
Parsing. In Proceedings of ICLR.

81

Timothy Dozat, Peng Qi, and Christopher D. Manning.
2017. Stanford’s Graph-based Neural Dependency
Parser at the CoNLL 2017 Shared Task. In Proceed-
ings of the CoNLL 2017 Shared Task, pages 20–30.

Jason M. Eisner. 1996. Three New Probabilistic Mod-
els for Dependency Parsing: An Exploration. In
Proceedings of COLING, pages 340–345.

Michel Galley and Christopher D. Manning. 2009.
Quadratic-Time Dependency Parsing for Machine
Translation. In Proceedings of ACL-IJCNLP, pages
773–781.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2017. A joint many-task
model: Growing a neural network for multiple NLP
tasks. In Proceedings of EMNLP, pages 1923–1933.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and
Jun’ichi Tsujii. 2012. Incremental Joint Approach
to Word Segmentation, POS Tagging, and Depen-
dency Parsing in Chinese. In Proceedings of ACL,
pages 1045–1053.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional LSTM-CRF Models for Sequence Tagging.
arXiv preprint, arXiv:1508.01991.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
Method for Stochastic Optimization. arXiv preprint,
arXiv:1412.6980.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and Accurate Dependency Parsing Using Bidi-
rectional LSTM Feature Representations. Transac-
tions of ACL, 4:313–327.

Sandra Kübler, Ryan McDonald, and Joakim Nivre.
2009. Dependency Parsing. Synthesis Lectures on
Human Language Technologies, Morgan & cLay-
pool publishers.

Shuhei Kurita, Daisuke Kawahara, and Sadao Kuro-
hashi. 2017. Neural Joint Model for Transition-
based Chinese Syntactic Analysis. In Proceedings
of ACL, pages 1204–1214.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional Random Fields:
Probabilistic Models for Segmenting and Labeling
Sequence Data. In Proceedings of ICML, pages
282–289.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural Architectures for Named Entity Recognition.
In Proceedings of NAACL-HLT, pages 260–270.

Haonan Li, Zhisong Zhang, Yuqi Ju, and Hai Zhao.
2018. Neural Character-level Dependency Parsing
for Chinese. In Proceedings of AAAI, pages 5205–
5212.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end Se-
quence Labeling via Bi-directional LSTM-CNNs-
CRF. In Proceedings of ACL, pages 1064–1074.

Marie-catherine De Marneffe and Christopher D. Man-
ning. 2008. The Stanford typed dependencies rep-
resentation. In Proceedings of the Coling 2008
workshop on Cross-Framework and Cross-Domain
Parser Evaluation, pages 1–8.

Thomas Mueller, Helmut Schmid, and Hinrich
Schütze. 2013. Efficient higher-order CRFs for mor-
phological tagging. In Proceedings of EMNLP,
pages 322–332.

Graham Neubig, Chris Dyer, Yoav Goldberg, et al.
2017. DyNet: The Dynamic Neural Network
Toolkit. arXiv preprint, arXiv:1701.03980.

Binh Duc Nguyen, Kiet Van Nguyen, and Ngan Luu-
Thuy Nguyen. 2018a. LSTM Easy-first Depen-
dency Parsing with Pre-trained Word Embeddings
and Character-level Word Embeddings in Viet-
namese. In Proceedings of KSE, pages 187–192.

Dat Quoc Nguyen, Mark Dras, and Mark Johnson.
2016. An empirical study for Vietnamese depen-
dency parsing. In Proceedings of ALTA, pages 143–
149.

Dat Quoc Nguyen, Dai Quoc Nguyen, Son Bao Pham,
Phuong-Thai Nguyen, and Minh Le Nguyen. 2014.
From Treebank Conversion to Automatic Depen-
dency Parsing for Vietnamese. In Proceedings of
NLDB, pages 196–207.

Dat Quoc Nguyen, Dai Quoc Nguyen, Thanh Vu, Mark
Dras, and Mark Johnson. 2018b. A Fast and Accu-
rate Vietnamese Word Segmenter. In Proceedings of
LREC, pages 2582–2587.

Dat Quoc Nguyen and Karin Verspoor. 2018. An Im-
proved Neural Network Model for Joint POS Tag-
ging and Dependency Parsing. In Proceedings of
the CoNLL 2018 Shared Task, pages 81–91.

Dat Quoc Nguyen, Thanh Vu, Dai Quoc Nguyen, Mark
Dras, and Mark Johnson. 2017. From Word Seg-
mentation to POS Tagging for Vietnamese. In Pro-
ceedings of ALTA, pages 108–113.

Kiem-Hieu Nguyen. 2018. BKTreebank: Building a
Vietnamese Dependency Treebank. In Proceedings
LREC, pages 2164–2168.

Kiet Van Nguyen and Ngan Luu-Thuy Nguyen. 2015.
Error Analysis for Vietnamese Dependency Parsing.
In Proceedings of KSE, pages 79–84.

Kiet Van Nguyen and Ngan Luu-Thuy Nguyen. 2016.
Vietnamese transition-based dependency parsing
with supertag features. In Proceedings of KSE,
pages 175–180.

Phuong Thai Nguyen, Xuan Luong Vu, Thi
Minh Huyen Nguyen, Van Hiep Nguyen, and
Hong Phuong Le. 2009. Building a Large
Syntactically-Annotated Corpus of Vietnamese. In
Proceedings of LAW, pages 182–185.

82

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of NAACL-HLT, pages
2227–2237.

Yuen Poowarawan. 1986. Dictionary-based Thai Syl-
lable Separation. In Proceedings of the Ninth Elec-
tronics Engineering Conference, pages 409–418.

Xian Qian and Yang Liu. 2012. Joint Chinese Word
Segmentation, POS Tagging and Parsing. In Pro-
ceedings of EMNLP-CoNLL, pages 501–511.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

Dinh Quang Thang, Le Hong Phuong, Nguyen
Thi Minh Huyen, Nguyen Cam Tu, Mathias Rossig-
nol, and Vu Xuan Luong. 2008. Word segmentation
of Vietnamese texts: a comparison of approaches. In
Proceedings of LREC, pages 1933–1936.

Luong Nguyen Thi, Linh Ha My, Hung Nguyen Viet,
Huyen Nguyen Thi Minh, and Phuong Le Hong.
2013. Building a treebank for Vietnamese depen-
dency parsing. In Proceedings of RIVF, pages 147–
151.

Thanh Vu, Dat Quoc Nguyen, Dai Quoc Nguyen, Mark
Dras, and Mark Johnson. 2018. VnCoreNLP: A
Vietnamese Natural Language Processing Toolkit.
In Proceedings of NAACL: Demonstrations, pages
56–60.

Daniel Zeman et al. 2017. CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies. In Proceedings of the CoNLL 2017
Shared Task, pages 1–19.

Daniel Zeman et al. 2018. CoNLL 2018 shared task:
Multilingual parsing from raw text to universal de-
pendencies. In Proceedings of the CoNLL 2018
Shared Task, pages 1–21.

Meishan Zhang, Yue Zhang, Wanxiang Che, and Ting
Liu. 2014. Character-Level Chinese Dependency
Parsing. In Proceedings of ACL, pages 1326–1336.

Xingxing Zhang, Jianpeng Cheng, and Mirella Lapata.
2017. Dependency Parsing as Head Selection. In
Proceedings of EACL, pages 665–676.

Yuan Zhang, Chengtao Li, Regina Barzilay, and Ka-
reem Darwish. 2015. Randomized Greedy Infer-
ence for Joint Segmentation, POS Tagging and De-
pendency Parsing. In Proceedings of NAACL-HLT,
pages 42–52.

Yuan Zhang and David Weiss. 2016. Stack-
propagation: Improved representation learning for
syntax. In Proceedings of ACL, pages 1557–1566.

Appendix

Implementation details: When training, each
task component is fed with the corresponding task-
associated sentences. The dependency parsing
training set is smallest in size (consisting of 8,977
sentences), thus for each training epoch, we sam-
ple the same number of sentences from the word
segmentation and POS tagging training sets. We
train our model with a fixed random seed and with-
out mini-batches. Dropout (Srivastava et al., 2014)
is applied with a 67% keep probability to the in-
puts of BiLSTMs and FFNNs. Following Kiper-
wasser and Goldberg (2016), we also use word
dropout to learn embeddings for unknown sylla-
bles/words: we replace each syllable/word token
s/w appearing #(s/w) times with a “unk” sym-
bol with probability punk(s/w) =

0.25
0.25+#(s/w) .

We initialize syllable and word embeddings
with 100-dimensional pre-trained Word2Vec vec-
tors as used in Nguyen et al. (2017), while
the initial word-boundary and POS tag embed-
dings are randomly initialized. All these em-
beddings are then updated when training. The
sizes of the output layers of FFNNWS, FFNNPOS

and FFNNLABEL are the number of BIO word-
boundary tags (i.e. 3), the number of POS tags
and the number of dependency relation types, re-
spectively. We perform a minimal grid search of
hyper-parameters, resulting in the size of the ini-
tial word-boundary tag embeddings at 25, the POS
tag embedding size of 100, the size of the output
layers of remaining FFNNs at 100, the number of
BiLSTM layers at 2 and the size of LSTM hidden
states in each layer at 128.

Additional results: Table 3 presents POS tag-
ging and parsing accuracies w.r.t. gold word seg-
mentation. In this case, for our jointWPD, we feed
the POS tagging and parsing components with
gold word-segmented sentences when decoding.

Model WSeg PTag LAS UAS

G
ol

d
se

gm
en

t. Our jointWPD 100.0 95.97 73.90 80.12
VnCoreNLP 100.0 95.88 71.38∗∗ 77.35∗∗

jPTDP-v2 100.0 95.70∗ 73.12∗∗ 79.63∗

Biaffine 100.0 95.88 74.99∗∗ 81.19∗∗

Table 3: POS tagging, LAS and UAS accuracy scores
on the test sets w.r.t. gold word-segmented sentences.
These scores are computed on all tokens (including
punctuation). Recall that the LAS and UAS accura-
cies are computed on the VnDT v1.1 test set w.r.t. the
automatically predicted POS tags.

83

Modelling Tibetan Verbal Morphology

Qianji Di Ekaterina Vylomova Timothy Baldwin

The University of Melbourne, Melbourne, Australia
Parkville, Victoria 3010, Australia

qdi@student.unimelb.edu.au {ekaterina.vylomova,tbaldwin}@unimelb.edu.au

Abstract
The Tibetan language, despite being
spoken by 8 million people, is a low-
resource language in NLP terms, and
research to develop NLP tools and re-
sources for the language has only just be-
gun. In this paper, we focus on Tibetan
verbal morphology — which is known to
be quite irregular — and introduce a novel
dataset for Tibetan verbal paradigms,
comprising 1,433 lemmas with corres-
ponding inflected forms. This enables the
largest-scale NLP investigation to date
on Tibetan morphological reinflection,
wherein we compare the performance of
several state-of-the-art models for mor-
phological reinflection, and conduct an
extensive error analysis. We show that
84% of errors are due to the irregularity
of the Tibetan language.

1 Introduction
Tibetan is the language used by Tibetan
people, in Tibetan areas in China — Tibet
Autonomous Region, Qinghai Province,
Sichuan Province, Gansu Province, and Yun-
nan Province — as well as parts of Nepal,
Bhutan, India, and Pakistan. Among the lan-
guages of the Sino-Tibetan language fam-
ily and Chinese national writing systems,
the Tibetan language has one of the longest
histories and most extensive bodies of lit-
erature. Although Tibetan is roughly di-
vided into three dialects (Weizang, Khampa,
and Amdo), the written language is uniform
across all regions (Jitaiga, 2018).
The earliest work on Tibetan information

processing began in the 1980s, focusing on
fonts, character encoding support, and text
input methods. This early work resulted in
the ability to develop and share digital text re-
sources in Tibetan, which benefited Tibetan

scholars and the Tibetan diaspora (Zhijie,
2009). Tibetan information processing tech-
nology is rapidly developing, but some key
problems remain, including the analysis of
Tibetan verbs. Recent advances in Tibetan
NLP have included the ability to automatic-
ally identify verbs, analyze the rules govern-
ing word form changing processes, and re-
veal various linguistic phenomena of Tibetan
verbs (Zhijie and Rangzhuoma, 2010; Zhijie,
2005).
In this paper, we specifically focus on the

Tibetan verbal inflection system, which is
known for its irregularity (Suonanjiancuo,
2013). Specifically, we make use of the mor-
phological reinflection task recently intro-
duced under the umbrella of SIGMORPHON
(Cotterell et al., 2018). We train several
state-of-the-art machine learning models for
reinflection and provide an extensive error
analysis. We find that the original experi-
mental data contained some errors, and the
models do not cater to idiosyncrasies of the
Tibetan language. After correcting errors in
the data, experimental results improve. We
also develop a new dataset for Tibetan verbs
comprising 1,433 verbal lemmas with their
present, past, future, and imperative forms.1
2 Tibetan Language
The Tibetan language belongs to the Tibetan
branch of the Tibeto-Burman language group
of the Sino-Tibetan language family. The
Tibetan script is an abugida or alphasyl-
labary, whereby consonant–vowel sequences
are written as a single unit. There are
two schools of thought regarding the ori-
gin of Tibetan literature: some scholars be-

1The dataset is available at https://github.com/
victoriadqj/Tibetan-Verb-Lexicon.

84

Figure 1: Lexicographic breakdown of a Tibetan word.

lieve that in the 7th century CE, the king
Srongtsen Gampo in the Tubo era sent the
Tibetan linguist Thombus Sangbu to North
India to study Sanskrit, and that he created
the Tibetan script based on Sanskrit (Wang,
1980). However, believers of the “Bon-
ismo” religion hold that the Tibetan language
evolved from Xiangxiong (Li et al., 2009).
Tibetan grammar is relatively rich, and

verbs are inflected for tense and mood as fol-
lows: present, past, future, and imperative.
Taking གཏུབ dep “cut” as an example, the fu-
ture form is གཏུབ dep “cut”, past form is གཏུབ
dep “cut”, present form is གཏུབས di “cut”, and
the imperative form is གཏུབས di “cut”
In the Tibetan writing system, individual

units (in the form of consonant–vowel se-
quences) are often referred to as “compon-
ents”. One or more components constitute
one “character”, which is monosyllabic. One
or more characters form a “word”. Each syl-
lable in Tibetan has a base component, which
is a consonant and determines the base pro-
nunciation of the syllable. Vowel symbols
can be added above or below the base com-
ponent to indicate different vowel sounds, in
the form of top components above the base
component, and one bottom component be-
low it. Sometimes there is a prefix, indicating
that the syllable is consonant-initial. There
can also be one or two suffixes after the base
component, indicating that the syllable has
one or two consonants in addition to the base
consonant. Figure 1 provides an example of
the composition of a Tibetan word.
3 Related Work

Verbs are the core and fundamental ele-
ments of Tibetan grammar.2 In the “Tibetan
Grammar Tutorial” (Jumian, 1982), the au-

2This can be clearly concluded from the ancient
Tibetan masterworks “Thirty Laud” and “Sound The-
ory” (Qu and Jing, 2011)

thors elaborate on written verbs in Tibetan,
and propose about 1,300 written syllables.
Around 70% of verbs in their data undergo
tense inflection, and the other 30% are in-
variant under inflection; for only 20% of
verbs is the imperative form different from
the base lemma (Qu, 1985). Qu and Jing
(2011) in “Sound Theory” defined categor-
ies of Tibetan letters, and elaborated on the
composition of Tibetan verbs, principles of
transitiveness, as well as tenses. Later, Ji-
taijia (2013) systematically studied functions
of verbs in sentences and the relationship
between verbs and other components in the
sentence. Hill (2010) presented an overview
of Tibetan verbal morphology. The author
proposed to categorize Tibetan verbs into 11
paradigms, although there were still many ir-
regular among frequently used ones. Still,
scholars over the years have formed very
different opinions on the morphosyntax of
Tibetan.
Although we only consider Tibetan here,

this work continues and further extends the
work of Gorman et al. (2019). There, the
authors conducted a detailed analysis of er-
rors typically made by state-of-the-art mor-
phological reinflection systems, in addition
to introducing a novel error taxonomy that we
utilize in this research.
4 Materials and Methods
4.1 The Task and Data
Following Gorman et al. (2019), we exper-
iment with the morphological reinflection
task (sub-task 1). The training data consists
of triples of lemma, morphosyntactic fea-
tures, and inflected form. In the test phase,
the inflected form for an unseen lemma–
morphological feature pair must be predicted.
We used the original datasets provided

by Cotterell et al. (2018), which include
two training sets for Tibetan, namely low-
resource (100 samples) andmedium-resource
(158 samples).3 Both test and development
data comprise 50 samples. As part of this
research, we develop a high-resource set of
1,433 instances.4

3All encoded in UTF-8, based on the standard
Tibetan Unicode mapping which was released in 1991.

4The format follows the UniMorph annotation
scheme (Sylak-Glassman et al., 2015).

85

Model Low Med High
Lemma Copy 0.44 0.44 0.44
SMP Baseline 0.54 0.48 0.50
A&G 2017 0.34 0.46 0.48
M&C 2018 0.42 0.52 0.46

Table 1: Results over the original datasets (best in
bold).

4.2 Systems
For our experiments, we consider four mod-
els: (1) a naive baseline, whereby we
simply return the lemma as the inflected
form (“Lemma Copy”); (2) the baseline
model used in SIGMORPHON 2017/2018
shared tasks (Cotterell et al. (2017, 2018):
“SMP Baseline”); (3) Aharoni and Goldberg
(2017)’s hard attention neural model (“A&G
2017”); and (4) Makarov and Clematide
(2018)’s neural transduction models (“M&C
2018”). The latter two models achieved the
highest scores in low- and medium-resource
settings in the SIGMORPHON 2017/2018
shared tasks. Both are essentially neural seq-
to-seqmodels (developed usingDynet frame-
work (Neubig et al., 2017)) that rely on the
assumption of nearly-monotonic alignment
between a lemma and its inflected form, and
learn a sequence of edit operations to per-
form string transduction.5 The SMP Baseline
model is non-neural, and first aligns strings
using Levenshtein distance, and then extracts
prefix- and suffix-based transformations.
5 Results

The results obtained by the four models are
shown in Table 1. After manually reviewing
errors across the four systems, we found not
only system errors, but also errors in the data.
In error analysis we employed the error tax-
onomy proposed by Gorman et al. (2019) and
identified the following types: (1) target er-
rors in the dataset; and (2) prediction errors.
We further break down prediction errors into:
(2.1) nonce-word errors (where a model gen-
erates a word which clearly violates lex-
icographic or morphophonetic constraints in
the language); and (2.2) allomorphy errors

5The hyperparameters are set to the values reported
in the corresponding papers.

Model Nonce Allomorphy
Lemma Copy 12 17
SMP Baseline 8 18
A&G 2017 10 16
M&C 2018 16 15

Table 2: Absolute number of errors on the test set made
by each system trained in medium-resource setting.

(where the wrong inflectional pattern is ap-
plied, i.e. a plausible inflection is generated,
but it does not correspond to the indicated
class).
5.1 Target Errors
Target errors are mainly due to errors in the
Wiktionary source data6 and incorrect extrac-
tion of paradigm tables, e.g. the lemma not
existing in the lexicon, the inflected form
not matching the indicated lemma, the pos-
itions of the inflected form and lemma be-
ing reversed, or even unrelated words appear-
ing within a paradigm. Consider an example
taken from the training data for the medium
set. The lemma is སྒྲིག zhegh “arrange”, the im-
perative form of which is said to be སྒྲིག zhegh
“arrange”. In practice, however, there’s no
such lemma or inflected form in Tibetan. It is
most likely meant to be the lemma བསྒྲིག། zhegh
“arrange” and imperative form སྒྲིགས། zhi “ar-
range”. In this case, both the lemma and the
inflected form are wrong. This type of error
is quite common and amplifies the error rates.
5.2 Prediction errors
Table 2 presents the distribution of the num-
ber of prediction errors for each system
trained in medium-resource setting. Below
we present a more detailed analysis of each
error category.
5.2.1 Nonce-word errors
This type of errors corresponds to illegal
words, i.e. situations when the string gen-
erated by a system does not exist in Tibetan.
We identify two sub-types of nonce-word er-
rors in the Tibetan language.
The first one occurs because the Tibetan

script is 2-dimensional (see Section 2),
6Most language data in the UniMorph dataset was

automatically extracted from Wiktionary.

86

whereby affixes may appear in a total of six
positions relative to the base word. As can be
seen in the following output:
(1) འབོག wugh “cross water” + FUT → ོག

(nonce-word)
The correct answer should be འབོགས wi “will
be crossing water”, whereas the system pre-
dicted the suffix of the word but ignored
the prefix and the second suffix. Since 2-
dimensional scripts such as Tibetan are rare
in the world’s writing systems, researchers
often do not consider this problem.
The second type relates to special cases in

Tibetan. Some components are rarely used,
and are unique variants of certain consonants
as affixes. This often causes problems for
learners of the Tibetan language. The follow-
ing is an example of this case:
(2) དྭངས ngi “clear” + PRS → དཔངས bi

(nonce-word)
Here, a special component representing the
vowel ཝ wha should occur under the base
component as an affix, meaning the correct
answer is དྭངས ngi “clear”.
5.2.2 Allomorphy errors
Allomorphy errors occur more often than
nonce-word ones, and here we also classified
them into two sub-types.
Firstly, the rules of Tibetan verb inflection

are very complicated and irregular. For some
of them, it is impossible for a system to learn
the relevant rules through generalization over
the training set. For instance, the present
tense of the verb ཤི hi “die” is not predictable
from its lemma འཆི qie “die”. In this experi-
ment, as can be seen in the example below,
where the correct output should be ཟོ su “eat”,
the system attempts to inflect based on rules
that it has learned which are inappropriate for
this word:
(3) བཟའ sa “eat” + PRS→ ཚུས tsi (nonce-

word)
The second error type relates to vowels

where the systems fail to predict the correct
position of diacritics. Diacritics are vowels
and can only be added above or below the
base components, but systems fail to learn
this constraint, and over-generate diacritic

Model Low Med High
Lemma Copy 0.70 0.70 0.70
SMP Baseline 0.65 0.61 0.61
A&G 2017 0.19.05 0.52.03 0.85.02

M&C 2018 0.73.03 0.72.02 0.76.02

Table 3: Accuracy for the systems trained using the
corrected dataset (best in bold).

positions. This kind of error also occurs
when the models add an affix to the wrong
position, or the order of affixes is incorrect,
i.e. the models have predicted the compon-
ents correctly but are unable to predict the
correct order, as occurs in the following case
(where the correct output is དུབ dep “exhaust”):
(4) དུབ dep “exhaust” + IMP →དབུ wegh

(nonce-word)
5.3 Results obtained on a new dataset
Since we found many target errors in the Un-
iMorph data, we used the new verbal lexicon
to improve the linguistic fidelity of the setup.
We manually counted 103 target errors out

of 158 samples in the medium training set,
which is 65% of the dataset. After correcting
all the target errors in all sets according to the
new lexicon, we reran our experiments.
Since both A&G 2017 and M&C 2018

use random parameter initialization, we ran
the models with five different random seeds,
and report their mean accuracy along with
standard deviation. As Table 3 shows, in
all three settings and across all three trained
systems, the best accuracy increases substan-
tially. Table 4 also provides the distribution
of the number of prediction errors made on
the corrected data. While there is clearly sub-
stantial room for improvement in the results,
we believe these results to be much more re-
flective of the true ability of contemporary
morphological reinflection systems to model
Tibetan.
6 Conclusion

We focused on Tibetan verbal morphology
in the context of sub-task-1 of the SIG-
MORPHON 2018 shared task. We con-
sidered a range of baselines and two state-of-
the-art models trained in different data size

87

Model Nonce Allomorphy
Lemma Copy 0 15
SMP Baseline 5 16
A&G 2017 3 8
M&C 2018 8 14

Table 4: Absolute number of errors on the test set made
by each system trained in high-resource setting (correc-
ted data).

conditions. After conducting a detailed er-
ror analysis, we discovered that a signific-
ant percentage of errors relate to noise of
the data and irregularity of Tibetan. We
re-annotated the data and also developed a
new Tibetan verbal lexicon comprising 1,433
lemmata with corresponding inflected forms.
After re-running the model on the clean data,
we observed a substantial improvement in
terms of accuracy.
A possible research direction for future

work would be to tailor the models to the
idiosyncrasies of the Tibetan language.

References
Roee Aharoni and Yoav Goldberg. 2017. Mor-
phological inflection generation with hard
monotonic attention. In Proceedings of
the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1:
Long Papers), pages 2004–2015, Vancouver,
Canada.

Ryan Cotterell, Christo Kirov, John Sylak-
Glassman, Géraldine Walther, Ekaterina Vylo-
mova, Arya D. McCarthy, Katharina Kann,
Sebastian Mielke, Garrett Nicolai, Miikka
Silfverberg, David Yarowsky, Jason Eisner,
and Mans Hulden. 2018. The CoNLL–
SIGMORPHON 2018 shared task: Universal
morphological reinflection. In Proceedings
of the CoNLL–SIGMORPHON 2018 Shared
Task: Universal Morphological Reinflection,
pages 1–27, Brussels, Belgium.

Ryan Cotterell, Christo Kirov, John Sylak-
Glassman, Géraldine Walther, Ekaterina Vylo-
mova, Patrick Xia, Manaal Faruqui, Sandra
Kübler, David Yarowsky, Jason Eisner, and
Mans Hulden. 2017. CoNLL-SIGMORPHON
2017 shared task: Universal morphological re-
inflection in 52 languages. In Proceedings
of the CoNLL SIGMORPHON 2017 Shared
Task: Universal Morphological Reinflection,
pages 1–30, Vancouver, Canada.

Kyle Gorman, Arya D. McCarthy, Ryan Cotter-
ell, Ekaterina Vylomova, Miikka Silfverberg,
and Magdalena Markowska. 2019. Weird in-
flects but OK: Making sense of morpholo-
gical generation errors. In Proceedings of
the 23rd Conference on Computational Natural
Language Learning (CoNLL), pages 140–151,
Hong Kong.

Nathan W Hill. 2010. A lexicon of Tibetan verb
stems as reported by the grammatical tradition.
Bayerische Akademie der Wissenschaften.

Jitaiga. 2018. The progress of Tibetan natural
language processing. 34(1):1–11. Forum of
Tibetan Development.

Jitaijia. 2013. Research on Tibetan Syntax.
Gesang Jumian. 1982. The category of Tibetan
verbs. Minority Language of China, (5):27–
39.

Yonghong Li, Yixin Zhou, Jing Shi, and Hongzhi
Yu. 2009. On the origin of Tibetan language.
Journal of Language and Literature Studies,
(3):31–34.

Peter Makarov and Simon Clematide. 2018.
Neural transition-based string transduction for
limited-resource setting in morphology. In
Proceedings of the 27th International Confer-
ence on Computational Linguistics, pages 83–
93, Santa Fe, USA.

Graham Neubig, Chris Dyer, Yoav Goldberg,
Austin Matthews, Waleed Ammar, Antonios
Anastasopoulos, Miguel Ballesteros, David
Chiang, Daniel Clothiaux, Trevor Cohn, Kevin
Duh, Manaal Faruqui, Cynthia Gan, Dan Gar-
rette, Yangfeng Ji, Lingpeng Kong, Adhiguna
Kuncoro, Gaurav Kumar, Chaitanya Malaviya,
Paul Michel, Yusuke Oda, Matthew Richard-
son, Naomi Saphra, Swabha Swayamdipta,
and Pengcheng Yin. 2017. Dynet: The dy-
namic neural network toolkit. arXiv preprint
arXiv:1701.03980.

Aitang Qu. 1985. The structure and evolution of
the inflectional forms of Tibetan verbs. Minor-
ity Language of China, (1):1–15.

Aitang Qu and Song Jing. 2011. The ‘theory of
sound’ and the principle of Tibetan creation.
Minority Language of China, (5):15–25.

Suonanjiancuo. 2013. Study on the adhesion and
inflection of Tibetan verbs. Journal of Univer-
sity of Tibet, (4):70–75.

John Sylak-Glassman, Christo Kirov, David
Yarowsky, and Roger Que. 2015. A language-
independent feature schema for inflectional
morphology. In Proceedings of the 53rd An-
nual Meeting of the Association for Compu-
tational Linguistics and the 7th International

88

Joint Conference on Natural Language Pro-
cessing (Volume 2: Short Papers), pages 674–
680, Beijing, China.

Yao Wang. 1980. A brief account of Tibetan an-
cient historical documents. Journal of Xizang
Minzu University, (2):11–37.

Cai Zhijie. 2005. Research on the develop-
ment of Tibetan–Chinese–English electronic
dictionary. Journal of Qinghai Norma Univer-
sity, (2):48–50.

Cai Zhijie. 2009. The design and realization of
Tibetan spelling. Journal of Qinghai Normal
University, (1):69–71.

Cai Zhijie and Cai Rangzhuoma. 2010. Design of
BanZhiDa Tibetan lexicon. Journal of Chinese
Information Processing, 24(5):46–50.

89

A multi-constraint structured hinge loss for named-entity recognition

Hanieh Poostchi
Nine Entertainment Co.

Willoughby NSW 2068, Australia
HPoostchi@nine.com.au

Massimo Piccardi
FEIT, University of Technology Sydney

Broadway NSW 2007, Australia
Massimo.Piccardi@uts.edu.au

Abstract

The negative log-likelihood or cross entropy
is the usual training objective of NLP mod-
els owing to its versatility and empirical per-
formance. However, training objectives which
directly target the performance measure used
to evaluate the task have the potential to lead
to higher empirical accuracy. For this rea-
son, in this short paper we propose using a
multi-constraint structured hinge loss as the
training objective of a contemporary named-
entity recognition (NER) model. Experimen-
tal results over the challenging OntoNotes 5.0
dataset have shown that the proposed objective
has been able to achieve an improvement of
0.62 CoNLL score points at a complete parity
of testing set-up.

1 Introduction

All NLP models utilise a loss function as minimi-
sation objective for model training. Choosing the
most appropriate loss function for a particular task
can play an important role in the performance of
the trained models at test time and in-field. How-
ever, almost invariably the utilised loss function
is the negative log-likelihood (NLL), also known
as cross entropy. This is due to a number of at-
tractive properties of the NLL such as its smooth-
ness and differentiability in large regions of the
parameter space. In addition, training with min-
imum NLL often leads to models of high empiri-
cal accuracy. However, this function is not exempt
from shortcomings. To name two, 1) the NLL
only rewards the probability of the ground-truth
class and does not distinguish between the other
classes, and 2) it does not impose explicit mar-
gins (or ratios) between the probability assigned
to the ground-truth class and those assigned to the
other classes. For this reason, other differentiable
loss functions are regarded as appealing alterna-
tives or complements to the NLL. Amongst them

are the hinge loss (Cortes and Vapnik, 1995) and
the REINFORCE loss (Williams, 1992; Ranzato
et al., 2016) which both attempt to directly op-
timise the performance measure used to evaluate
the model’s accuracy (e.g., the Hamming loss, the
CoNLL score, the BLEU score etc). Both these
losses can be used for the usual classification at
token level or for the joint classification of all the
tokens in a sentence (i.e., structured prediction)
(Tsochantaridis et al., 2005). Given that targeting
the evaluation loss during training may lead to im-
proved performance at test time, in this short paper
we explore the use of a structured hinge loss for
named-entity recognition (NER). Our main contri-
bution is the introduction of additional constraints
between specific labelings aimed at increasing the
accuracy of the learned model. Experimental re-
sults over a challenging NER dataset (OntoNotes
5.0, which is still far from accuracy saturation)
show that the proposed approach has been able to
achieve higher accuracy than both the NLL and a
conventional structured hinge loss.

2 Related Work

In this section we briefly review the main literature
on NER architectures and on structural loss func-
tions. For a broader review of deep learning for
NER, the reader can refer to (Li et al., 2018).

A current and well-known approach for NER
combines a bidirectional LSTM with a CRF out-
put layer to benefit from both their properties in
sequential tagging (Huang et al., 2015). In this ap-
proach, the LSTM is used first to process each sen-
tence token-by-token and produce an intermediate
representation. Then, the CRF uses the interme-
diate representation as input to provide the joint
prediction of all the labels. Lample et al. (2016)
have extended this model with a second, aux-
iliary LSTM encoding each token character-by-

90

character to also capture the regularities at charac-
ter level. More recently, Peters et al. (2017; 2018)
have proposed tagLM and ELMo to take advan-
tage of the contextualised embeddings provided
by pre-trained neural language models. Several
other variants have been proposed since, includ-
ing the Flair embedddings of Akbik et al. (2018)
which currently hold the state-of-the-art accuracy
over OntoNotes 5.0 (NB: besides a system hat
uses gazetteers as extra resources to increase accu-
racy (Liu et al., 2019)). However, a bidirectional
LSTM-CRF with ELMo embeddings can still be
regarded as a very strong baseline for NER and,
for this reason, it is used in the rest of this paper.

For what concerns alternative training objec-
tives to the negative log-likelihood, Zhang at
al. (2016) have proposed training an LSTM addi-
tioned with a linear output layer by using an SVM
objective. In their model, the parameters of both
the LSTM and the output layer have been learned
jointly using a combination of sequence-level and
frame-level regularised hinge losses. Similarly,
Shi et al. (2016) have proposed adding a structural
SVM output layer (Tsochantaridis et al., 2005)
to an RNN to improve its discriminative capabil-
ity. In 2012, Gimpel and Smith (2012) have pro-
posed a structured ramp loss that leverages vari-
ous styles of margins between predicted labelings.
Recently, Edunov et al. (2018) have carried out
an extensive review of structured loss functions,
including hinge losses, cost-weighted likelihoods
and reinforcement learning objectives. In a 2015
computer vision paper, Zhang and Piccardi (2015)
have proposed adding extra constraints to a struc-
tured hinge loss to increase its accuracy in a task
of activity segmentation in video. Inspired by that
approach, in this paper we explore its application
to NER, proposing three original combinations of
dedicated constraints and margins.

3 Methodology

In this section, we first briefly review the struc-
tured hinge loss (3.1) and the utilised scoring func-
tion (3.2), and then introduce the proposed ap-
proach (3.3).

3.1 Structured hinge loss

Given a token sequence, x = {x1 . . . xt . . . xT },
we note with y = {y1 . . . yt . . . yT } a labeling, i.e.
a sequence of corresponding labels, one per to-
ken. We also assume to have a scoring function,

F (x, y;w) or F (x, y) for brevity, which is able
to assign a compatibility score to any such (x, y)
pair. This function is completely defined by its set
of parameters, w, and it is a structured predictor if
the score of a labeling is computed jointly rather
than independently for each label. Given these as-
sumptions, the goal of a structured hinge loss is
simply to ensure that the ground-truth labeling, yg,
for a given x is assigned a score larger than that of
any other labeling, y 6= yg, by a chosen margin,
K:

F (x, yg)− F (x, y) ≥ K ∀y 6= yg (1)

It is often useful to impose a margin that is
the larger the more the labeling differs from the
ground truth, and this can be achieved by set-
ting the margin to be the evaluation loss (“margin
rescaling” (Tsochantaridis et al., 2005)):

F (x, yg)− F (x, y) ≥ ∆(yg, y) ∀y 6= yg (2)

However, the number of distinct labelings is ex-
ponential in the length of the sequence and it may
not be possible to find a set of parameters which
is able to satisfy all the constraints. In that case,
the constraints are relaxed by introducing a non-
negative term, ξ ≥ 0, in Eq. 2 to minimally satisfy
all the constraints:

F (x, yg)− F (x, y) ≥ ∆(yg, y)− ξ ∀y 6= yg

It is easy to see that the value of ξ is set by the
most violated of the constraints, with y∗ its corre-
sponding labeling:

ξ = max
y

[−F (x, yg) + F (x, y) + ∆(yg, y)] (3)

y∗ = argmax
y

[F (x, y) + ∆(yg, y)] (4)

where we have omitted the first term in Eq. 4
since it does not depend on y. Note that since the
search domain includes yg, and ∆(yg, yg) = 0,
the above guarantees that ξ ≥ 0. Eq. 3 is known
as the structured hinge loss because of the inter-
dependencies between the individual labels inside
the scoring function and, possibly, the evaluation
loss. In turn, the solution of Eq. 4 is known as
the “loss-augmented” inference and is the crux of
structured hinge loss minimisation. Given a train-
ing set, {xi, yi}, i = 1 . . . N , the training objec-
tive is therefore:

w∗ = argmin
w

N∑

i=1

ξi(w) (5)

91

While the minimisation in Eq. 5 can be easily
entertained by automated differentiation, the infer-
ence of the most-violating labelings must be per-
formed externally with a dedicated algorithm.

3.2 Scoring function

The scoring function, F (x, y;w), has been imple-
mented as a BiLSTM-CRF (Lample et al., 2016),
a popular NER model using a bidirectional LSTM
as its feature layer and a CRF as its output layer.
Its scoring function can be expressed as:

F (x, y;w) =
T∑

t=2

wyt−1,yt +
T∑

t=1

f(yt;w) (6)

where wi,j are the transition weights for transi-
tioning from label yt−1 = i to label yt = j,
and f(yt;w) denotes the score assigned to label
yt by the BiLSTM layer. At its turn, the BiL-
STM layer is organised as a bidirectional LSTM
with trainable word and character embeddings as
its inputs. At initialisation, the word embeddings
can be assigned with either random or pre-trained
values. At inference time, argmaxy F (x, y;w) is
provided by the Viterbi algorithm. For further de-
tails, please refer to (Lample et al., 2016).

3.3 The proposed multi-constraint structured
hinge loss

Rather than constraining the optimisation prob-
lem with an exponential number of constraints, the
structured hinge loss minimisation only considers
the constraint setting the value of the loss:

ξ = [−F (x, yg) + F (x, y∗) + ∆(yg, y∗)] (7)

While such an approach makes the constrained
minimisation feasible, we speculate that the ad-
dition of other constraints – either between the
ground-truth labeling and other labelings, or be-
tween the other labelings themselves – may even-
tuate in a more performing model. To this aim, we
have created a new set of labelings by arbitrarily
introducing false positives in the ground-truth la-
belings of the training set. As false positives, we
have decided to change the “Outside” label im-
mediately preceding the first ground-truth entity
of the training sentences into a “B-ORG” label.
This is an altogether arbitrary change that creates
mildly incorrect labelings: as such, we expect the
scoring function to assign them scores lower than
the corresponding ground truths, yet higher than

more incorrect labelings. We note these new la-
belings as ui, i = 1 . . . N , reserving the subscript
position for the sample index henceforth. Given
these extra labelings, we propose three versions of
a multi-constraint training loss:

• Hinge-yu: in this loss, we impose an ex-
tra constraint between the altered ground-
truth labeling, ui, and the remaining label-
ings. However, function ∆(ui, y) cannot be
used as margin since it expects to have a true
labeling as its first argument. Therefore, fol-
lowing (Zhang and Piccardi, 2015) we set the
margin to be (∆(yi, y) −∆(yi, ui)). The la-
beling returned by the loss-augmented infer-
ence with this margin is the same as in the
standard case (y∗i) since the the second term
in the margin (∆(yi, ui)) does not depend on
y.

• Double Hinge: in this loss, we instead im-
pose an extra constraint between the ground-
truth labeling, yi, and the altered ground
truth, ui. As margin, we can naturally use
∆(yi, ui).

• Discounted Margin: in this loss, we again
impose an extra constraint between the al-
tered ground-truth labeling, ui, and the re-
maining labelings. As margin, we use the
regular loss function, ∆(ui, y), but “dis-
counted” by a small discount factor since ui
is not an actual ground truth.

As evaluation loss for the margin, we have sim-
ply used the Hamming loss, since it naturally de-
composes over the individual tokens of its argu-
ments and it allows us to easily touch up the
standard Viterbi algorithm to provide the required
loss-augmented inference. Extending the loss-
augmented inference to other, more specialised
evaluation measures such as the CoNLL and MUC
scores (Nadeau and Sekine, 2007) could be the
scope of future work.

4 Experiments and results

4.1 Experimental set-up
We have carried out experiments over a challeng-
ing NER dataset, OntoNotes v5.0, which was first
introduced in CoNLL 2012 as a shared task (Prad-
han et al., 2012, 2013). This English dataset con-
tains multi-token entities from 18 different cate-
gories, including amongst others, person, facility,

92

Table 1: The compared training objectives.

NLL lNLL = −∑N
i=1 log p(yi|xi)

Hinge Loss lHinge =
∑N

i=1[−F (xi, yi) + F (xi, y
∗
i) + ∆(yi, y

∗
i)]+

y∗i = argmaxy F (xi, y) + ∆(yi, y)

Hinge-yu
lHinge−yu =

∑N
i=1[−F (xi, yi) + F (xi, y

∗
i) + ∆(yi, y

∗
i)]+

+
∑N

i=1[−F (xi, ui) + F (xi, y
∗
i) + ∆(yi, y

∗
i)−∆(yi, ui)]+

y∗i = argmaxy F (xi, y) + ∆(yi, y)

Double Hinge
lDoubleHinge =

∑N
i=1[−F (xi, yi) + F (xi, y

∗
i) + ∆(yi, y

∗
i)]+

+
∑N

i=1[−F (xi, yi) + F (xi, ui) + ∆(yi, ui)]+
y∗i = argmaxy F (xi, y) + ∆(yi, y)

Discounted Margin
lDiscountedMargin =

∑N
i=1[−F (xi, yi) + F (xi, y

∗
i) + ∆(yi, y

∗
i)]+

+
∑N

i=1[−F (xi, ui) + F (xi, y
∗
i) + df ×∆(ui, y

∗
i)]+

y∗i = argmaxy F (xi, y) + ∆(yi, y)

Table 2: Comparison of the CoNLL scores for the OntoNotes 5.0 dataset with the different training objectives.

Training objective CoNLL score
NLL 88.54± 0.13
Hinge Loss 88.81± 0.06
Hinge-yu 88.88± 0.10
Double Hinge 88.85± 0.13
Discounted Margin (df = 0.925) 89.16± 0.03

organisation, location, product, event, law, date
and time, and is split over a training, validations
and test sets. For the experiments, we have con-
verted it to the IOB2 tagging scheme.

The experiments have been carried out using the
DeLFT1 implementation of the BiLSTM-CRF. In
the experiments, the word embeddings have been
initialised with a concatenation of fastText-300d2

and ELMo-1024d3 (DeLFT’s default). All hyper-
parameters have also been left to their default val-
ues. Each training session has been run until con-
vergence of the evaluation loss over the validation
set or a maximum of 20 epochs. In the experi-
ments, we have compared the following training
objectives: 1) the NLL/cross entropy; 2) a stan-
dard structured hinge loss using the Hamming loss
as margin (“Hinge Loss”), with no additional con-
straints; and 3-5) the three versions of the pro-
posed multi-constraint structured hinge loss pre-
sented in Section 3.3. The discount factor, df , for

1https://github.com/kermitt2/delft
2https://dl.fbaipublicfiles.com/

fasttext/vectors-english/crawl-300d-2M.
vec.zip

3https://s3-us-west-2.amazonaws.com/
allennlp/models/elmo/2x4096_512_2048cnn_
2xhighway_5.5B/elmo_2x4096_512_2048cnn_
2xhighway_5.5B_options.json

the Discounted Margin approach has been chosen
in range [0.85, 0.95] in 0.025 steps over the valida-
tion set. All the training objectives are displayed
in Table 1.

For evaluation, we have used the CoNLL score,
an entity-oriented variant of the F1 score which is
the standard evaluation measure for NER (Nadeau
and Sekine, 2007). For every experiment, we have
run three independent runs from different random
seeds and reported their average score. In addition,
for the most noteworthy pairwise comparisons, we
have run one-tailed Welch’s t-tests to test statis-
tical significance (Hintze, 2019). As shown in
(Colas et al., 2019), the Welch’s t-test enjoys a
good balance between Type I and Type II errors
under a variety of assumptions for the underlying
score distributions (beyond Gaussian), especially
for small sample sizes.

4.2 Results and analysis

Table 2 shows the CoNLL scores achieved by the
compared training objectives over the OntoNotes
5.0 test set as average of 3 independent runs. The
table shows that even the standard structured hinge
loss has achieved a higher score than the NLL
(+0.27 percentage points). Even if the improve-
ment is mild, the standard deviations over the

93

three runs are small and the p-value from a one-
tailed Welch’s t-test is < 0.05, showing that the
improvement is statistically significant. In turn,
all the versions of the proposed multi-constraint
hinge loss have achieved higher scores than both
the NLL and the standard structured hinge loss,
with the Discounted Margin achieving the high-
est score. The improvement of the Discounted
Margin over the NLL has been +0.62 percent-
age points, with a one-tailed Welch’s t-test p-value
< 0.01. While this improvement is still somehow
limited, we wish to remark that it has leveraged
only changes to the loss function in the code, and
at a complete parity of model.

5 Conclusion

In this short paper, we have proposed a multi-
constraint structured hinge loss to be used as
training objective for a named-entity recognition
model. The proposed loss enforces additional
constraints with respect to the standard structured
hinge loss with the aim of improving the test ac-
curacy of the trained model. Experimental results
over a challenging NER dataset (OntoNotes 5.0)
have showed that the proposed loss has been able
to achieve an improvement of 0.62 CoNLL score
percentage points over the common negative log-
likelihood. In the future, we aim to explore further
combinations of constraints and margins, and pos-
sibly extend the proposed approach to other tasks.

References
Alan Akbik, Duncan Blythe, and Roland Vollgraf.

2018. Contextual string embeddings for sequence
labeling. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
1638–1649.

Cédric Colas, Olivier Sigaud, and Pierre-Yves
Oudeyer. 2019. A hitchhiker’s guide to statistical
comparisons of reinforcement learning algorithms.
In Reproducibility in Machine Learning, ICLR 2019
Workshop, pages 1–23.

Corinna Cortes and Vladimir Vapnik. 1995. Support-
vector networks. Machine Learning, 20(3):273–
297.

Sergey Edunov, Myle Ott, Michael Auli, David Grang-
ier, and Marc’Aurelio Ranzato. 2018. Classical
structured prediction losses for sequence to se-
quence learning. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 355–364.

Kevin Gimpel and Noah A. Smith. 2012. Struc-
tured ramp loss minimization for machine transla-
tion. In Proceedings of the 2012 Annual Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 221–231.

Jerry Hintze. 2019. T-test – two-sample. In NCSS
User’s Guide II, Chapter 206, pages 1–18.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence tagging.
CoRR, abs/1508.01991.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, Chris DyerRemi Le-
bret, and Ronan Collobert. 2016. Neural architec-
tures for named entity recognition. In Proceed-
ings of the 2016 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
260–270.

Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li.
2018. A survey on deep learning for named entity
recognition. CoRR, abs/1812.09449.

Tianyu Liu, Jin-Ge Yao, and Chin-Yew Lin. 2019. To-
wards improving neural named entity recognition
with gazetteers. In Proceedings of the 57th Confer-
ence of the Association for Computational Linguis-
tics, pages 5301–5307.

David Nadeau and Satoshi Sekine. 2007. A survey
of named entity recognition and classification. Lin-
guisticae Investigationes, 30(1):3–26.

Matthew Peters, Waleed Ammar, Chandra Bhagavat-
ula, and Russell Power. 2017. Semi-supervised se-
quence tagging with bidirectional language models.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics, pages
1756–1765.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2227–2237.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Hwee Tou Ng, Anders Björkelund, Olga Uryupina,
Yuchen Zhang, and Zhi Zhong. 2013. Towards ro-
bust linguistic analysis using OntoNotes. In Pro-
ceedings of the Seventeenth Conference on Com-
putational Natural Language Learning, pages 143–
152, Sofia, Bulgaria. Association for Computational
Linguistics.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 shared task: Modeling multilingual unre-
stricted coreference in OntoNotes. In Proceedings
of the Sixteenth Conference on Computational Nat-
ural Language Learning, Jeju, Korea.

94

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. In 4th Inter-
national Conference on Learning Representations,
pages 1–16.

Yangyang Shi, Kaisheng Yao, Hu Chen, Dong Yu, Yi-
Cheng Pan, and Mei-Yuh Hwang. 2016. Recurrent
support vector machines for slot tagging in spoken
language understanding. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 393–399.

Ioannis Tsochantaridis, Thorsten Joachims, Thomas
Hofmann, and Yasemin Altun. 2005. Large margin
methods for structured and interdependent output
variables. Journal of Machine Learning Research,
6:1453–1484.

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8:229–256.

Guopeng Zhang and Massimo Piccardi. 2015. Struc-
tural SVM with partial ranking for activity segmen-
tation and classification. IEEE Signal Process. Lett.,
22(12):2344–2348.

Shi-Xiong Zhang, Rui Zhao, Chaojun Liu, Jinyu Li,
and Yifan Gong. 2016. Recurrent support vector
machines for speech recognition. In Proceedings of
the 2016 IEEE International Conference on Acous-
tics, Speech and Signal Processing, pages 5885–
5889.

95

Feature-guided Neural Model Training for Supervised Document
Representation Learning

Aili Shen Bahar Salehi Jianzhong Qi Timothy Baldwin
School of Computing and Information Systems

The University of Melbourne
Victoria, Australia

ailis@student.unimelb.edu.au baharsalehi@gmail.com
jianzhong.qi@unimelb.edu.au tb@ldwin.net

Abstract

With the advent of neural models, there has
been a rapid move away from feature engineer-
ing, or at best, simplistically combining hand-
crafted features with learned representations
as side information. We propose a method
that uses hand-crafted features to guide learn-
ing by explicitly attending to feature indica-
tors when learning the relationship between
the input and target variables. In experiments
over two different tasks — quality assessment
of Wikipedia articles and popularity predic-
tion of online petitions— we demonstrate that
the proposed method yields neural models that
consistently outperform those that simply use
hand-crafted features as side information.

1 Introduction and Background

Text classification/regression is a fundamental
problem in natural language processing. Tradi-
tional methods make use of hand-crafted features,
such as the length of a document, to represent a
document. A classifier/regressor is built on top of
such features to learn a model (Wang and Man-
ning, 2012; Warncke-Wang et al., 2013, 2015;
Dang and Ignat, 2016). Recently, neural mod-
els such as LSTMs (Hochreiter and Schmidhuber,
1997) and convolutional neural networks (CNNs:
Kim (2014); Kalchbrenner et al. (2014)) have be-
come the de facto for text classification/regression
tasks, with one oft-cited advantage being that they
are able to learn implicit features as part of the rep-
resentation learning.

Studies employing neural models either eschew
hand-crafted features or simplistically use hand-
crafted features as side information. For example,
Dang and Ignat (2017) propose to use a bidirec-
tional LSTM (“bi-LSTM”) to classify Wikipedia
articles by their quality classes, and Shen et al.
(2017) concatenate structural features (e.g., arti-
cle length) and readability scores with bi-LSTM-

learned document representations for the same
task. Subramanian et al. (2018) hand-engineer a
set of features (e.g., the ratio of indefinite and def-
inite articles), and concatenate them with CNN-
learned document representations to predict the
popularity of online petitions. Wu et al. (2018)
explore the utility of hand-crafted features in NER
by concatenating these features with character rep-
resentations learned via an CNN and word embed-
dings. These representations are then fed into a bi-
LSTM to identify named entities (with the help of
a CRF) and re-construct the hand-crafted features
in the output simultaneously, which is achieved
by combining an auto-encoder loss with the NER
loss.

The motivation underlying this work is that
when hand-crafted features are represented by nu-
merical vectors and concatenated with neural net-
work representations, there is no information on
what kind of feature each value represents. To
make better use of hand-crafted features, we pro-
pose a feature-guided neural training method that
guides the network to map feature indicators onto
(explicit or implicit) features in the document. We
evaluate the effectiveness of the proposed method
over two datasets for two different tasks: (1) qual-
ity assessment of Wikipedia articles, and (2) pop-
ularity prediction of online petitions. Taking state-
of-the-art approaches for the respective tasks, we
achieve consistent improvements when using our
model.

The closest work to our approach is the label-
guided model training of Wang et al. (2018). They
embed words and labels in the same embedding
space, and compute a label-based attention score
between a word and all possible labels, which is
used to weight word embeddings in obtaining doc-
ument representations. Our work differs in two
aspects: (1) Wang et al. (2018) capture direct as-
sociations between labels and words, while we use

96

the proxy of (potentially much higher-level) hand-
crafted features to guide network learning; and (2)
our method does not rely on the target variable be-
ing closely related to the semantics of a document,
leading to better generalisability.

2 Methodology

Figure 1 is an illustration of our proposed ap-
proach, in the context of a stacked bi-LSTM,
where two bi-LSTMs are applied to obtain the
sentence and document level representations, re-
spectively. Note that our method is not limited to
LSTMs, as we show in Section 3.

A hand-crafted feature can consist of multiple
feature indicators. For example, having level 3+
headings is one of the features in quality assess-
ment of Wikipedia articles. This hand-crafted fea-
ture consists of two feature indicators (tokens)
{“===”, “====”}. We embed the document and
feature indicators into a shared space. Then, as
indicated in Figure 1, for each feature indicator,
we compute cosine similarity between the fea-
ture indicator and word embeddings, followed by
average-pooling to obtain a sentence score:

score =
1

N

N∑

j=1

FVj

‖F‖2‖Vj‖2
. (1)

Here, F and Vj are embeddings of the feature
indicator and the jth word in a sentence, respec-
tively; ‖F‖2 and ‖Vj‖2 are the `2 norms of F and
Vj , respectively; and N is the number of words
in a sentence. All scores based on the feature in-
dicator are concatenated with sentence representa-
tions Z1, which are learned through a bi-LSTM
layer (f1). Then, another bi-LSTM layer (f2) is
applied to the concatenated sentence representa-
tions to obtain document representation Z2, which
is followed by a dense layer (f3) to compute y .

The score computed in Equation 1 is for a
single-token feature indicator. If a hand-crafted
feature consists of multiple feature indicators (to-
kens, e.g., {“===”, “====”}), the score becomes:

score =
1

M

M∑

i=1

1

N

N∑

j=1

FiVj

‖Fi‖2‖Vj‖2
. (2)

Here, M is the number of feature indicators in a
hand-crafted feature, and Fi is the word embed-
ding of the ith feature indicator in the feature.

For example, the feature level 3+ headings is
one of structural features described in Shen et al.

word embedding

V

feature embedding

F
score

Z1

f1

concat Z2

f2
y

f3

Figure 1: Illustration of our proposed method. Here, ⊗
denotes cosine similarity between the feature indicator
and word embeddings; f1 and f2 denote bi-LSTM lay-
ers; f3 denotes a dense layer; Z 1 and Z 2 denote sen-
tence and document representations, respectively; V
and F are the document input and feature indicators,
respectively; and y is the target output.

(2017), which consists of two feature indicators
{“===”, “====”}. To obtain the similarity score
for the feature level 3+ headings, we first compute
the similarity score between each feature indica-
tor “===”/“====” and word embeddings in the
sentence, then apply average-pooling to obtain the
similarity score for each feature indicator. We ob-
tain the similarity score of level 3+ headings by
averaging similarity scores among the feature in-
dicators at the sentence level. Finally, the feature
score is concatenated with the sentence represen-
tation, which is fed into a latter layer.

While we don’t experiment with this in this pa-
per, it is also possible to first average feature indi-
cator embeddings and then compute the sentence
score by Equation 1. This way, we can efficiently
reduce the computation of similarity scores for
hand-crafted features with a large number of fea-
ture indicators. In this paper, we use Equation 2,
as the maximum number of feature indicators in a
given hand-crated feature is less than 1, 000, and
less than 10 in most cases.

3 Experiments

To test the effectiveness of our proposed method,
we experiment with a Wikipedia document qual-
ity assessment task (Shen et al., 2019), and on-
line petition signature prediction task (Subrama-
nian et al., 2018), as detailed below. The rea-
sons we chose these particular tasks are as follows.
First, extensive domain-specific feature engineer-
ing had taken place in each case, that we could
use as the basis of our feature indicators. Second,

97

strong neural benchmarks have been established,
based on extensive experimentation with both neu-
ral and non-neural models. Our experiments in
this paper are based on the state-of-the-art.

We aim to explore the relative gains of our pro-
posed method relative to the current state-of-the-
art for the task, which in both cases is not based
on contextualised embeddings. For BERT (Devlin
et al., 2019) or other contextualised encoders, the
same word in different contexts will end with dif-
ferent embeddings, leading to localized represen-
tations of feature indicators. As such, the proposed
method is not directly applicable to models such
as BERT, and novel research would be required to
adapt the method to such models.

3.1 Wikipedia Document Quality Assessment

Dataset The Wikipedia dataset (Shen et al.,
2019) consists of 29,794 English Wikipedia arti-
cles and their corresponding quality labels: Fea-
tured Article, Good Article, B-class Article, C-
class Article, Start Article, and Stub Article, in de-
scending order of document quality. The dataset is
class-balanced and partitioned into training, devel-
opment, and test splits (8:1:1). Documents are rel-
atively long, and processed in a hierarchical man-
ner, by constructing sentence representations, and
composing these into a document representation.

Following Dang and Ignat (2017) and Shen
et al. (2019), we formulate the quality assessment
of Wikipedia articles as a multi-class classification
problem, and all models are trained to minimise
cross-entropy loss. We report average accuracy
and standard deviation over 10 runs.

Hand-crafted features used to guide network
learning here include: (1) references indicators;
(2) links to other Wikipedia pages indicators;
(3) citation templates indicators; (4) non-citation
templates indicators; (5) categories linked in the
article indicators; (6) image indicators; (7) in-
fobox indicators; (8) level 2 headings indica-
tors; and (9) level 3+ heading indicators. These
features are from Dang and Ignat (2016) and
Shen et al. (2017). Hand-crafted features in
Side-information are based on counting the
number of appearances of such feature indicators.

Model configuration We apply our proposed
approach (“Feature-guided”) over the four
models detailed below. In each case, we
contrast with two baselines: (1) Vanilla,
makes no use of hand-crafted features; and (2)

Side-information which uses the hand-
crafted features as side information, by concate-
nating them with learned representations in the
penultimate layer.

1. CNN BILSTM: apply convolution kernels
with width 2, 3, and 4 (32 for each width size)
to word embeddings within a sentence, and
a tanh activation function to each; pass the
output of the filters through a bi-LSTM.

2. AVERAGE BILSTM (Shen et al., 2017): av-
erage word embeddings to get the sentence
representation, and run a bi-LSTM over the
sequence of sentence representations.

3. STACKED BILSTM: feed the word embed-
dings in a sentence through a bi-LSTM, and
the output through a max-pooling layer; fi-
nally, apply another bi-LSTM over the sen-
tence representations.

4. STACKED BILSTM ATT (Yang et al., 2016):
use a hierarchical STACKED BILSTM, ex-
cept that an attention mechanism with a con-
text size of 100 is applied to the output
of each bi-LSTM to weight words/sentences
based on their importance in the sen-
tence/document.

A max-pooling layer is applied to the output of
the bi-LSTM at the sentence level for all models
except STACKED BILSTM ATT to get the docu-
ment level representation, which is followed by
two dense layers, one with a ReLU activation
and one without any activation function. For
all models, dropout layers are applied at both
the sentence and document levels with a rate of
0.5 during training. For both CNN BILSTM
and AVERAGE BILSTM, the bi-LSTM cell size
is set to 256. For STACKED BILSTM and
STACKED BILSTM ATT, the cell size is set to 32
and 256 for the sentence and document level bi-
LSTM, respectively.

We use 50-dimensional pre-trained word em-
beddings from GloVe (Pennington et al., 2014).1

For OOV words, the word embeddings are ran-
domly initialised based on sampling from a uni-
form distribution U(−1, 1). All word embeddings

1We fine-tuned hyper-parameters over the development
set for quality predictions of Wikipedia articles. 50-
dimensional embeddings were chosen because Vanilla
performs the best under this setting (meaning the baseline
without features is as strong as possible).

98

Model CNN BILSTM AVERAGE BILSTM STACKED BILSTM STACKED BILSTM ATT

Vanilla 57.12±0.58% 57.91±0.81% 57.60±0.65% 56.70±1.21%
Side-information 57.24±0.47% 59.04±0.33% 57.97±0.74% 57.44±0.62%
Feature-guided 58.10±0.50%† 59.90±0.45%† 58.30±0.71% 58.30±0.65%†

Table 1: accuracy over Wikipedia dataset. The best result is in bold, and marked with “†” if the improvement
is statistically significant (based on a one-tailed Wilcoxon signed-rank test; p < 0.05).

are updated in the training process. We use a
mini-batch size of 128 and a learning rate of 0.01.
We train each model for 50 epochs. To prevent
over-fitting, early stopping is adopted. All hyper-
parameters are set empirically over the develop-
ment data, and the models are optimised using
Adam (Kingma and Ba, 2015).

Results The experimental results are pre-
sented in Table 1. We can see that our
method outperforms both Vanilla and
Side-information across all four network
architectures, at a level of statistical significance
for 3 out of the 4 models. It is worth noting that
the performance of STACKED BILSTM ATT is
worse than that of STACKED BILSTM for both
Vanilla and Side-information, due to
attention in STACKED BILSTM ATT not being as
effective as max-pooling on this task. However,
the performance of STACKED BILSTM ATT is
not worsened by incorporating the attention for
our method, indicating that our feature-guided
learning can guide the network to learn better.

3.2 Online Petition Signature Prediction
Dataset The online petitions dataset (Subrama-
nian et al., 2018) consists of 10,950 UK petitions
and their corresponding signature counts. Follow-
ing Subramanian et al. (2018), we chronologically
split the data into training, dev, and test (8:1:1).

We formulate signature count prediction as a
regression problem, and all models are trained
to minimise mean squared error. For evalua-
tion, average mean absolute error (“MAE”) and
mean absolute percentage error (“MAPE”) over 10
runs are reported. Here, MAPE is calculated as
100
n

∑n
1
|ŷi − yi|

yi
, where ŷi and yi are the predicted

and ground-truth signature counts.
Hand-crafted features used to guide network

learning here include: (1) indefinite vs. definite
articles; (2) P1 singular and plural, P2, and P3
singular and plural pronouns; (3) subjective, pos-
itive, and negative words; and (4) biased words.
These features are from Subramanian et al. (2018).

Model MAE MAPE

Vanilla 1.44 38.1
Side-information 1.45 39.0
Feature-guided 1.42† 36.2†

Table 2: Results over online petitions. The best result is
indicated in bold, and marked with “†” if the improve-
ment is statistically significant (based on a one-tailed
Wilcoxon signed-rank test; p < 0.05).

Hand-crafted features in Side-information
are based on counting the number of appearances
of such feature words.

Model configuration We again compare our
proposed Feature-guided approach with
Side-information and Vanilla, in the
form of a state-of-the-art CNN with convolution
kernels of width 1, 2, and 3 (100 kernels for each
width size) over word embeddings, with a ReLU
applied to each. The outputs are passed through
two dense layers, one with a tanh activation func-
tion and one with an ELU activation function, to
obtain the final output.

A dropout layer is applied to the output of the
convolution filters at a rate of 0.5 during training.
We use a mini-batch size of 32, and a learning rate
of 1e−4. All other hyper-parameters are the same
as in the Wikipedia setting, except that the early
stopping is based on MAE.

Results Table 2 summarises our results. We ob-
serve that our approach benefits Vanilla and
Side-information once again, at a level of
significance in terms of both MAE and MAPE. It
is worth noting that Side-information per-
forms worse than Vanilla, as it over-fits to fea-
tures only present in the training data. In compari-
son, our method improves the model performance
even in this case, as it identifies words semanti-
cally related to the feature indicators. For exam-
ple, the word increase, not in the predefined list of
positive words, has a high similarity score (> 0.8)
with positive words help, hope, give, and allow.

99

4 Conclusion and Future Work

We proposed a method to guide network learning
by attending to feature indicators associated with
hand-crafted features. Experimental results over
two tasks (quality assessment of Wikipedia arti-
cles, and popularity prediction of online petitions)
show that our approach consistently outperforms
two baselines, across a range of neural architec-
tures. For future work, we are interested in explor-
ing hand-crafted features from external sources,
such as editor comments of a Wikipedia article.

References
Quang-Vinh Dang and Claudia-Lavinia Ignat. 2016.

Measuring quality of collaboratively edited docu-
ments: the case of Wikipedia. In Proceedings of
the 2nd IEEE International Conference on Collabo-
ration and Internet Computing, pages 266–275.

Quang Vinh Dang and Claudia-Lavinia Ignat. 2017.
An end-to-end learning solution for assessing the
quality of Wikipedia articles. In Proceedings of the
13th International Symposium on Open Collabora-
tion, pages 4:1–4:10.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, (NAACL-HLT 2019), pages 4171–4186.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (ACL 2014), pages 655–665.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2014), pages 1746–
1751.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. In The 3rd
International Conference on Learning Representa-
tions, (ICLR 2015).

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global vectors
for word representation. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2018), pages 1532–
1543.

Aili Shen, Jianzhong Qi, and Timothy Baldwin. 2017.
A hybrid model for quality assessment of Wikipedia
articles. In Proceedings of the Australasian Lan-
guage Technology Association Workshop, pages 43–
52.

Aili Shen, Bahar Salehi, Timothy Baldwin, and
Jianzhong Qi. 2019. A joint model for multimodal
document quality assessment. In Proceedings of the
19th ACM/IEEE-CS on Joint Conference on Digital
Libraries (JCDL 2019), pages 107–110.

Shivashankar Subramanian, Timothy Baldwin, and
Trevor Cohn. 2018. Content-based popularity pre-
diction of online petitions using a deep regression
model. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguis-
tics, (ACL 2018), pages 182–188.

Guoyin Wang, Chunyuan Li, Wenlin Wang, Yizhe
Zhang, Dinghan Shen, Xinyuan Zhang, Ricardo
Henao, and Lawrence Carin. 2018. Joint embedding
of words and labels for text classification. In Pro-
ceedings of the 56th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL 2018),
pages 2321–2331.

Sida I. Wang and Christopher D. Manning. 2012. Base-
lines and bigrams: Simple, good sentiment and topic
classification. In Proceedings of the 50th Annual
Meeting of the Association for Computational Lin-
guistics (ACL 2012), pages 90–94.

Morten Warncke-Wang, Vladislav R. Ayukaev, Brent
Hecht, and Loren Terveen. 2015. The success and
failure of quality improvement projects in peer pro-
duction communities. In Proceedings of the 18th
ACM Conference on Computer-Supported Coopera-
tive Work and Social Computing, pages 743–756.

Morten Warncke-Wang, Dan Cosley, and John Riedl.
2013. Tell me more: An actionable quality model
for Wikipedia. In Proceedings of the 9th Inter-
national Symposium on Open Collaboration, pages
8:1–8:10.

Minghao Wu, Fei Liu, and Trevor Cohn. 2018. Evalu-
ating the utility of hand-crafted features in sequence
labelling. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP 2018), page 28502856.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NACCL-HLT 2016), pages 1480–1489.

100

Predicting Political Frames Across Policy Issues and Contexts

Shima Khanehzar Andrew Turpin Gosia Mikolajczak
School of Computing and Information Systems

The University of Melbourne
skhanehzar@student.unimelb.edu.au

{aturpin,malgorzata.mikolajczak}@unimelb.edu.au

Abstract

Politically-contested issues are often discussed
with different emphases by different people.
This emphasis is called a frame. In this pa-
per, we examine the performance of classifiers
trained using the media frames Corpus (MFC)
(Card et al., 2015); a collection of US news la-
belled with fifteen different frame categories.
Specifically, we compare pre-trained language
models (XLNet, Bert, and Roberta), fine-tuned
using MFC, against results from the literature
and simpler models in their ability to predict
frames from text. We also test these models
on a new corpus that we have derived from
Australian parliamentary speeches. Our exper-
imental results first show that the fine-tuned
models significantly outperform the current
best methods on MFC. We also show that the
model fine-tuned on US news articles can be
convincingly applied to predict policy frames
in Australian parliamentary speeches, though
the accuracy is significantly reduced, suggest-
ing potential discrepancy in framing strategies
and/or text usage between US News and Aus-
tralian Parliamentary Speeches.

1 Introduction

Politicians and the media often portray political
issues in a subjective way in an attempt to shape
public attitudes (Chong and Druckman, 2007). For
example, a politician opposing the same-sex mar-
riage (SSM) might frame the issue using the lens
of tradition and religious beliefs, whereas a politi-
cian supporting SSM might frame a speech us-
ing fairness and equality as the base. Due to its
complexity and linguistic subtleties, issue fram-
ing (Entman, 1993) remains challenging for au-
tomated text methods. To address these chal-
lenges, recent work by Boydstun et al. (2013) de-
fines broad categories of common policy frames
and annotates US News articles to build the media
frames Corpus (MFC) (Card et al., 2015). Follow-

up studies have used the MFC to investigate the ac-
curacy of models that attempt to classify the dom-
inant frames of US news articles. In this paper, we
aim to extend this work and answer the following
question: can recent pre-trained neural classifiers
learn to predict dominant frames across issues and
communication contexts? To answer this question,
we provide the following contributions.

• We investigate the effectiveness of the pre-
trained language models XLNet, Bert and
Roberta in predicting dominant frames within
each issue on the MFC.

• We investigate whether our models can learn
to predict frame categories across issues. Our
results show that we can apply trained models
on a new issue without training data for that
particular issue.

• We annotate a small subset of Australian par-
liamentary speeches on Same-Sex Marriage
(SSM).

• We evaluate whether our models can learn
to predict frames across communication con-
texts, applying the models fine-tuned on the
MFC dataset on the Australian parliamentary
speeches.

2 Background and Related Work

Natural Language Processing techniques have
been applied to identify several aspects of the po-
litical discourse including ideology (Iyyer et al.,
2014), sentiment (Godbole et al., 2007; Balahur
et al., 2010), and stance (Mohammad et al., 2016).

Earlier studies focusing specifically on frame
detection usually1 employ topic modeling (Boyd-
stun et al., 2013), (Nguyen, 2015), (Tsur et al.,

1for an exception, see Baumer et al. (2015) who use clas-
sifiers to identify the language of framing in the news

101

2015). This approach allows for automated de-
tection of frames within specific corpora, but does
not easily allow results and methods to be used
across issues or contexts that are not part of the
corpus on which the model is built. To address
this shortcoming, Boydstun et al. (2013) proposed
a list of 15 broad frames (e.g., Economic, Moral-
ity, or Legal; plus an “Other” category) commonly
used when discussing different policy issues (such
as abortion, immigration, foreign aid, etc.), and
in different communication contexts (news stories,
Twitter, party manifestos, legislative debates, etc.).
The frames have been defined in the Policy Frame
Codebook (PFC)

The The Media Frames Corpus (MFC) Card
et al. (2015) includes news articles from 13 U.S.
newspapers, covering five policy issues: same-
sex marriage, immigration, tobacco, gun control,
and the death penalty, published between 1980–
2012. Approximately 12,000 articles have been
annotated with the dominant frame from the list
of categories proposed in PFC. The annotations
also identify exact text spans associated with each
of the 15 frames. Since the frame distribution is
imbalanced and not reported in the original paper,
here we show the the statistical distribution of the
frameworks in table 1.

The MFC has been previously used for train-
ing and testing classification models. For exam-
ple, Card et al. (2016) provide an unsupervised
model that clusters articles with similar collections
of “personas” (i.e., characterisations of entities)
and demonstrate that these personas can help pre-
dict the coarse-grained framing annotations in the
MFC.

The current best result for predicting the domi-
nant frame of each article in the MFC comes from
Ji and Smith (2017), who proposed a recursive
neural discourse structure network with a new at-
tention mechanism of the text for text categoriza-
tion. They report the average accuracy across 10-
fold cross-validation using the immigration issue
which we report in Table 2 (column 4).

Field et al. (2018) used the MFC to investi-
gate agenda-setting and framing in Russian News.
They introduced embedding-based methods for
projecting frames of one language into another
(i.e., English to Russian). It is worth mentioning
that their approach is applicable to languages suf-
fering from lack of training data.

3 Method

In this paper, we explore three general approaches
to classify text with the frames from the PFC.
First, We create baseline models with Support
Vector Machine (SVM) and Weighted Support
Vector Machine (Weighted-SVM). SVMs are of-
ten used for text classification problems, as the al-
gorithms perform classification by finding hyper-
planes to differentiate the classes. Weighted-SVM
is often used for dataset with skewed distribution
to reduce bias, and it is more suitable for MFC,
which has an imbalanced class distribution. We
implement SVM and Weighted-SVM using the de-
fault parameters in the sklearn python library. Sec-
ond, we use the MFC to form a lexicon (bag of
words) for each frame and classify new texts us-
ing the Okapi text similarity metrics (Robertson
and Zaragoza, 2009) from each lexicon. Last,
we employ pre-trained language models, and fine-
tune them with the MFC. Since our primary goal
is to investigate if framing shares similar patterns
across domains, we evaluate these models across
issues and contexts. For across-issue evaluation,
we fine-tune our models on four issues from the
MFC (i.e., excluding immigration), and then eval-
uate them on the immigration subset. For across-
context evaluation, we evaluate the models on a
subset of the Australian Parliamentary Speeches
(APS), which we describe in more detail below.

3.1 Framing Lexicons

Based on the approach by Field et al. (2018), a lex-
icon related to each frame f in the PFC is derived
by taking the top 50 words with the highest point-
wise mutual information I(f, w) = log p(w|f) −
log p(w), where w is a word. We compute P (w|f)
by taking the number of occurrences of w in all the
text segments annotated with the secondary frame
f in the MFC divided by the total number of words
in those segments. Quantity P (w) is computed
similarly over the entire corpus. As in Field et al.
(2018), we discard all words that occur in fewer
than 0.5% of documents or in more than 98% of
documents.

In order to classify a document into one of the
15 frames, we take the highest ranked lexicon us-
ing the document as a query against a collection of
the 15 lexicons, measuring similarity using Okapi
scoring (Robertson and Zaragoza, 2009). We use
the default parameters in the Okapi formula as im-
plemented in the Gensim Python Library.

102

Frame Category MFC SSM MFC no SSM MFC IM MFC no IM APS

Economic 136 1400 414 1122 0
Capacity and Resources 4 245 210 39 0

Morality 405 406 76 735 6
Fairness and Equality 196 653 155 694 24

Legality Constitutionality Jurisdiction 1173 3747 957 3963 9
Policy Prescription and Evaluation 178 1938 473 1643 2

Crime and Punishment 20 2167 803 1384 0
Security and Defence 1 609 286 324 0

Health and Safety 50 1330 239 1141 0
Quality of Life 294 790 410 674 6

Cultural Identity 298 1335 556 1077 5
Public Sentiment 364 758 243 879 11

Political 1215 3547 969 3793 35
External Regulation and Reputation 22 290 132 180 2

Other 0 11 10 1 0

All 4356 19226 5933 17649 100

Table 1: Frame statistics in MFC and APS used in our experiments.

3.2 Neural models

Bert (Devlin et al., 2019) is a bi-directional lan-
guage model based on now ubiquitous Transform-
ers (Vaswani et al., 2017) with a Cloze Test objec-
tive, and trained on a large text corpus. The pre-
trained Bert model can be fine-tuned with just one
additional output layer to create state-of-the-art
models for a wide range of tasks, such as question
answering and language inference, without sub-
stantial task-specific architecture modifications. In
this work, we add an extra task-specific neural
layer followed by a non-linear layer and softmax
for text classification on top of Bert. Then, the
extra layers are jointly fine-tuned with the pre-
trained Bert. A prominent limitation of Bert is that
it takes at most 512 word tokens, which is often
too small for document level tasks.

XLNet (Yang et al., 2019) is an unsupervised
language representation learning method based on
a novel generalized permutation language mod-
eling objective. XLNet does not suffer from the
pre-train-fine-tune discrepancy that Bert is subject
to due to the Cloze Test objective during train-
ing. Additionally, XLNet employs Transformer-
XL (Dai et al., 2019) as the backbone model, ex-
hibiting excellent performance for language tasks
involving long context. Overall, XLNet achieves
high accuracy on various downstream language
tasks including question answering, natural lan-

guage inference, sentiment analysis, and docu-
ment ranking.

Roberta (Liu et al., 2019) is an improved ver-
sion of Bert trained on a larger dataset with longer
sequences. It also modifies the original design of
Bert by removing the next sentence prediction ob-
jective and dynamically changing the masking pat-
tern during pre-training. The author of Roberta
claims that Roberta is comparable with XLNet on
all GLUE (Wang et al., 2019) tasks and SQUAD
(Rajpurkar et al., 2016), and achieves the state-of-
the-art performance on 4/9 of the GLUE tasks.

3.3 The APS Dataset

The Australian Parliamentary Speeches (APS)
dataset includes transcripts of second reading
speeches related to same-sex marriage (SSM) bills
presented in the the House of Representatives
of the Australian Parliament between 2004-2017.
The data has been obtained from the Federal
Parliament website. A random sample of 100
speeches was given to an honour student in polit-
ical science, who was asked to identify 15 frame
categories from the PFC, and to indicate the rele-
vant passages representing each frame. The rater
was also asked to indicate the dominant frame of
each speech. We report the APS frame statistics in
table 1.

103

Training data MFC SSM MFC no SSM MFC IM MFC no IM
Testing data MFC SSM MFC SSM MFC IM MFC IM

(SISC) (AISC) (SISC) (AISC)

Roberta-Base 72.5 69.0 65.8 55.5
Xlnet-Base-Case 72.1 67.9 64.1 54.7
Bert-Base-Case 70.6 67.2 62.5 53.4

SVM 64.5 60.59 57.2 47.24
Weighted-SVM 65.5 61.45 58.4 49.26
Framing Lexicons 66.2 62.34 58.3 49.44

Ji and Smith (2017) – – 58.4 –
Card et al. (2016) – – 56.8 –
Field et al. (2018) – – 57.3 –

Table 2: Mean accuracy of Same-Issue and Same-Context (SISC); Across-Issue and Same-Context (AISC) evalu-
ated on both the Same-Sex Marriage (SSM) and Immigration (IM). The training and testing data are indicated in
the heading of each column.

4 Experiments and Discussion

We divide our experiments into four parts:
Same-Issue and Same-Context (SISC); Across-
Issue and Same-Context (AISC); Same-Issue and
Across-Context (SIAC); Across-Issue and Across-
Context. We follow the same setup as in Card
et al. (2016) and report average accuracy across
10-fold cross validation. We use the Bert-Base-
Cased, Roberta-Base, Xlnet-Base-Cased models.
We use the pre-trained model from Huggingface
package. We set the maximum sequence length to
256 since the average number of tokens for SSM
and IM are 253 and 254 respectively. For more de-
tails about the pre-trained models’ parameters, we
refer to the Huggingface package.

Same-Issue and Same-Context (SISC) We
fine-tune and evaluate our models on the Same-
Sex Marriage (SSM) and Immigration (IM) issues
from the MFC dataset, and compare the results
for IM with the previously proposed models, since
to the best of our knowledge, IM is the only is-
sue with results reported in previous work. Table
2 columns 2 and 4 show that the neural models
outperform the basic classifier and lexicon-based
methods. A paired t-test between Roberta-Base
and Framing Lexicons method confirms the differ-
ence is statistically significant (p < 0.001). The
difference between Roberta-Base and Xlnet-Base-
Case is not statistically significant (p = 0.061),
while the difference between Roberta-Base and
Bert-Base-Case is (p = 0.008).

Across-Issue and Same-Context (AISC) To
examine if our models can learn to predict frames
across issues, we first exclude the SSM and IM
data, respectively, from the MFC dataset and fine-
tune our models on the data for the remaining is-
sues. Then, we evaluate the models on the SSM
and IM data and compare our results with the pre-
viously proposed models. Columns 3 and 5 of Ta-
ble 2 show that there is a decrease from SISC in
mean accuracy of about 4% for SSM, and 9% for
IM. However, the classifiers are still well above
chance, which is about 27.9% for SSM and 16.3%
for IM if we default to the most common frame in
the the respective issues.

Same-Issue and Across-Context (SIAC) To
examine if our models can learn to predict frames
across communication context, we fine-tune our
models on the SSM data from the MFC, and then
evaluate our models on the APS dataset. Table 3
(column 3) shows that there is a further drop in
mean accuracy here for all models, but again still
above chance, which is about 35.0% for APS if
we default to the most common frame in the the
respective issues.

Across-Issue and Across-Context (AIAC) To
examine if our models can still learn to predict
frames across both issue and communication con-
text, we fine-tune our models on all other MFC
data excluding SSM data, and then evaluate our
models on APS dataset. Table 3 (column 2) shows
that there is a further drop in mean accuracy here,
about 9.3% on average for all models, compared to

104

SIAC, but again still above chance, which is about
35.0% for APS if we default to the most common
frame in the the respective issues.

Training data MFC no SSM MFC SSM
Testing data APS APS

(AIAC) (SIAC)

Roberta-Base 41.0 43.0
Xlnet-Base-Case 43.0 46.0
Bert-Base-Case 40.0 47.0

SVM 32.0 35.0
Weighted-SVM 33.0 37.0
Framing Lexicons 34.0 38.0

Table 3: Mean accuracy of Same-Issue and Across-
Context (SIAC); Across-Issue and Across-Context
(AIAC) evaluated on both the APS dataset. The train-
ing and testing data are indicated in the heading of each
column.

5 Discussion

The previous best mean accuracy for predicting
the dominant frame on the Immigration subset of
the MFC is 58.4%. Our best model (Roberta-
Base) fine-tuned with data on the same issue im-
proves the performance by 12.7%, and our best
model (Roberta-large—not shown in Table ??)
fine-tuned on data not including the Immigration
subset has 56.26% accuracy; still comparable per-
formance against previous methods.

Our best model outperforms the previous best
models on the MFC by a large margin. No-
tably, the performance of pre-trained language
models is comparable to the previous best mod-
els, even with only fine-tuning on data not spe-
cific to the issue being classified, proving that pre-
trained neural classifiers can learn to predict domi-
nant frames across domains. However, fine-tuning
on small amount of domain-specific data still out-
performs the same models fine-tuned on out-of-
domain datasets.

6 Conclusion

Using a pre-trained Roberta (Liu et al., 2019)
model with added issue- and context-specific data
to predict the dominant frame of a text improves
upon the current state-of-the-art. Such a model
that is trained on U.S. media articles can be con-
vincingly applied to predict frames in Australian

political speeches, though the accuracy is signif-
icantly reduced, suggesting potential discrepancy
in framing strategy between US News and Aus-
tralian Parliamentary Speeches, and/or different
uses of language in the two contexts. Over the
coming months, we will work on improving the
size and quality of the APS data and examine ways
to improve the prediction of dominant frames in
Australian political text.

References
Alexandra Balahur, Ralf Steinberger, Mijail A. Kabad-

jov, Vanni Zavarella, Erik Van der Goot, Matina
Halkia, Bruno Pouliquen, and Jenya Belyaeva. 2010.
Sentiment analysis in the news. In Proceedings
of the International Conference on Language Re-
sources and Evaluation, LREC 2010, 17-23 May
2010, Valletta, Malta.

Eric Baumer, Elisha Elovic, Ying Qin, Francesca Pol-
letta, and Geri Gay. 2015. Testing and comparing
computational approaches for identifying the lan-
guage of framing in political news. In NAACL HLT
2015, The 2015 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Denver,
Colorado, USA, May 31 - June 5, 2015, pages 1472–
1482.

Amber E Boydstun, Justin H Gross, Philip Resnik, and
Noah A Smith. 2013. Identifying media frames and
frame dynamics within and across policy issues.

Dallas Card, Amber E Boydstun, Justin H Gross, Philip
Resnik, and Noah A Smith. 2015. The media frames
corpus: Annotations of frames across issues. In Pro-
ceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 438–
444.

Dallas Card, Justin H. Gross, Amber E. Boydstun, and
Noah A. Smith. 2016. Analyzing framing through
the casts of characters in the news. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2016, Austin,
Texas, USA, November 1-4, 2016, pages 1410–1420.

Dennis Chong and James N Druckman. 2007. Framing
public opinion in competitive democracies. Ameri-
can Political Science Review, 101(4):637–655.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Car-
bonell, Quoc Viet Le, and Ruslan Salakhutdinov.
2019. Transformer-xl: Attentive language models
beyond a fixed-length context. In Proceedings of
the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
2978–2988.

105

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Robert M Entman. 1993. Framing: Toward clarifica-
tion of a fractured paradigm. Journal of communi-
cation, 43(4):51–58.

Anjalie Field, Doron Kliger, Shuly Wintner, Jennifer
Pan, Dan Jurafsky, and Yulia Tsvetkov. 2018. Fram-
ing and agenda-setting in russian news: a compu-
tational analysis of intricate political strategies. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, Brussels,
Belgium, October 31 - November 4, 2018, pages
3570–3580.

Namrata Godbole, Manja Srinivasaiah, and Steven
Skiena. 2007. Large-scale sentiment analysis for
news and blogs. In Proceedings of the First Inter-
national Conference on Weblogs and Social Media,
ICWSM 2007, Boulder, Colorado, USA, March 26-
28, 2007.

Mohit Iyyer, Peter Enns, Jordan Boyd-Graber, and
Philip Resnik. 2014. Political ideology detection us-
ing recursive neural networks. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1113–1122, Baltimore, Maryland. Association for
Computational Linguistics.

Yangfeng Ji and Noah A. Smith. 2017. Neural dis-
course structure for text categorization. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics, ACL 2017, Vancou-
ver, Canada, July 30 - August 4, Volume 1: Long
Papers, pages 996–1005.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Saif Mohammad, Svetlana Kiritchenko, Parinaz Sob-
hani, Xiaodan Zhu, and Colin Cherry. 2016.
SemEval-2016 task 6: Detecting stance in tweets.
In Proceedings of the 10th International Workshop
on Semantic Evaluation (SemEval-2016), pages 31–
41, San Diego, California. Association for Compu-
tational Linguistics.

Viet An Nguyen. 2015. Guided Probabilistic Topic
Models for Agenda-Setting and Framing. Ph.D. the-
sis.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions for

machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2016, Austin,
Texas, USA, November 1-4, 2016, pages 2383–2392.

Stephen E. Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: BM25 and be-
yond. Foundations and Trends in Information Re-
trieval, 3(4):333–389.

Oren Tsur, Dan Calacci, and David Lazer. 2015. A
frame of mind: Using statistical models for detection
of framing and agenda setting campaigns. In Pro-
ceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing of the Asian Federation of Natural Lan-
guage Processing, ACL 2015, July 26-31, 2015, Bei-
jing, China, Volume 1: Long Papers, pages 1629–
1638.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 Decem-
ber 2017, Long Beach, CA, USA, pages 5998–6008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th
International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G.
Carbonell, Ruslan Salakhutdinov, and Quoc V.
Le. 2019. Xlnet: Generalized autoregressive
pretraining for language understanding. CoRR,
abs/1906.08237.

106

Domain Adaptation for Low-Resource Neural Semantic Parsing

Alvin Kennardi1, Gabriela Ferraro1,2, and Qing Wang1

1Research School of Computer Science, Australian National University
2Data61, CSIRO

{alvin.kennardi, qing.wang}@anu.edu.au
gabriela.ferraro@data61.csiro.au

Abstract

One key challenge for building a semantic
parser in new domains is the difficulty to an-
notate new datasets. In this paper, we pro-
pose a sequential transfer learning method as
a domain adaptation method to tackle this is-
sue. We show that we can obtain a model
with better generalisation on a small dataset
by transferring network parameters from a
model trained with a bigger dataset with sim-
ilar meaning representations. We evaluate our
model with different datasets as well as ver-
sions of the datasets with different difficulty
levels.

1 Introduction

Semantic parsing maps natural language sentences
into meaning representations, for example, logical
formulae, SQL queries, or executable codes. The
successful implementation of the encoder-decoder
architecture in the machine translation (Kalch-
brenner and Blunsom, 2013; Sutskever et al.,
2014) has driven researchers to apply this model
into semantic parsing task (Dong and Lapata,
2016; Jia and Liang, 2016; Ling et al., 2016; Dong
and Lapata, 2018). These neural semantic parsing
models have achieved impressive results.

Semantic parsing datasets are usually domain
and meaning representation dependent, thus mak-
ing it difficult to re-use existing datasets for build-
ing general semantic parsers or semantic parsers in
new domains. The process of annotating sentences
with their meaning representations for modeling
new domains or augmenting the existing datasets
is expensive. Prior works proposed several strate-
gies to tackle this issue, such as paraphrasing (Su
and Yan, 2017), decoupling structure and lexicon
(Herzig and Berant, 2018), and multi-task learning
(Susanto and Lu, 2017; Herzig and Berant, 2017).

Our method aims to provide an alternative to
the previous work. We perform transfer learning
by training a model for one task using a dataset

and fine-tuning the model using another related
dataset. The idea of transfer learning is to utilize
features, weights, or other knowledge acquired
for one task to solve another related task. It has
been extensively used for domain adaptation and
building models to solve problems where only
limited data is available (Pan and Yang, 2010).
The fine-tuning transfer learning procedure has
been successfully implemented in the encoder-
decoder architecture for Neural Machine Transla-
tion Task (NMT) (Luong and Manning, 2015; Sen-
nrich et al., 2016; Servan et al., 2016). In contrast
with the multi-task learning, which jointly trains
several tasks together, we perform transfer learn-
ing by training the first and second tasks in se-
quence.

Compared to models without transfer learn-
ing, our experiments shows that transfer learn-
ing gives a good prior for models trained with
small datasets, hence improving model perfor-
mance when only limited amounts of data are
available.

Neural semantic parsing models are usually
trained and tested using datasets in which vari-
ables are identified and anonymised before hand,
thus considerably reducing the difficulty of the se-
mantic parsing task (Finegan-Dollak et al., 2018).
In this work, we use the un-anonymised versions
of two semantic parsing datasets, as well as differ-
ent data splits to provide extensive evaluation of
our model.

To summarise, the contributions of this paper
are as follows:

- Evaluation of transfer learning as domain
adaptation for low-resource neural semantic
parsing with different datasets and difficulty
levels.

- Compilation and release of un-anonymised
versions of ATIS and GeoQuery datasets for

107

semantic parsing in lambda calculus formu-
lae.1

2 Related Work

Encoder-decoder architectures based on neural
networks have been successfully applied to se-
mantic parsing (Dong and Lapata, 2016; Jia and
Liang, 2016; Ling et al., 2016; Dong and Lapata,
2018). Since then, several ideas such as including
attention mechanism (Dong and Lapata, 2016),
multi-task learning (Susanto and Lu, 2017; Herzig
and Berant, 2017; Fan et al., 2017), data augmen-
tation (Jia and Liang, 2016; Kočiský et al., 2016)
and two-steps (coarse-to-fine) decoder (Dong and
Lapata, 2018) have been applied to semantic pars-
ing models with the aim of boosting performance.

Similar to our work, others tried to over-
come the lack of annotated data by leveraging
existing datasets from related domains. Previ-
ous works from Herzig and Berant (2017) and
Fan et al. (2017) used a multi-task framework to
jointly learn the neural semantic parsing model
and encourage parameter sharing between differ-
ent datasets. The model proposed by Herzig and
Berant (2017) used multiple knowledge bases in
different domains to enhance the model perfor-
mance. On the other hand, the work from Fan et al.
(2017) leveraged access to a very large labeled
dataset to help a small one. However, their models
are trained using proprietary datasets, which are
not publicly available, thus making model compar-
ison unfeasible. The work proposed by Damonte
et al. (2019) investigates the possibility of trans-
fer learning to tackle the issue of lacking anno-
tated data on neural semantic parsing. They used
more complex model and data sets compared to
our work.

Our work focuses on training a model using a
larger dataset and fine-tune using another related
low-resource dataset rather than multi-task learn-
ing. We also evaluate how additional training ex-
amples impact transfer learning models.

3 Methodology

3.1 Transfer Learning as Domain Adaptation
We adapt the formal definition of transfer learning
from Pan and Yang (2010) to the neural seman-
tic parsing problem involving a question q and a
meaning representation f . A domain D consists

1The code and datasets are available from https://
github.com/akennardi/Semantic-Parsing

of input space Q and marginal probability P (Q),
where Q = {q1, q2, ..., qn} ⊆ Q. A domain can
be denoted by D = {Q, P (Q)}. Given a do-
mainD = {Q, P (Q)}, a task T consists of output
space F and conditional probability P (F |Q). A
task can be denoted as T = {F , P (F |Q)}. In
the semantic parsing problem, we want to learn
conditional probability P (F |Q) from the training
set with training data (qi, fi), where qi ∈ Q and
fi ∈ F .

Suppose we have a source domain DS , with
source task TS and a target domainDT with target
task TT where 0 < nT << nS . Transfer learn-
ing uses the knowledge from DS and TS to im-
prove the performance of TT , where DS 6= DT ,
or TS 6= TT (Pan and Yang, 2010).

Our transfer learning method starts by training
a model in the source domainDS to solve a source
task TS . Subsequently, we transfer the knowledge
(i.e network parameters) to the model aimed to
solve target task TT and fine-tune the model us-
ing the target domain DT .

3.2 Model
In this work, we adopt the sequence-to-sequence
with neural attention method from Dong and Lap-
ata (2016). The model aims to map a question in-
put q = 〈x1, x2, ..., x|q|〉 to a meaning representa-
tion f = 〈y1, y2, ..., y|f |〉. We want to compute the
conditional probability of generating the meaning
representation f given a question q as follows:

p(f |q) =
|f |∏

t=1

p(yt|y<t, q) (1)

The question input q is encoded using an en-
coder, and then a meaning representation f is gen-
erated using an attention decoder. The encoder
hidden state ht and cell state ct at time step t can
be computed as follows:

ht, ct = LSTM(ht−1, ct−1,E(xt)) (2)

where LSTM refers to a LSTM function described
by Zaremba et al. (2014) and E(.) is an embed-
ding layer that returns a word vector representa-
tion of xt. The hidden and cell state of the last
encoder step are used to initialize the LSTM cell
on the first decoder step, hence giving the context
to the decoder. The LSTM encoder and decoder
have different parameters.

The attention layers aim to include the encoder
information to a meaning representation at each

108

decoder step (Bahdanau et al., 2015; Luong et al.,
2015). In an attention layer, we compute an at-
tention score sk,t between the k-th encoder hidden
state hk and a decoder hidden state ht. The context
vector ct is a weighted sum of all encoder hidden
vectors. We use the context vector ct and the de-
coder hidden state ht, to obtain an attention hidden
state vector hatt

t using equations as follows:

sk,t =
exp{hk · ht}∑|q|
j=1 exp{hj · ht}

ct =

|q|∑

k=1

sk,thk

hatt
t = tanh(W1ht +W2ct)

(3)

The conditional probability of generating token yt
at time step t can be expressed as:

p(yt|y<t, q) = (softmax(Woh
att
t))Te(yt) (4)

where e(yt) is a one-hot vector with value 1 in the
element of index yt in the embedding layer and 0
otherwise.

We train our model to minimise the negative
log-likelihood function over questions and formu-
lae in the training set T . The optimisation problem
can be written as follows:

minimise −
∑

(q,f)∈T
log(p(f |q)) (5)

Given a question q, we used the model to gen-
erate the most probable sequence f̃ as follows:

f̃ = argmaxf ′p(f
′ |q) (6)

The model performs a greedy search to gener-
ate one token at a time to construct a sequence in
lambda calculus.

4 Experiments

4.1 Datasets
For evaluation we used two semantic parsing
datasets, namely ATIS and GeoQuery. The mean-
ing representation of the datasets is lambda calcu-
lus. There are two types of dataset splits: question-
split and query-split. In question-split, the training
and test examples are divided based on the ques-
tions (Finegan-Dollak et al., 2018), thus based on
the input sequence. Meanwhile, in query-split, the
training and test examples are divided according
to the similarity of their meaning representations

ATIS
Question : cheapest fare from ci0 to ci1
Formula : (min $0 (exists $1 (and (from $1 ci0) (to $1
ci1) (= (fare $1) $0))))
ATIS Un-anonymised
Question : cheapest fare from Indianapolis to Seattle
Formula : (min $0 (exists $1 (and (from $1 indianapolis
) (to $1 seattle) (= (fare $1) $0))))
GeoQuery
Question : what is the capital of s0
Formula : (capital:c s0)
GeoQuery Un-anonymised
Question : what is the capital of Georgia
Formula : (capital: georgia)

Table 1: Example of natural language questions and
their meaning representation in lambda calculus.

Data Set Train Dev. Test
ATIS 4,434 491 448
ATIS un-anonymised 4,029 504 504
GeoQuery 600 0 280
GeoQuery un-anonymised 583 15 279
GeoQuery un-anonymised
+ query-split

543 148 186

Table 2: Number of training (Train), development
(Dev.), and testing (Test) instances for each dataset.

(Finegan-Dollak et al., 2018), thus based on the
output sequences. Therefore, the query-split is
more appropriate to evaluate the model’s capabil-
ity of composing output sequences, in this case,
lambda calculus expressions.

The ATIS dataset (Price, 1990; Dahl et al.,
1994; Zettlemoyer and Collins, 2007) consists of
queries from a flight booking system. We obtained
the un-anonymised version of ATIS by preprocess-
ing the non-SQL ATIS dataset (Finegan-Dollak
et al., 2018). Question variables in this dataset
are not anonymised, but the formulae have vari-
able identifiers. We removed the variable identi-
fiers in logical formulae. The ATIS dataset split is
question-split.

The GeoQuery dataset (Zelle and Mooney,
1996; Zettlemoyer and Collins, 2005) consists
of queries about US geographical information.
We annotated the un-anonymised version of Geo-
Query based on non-SQL GeoQuery dataset
(Finegan-Dollak et al., 2018), which has different
meaning representations. We compared the ques-
tion with the anonymised version and annotated
lambda calculus formulae on the non-SQL Geo-
Query dataset. We ran a script to put the variable
back into the questions-formulae pairs, and split
them into training, development and test sets based

109

0 20 40 60 80 100

Subset data fraction (%)

0

20

40

60

80

100
A

c
c
u
ra

c
y
 (

%
)

32.14

18.21

47.14

45.71

55.00

47.50

61.43

59.64

72.86

71.43

75.71

73.21

77.14

77.50

81.43

82.14

81.43

82.14

84.64

80.36

(a) ATIS to GeoQuery
(Anonymised)

0 20 40 60 80 100

Subset data fraction (%)

0

20

40

60

80

100

6.45

2.87

19.71

10.75

29.75

13.62

42.29

29.03

53.05

43.73

56.63

49.10

55.91

60.57

63.44

61.29

70.25

66.67

67.03

67.74

(b) ATIS to GeoQuery
(Un-anonymised)

0 20 40 60 80 100

Subset data fraction (%)

0

20

40

60

80

100

2.15

0.00

3.76

3.23

14.52

10.22

19.35

26.34

24.19

18.28

28.49

19.89

33.33

32.80

37.63

42.47

44.09

37.63

46.24

44.09

(c) ATIS to GeoQuery
(Un-anonymised with Query-Split)

Figure 1: Learning curves from different transfer learning setups.

Source Domain Target Domain
ATIS GeoQuery
ATIS un-anonymised GeoQuery un-anonymised
ATIS un-anonymised GeoQuery un-anonymised

with query-split

Table 3: Transfer learning experiments with ATIS and
GeoQuery datasets.

on Finegan-Dollak et al. (2018). We also divided
the GeoQuery un-anoymised dataset using query-
split as proposed by Finegan-Dollak et al. (2018).
Table 2 shows the details of each dataset.

4.2 Setup
We considered ATIS as a Source Domain dataset
and GeoQuery as a Target Domain dataset. We
believe that ATIS training samples are less simi-
lar, since it could only achieve a good model per-
formance using more training samples. Thus it is
more beneficial to use ATIS as Source Domain.
We evenly divided the GeoQuery into 10 subsets
of {10%, 20%,...,100%} fraction of the training
set. With this setup, we simulate the situation
where we have limited data in the target domain.
This setup also allowed us to evaluate the effec-
tiveness of transfer learning with sufficient train-
ing data. Details about the experiments setups are
depicted in Table 3.

We set the model hyper-parameters following
Dong and Lapata (2016) for GeoQuery. We op-
timised the objective function in Equation 5 us-
ing RMSProp algorithm (Tieleman and Hinton,
2012) with a decay rate of 0.95. The batch size
was 20. We randomly initialised parameter from
the uniform distribution U(−0.08, 008). The hid-
den unit size was 150, and the dropout rate was
0.5. We used 15 epoch to obtain a model from
ATIS. We increased the number of epochs after
transferring all network parameters to 150 and 180
for anonymised and un-anonymised GeoQuery, re-

spectively. Source and target models were trained
with their own vocabularies to handle differences
of vocabularies between two datasets. The eval-
uation metric was accuracy. We evaluated each
model with inference described in Equation 6 on
the full GeoQuery test set for every bucket. We
reported exact match accuracy computed using
equation as follows:

Accuracy =
of correct formulae

test examples in the test set
(7)

4.3 Evaluation on Transfer Learning
We compared our transfer learning framework
with the original target model (i.e. without trans-
fer learning) in three different setups described in
Section 4.2. Figure 1 shows the learning curves
of those setups. The results from small Geo-
Query subsets confirmed our hypothesis that the
source model gives a stronger prior to the tar-
get model. The model obtained from transfer
learning has 13.93%, 3.58%, and 2.15% accu-
racy improvement on the 10% fraction of Geo-
Query, GeoQuery Un-anonymised, and GeoQuery
Un-anonymised with Query-Split datasets respec-
tively. Figure 1(a) and (b) clearly shows how the
transfer learning improves the performance of the
target models trained with small subsets. In Fig-
ure 1(c), the performance of the model with trans-
fer learning are comparable to the original target
model. However, the performance of original tar-
get model drops with additional training examples
from 40% to 50% subset. On the other hand, the
model with transfer learning does not have a sud-
den drop. A possible explanation to this result may
be due to the difficulty of the original target model
to learn from difficult training samples. The learn-
ing curves of the transfer learning models show
smoother changes with additional training data as

110

No. Question Transfer Learning Original Target Model
1 river in s0 (lambda $0 e (and (river:t $0)

(loc:t $0 s0)))
(lambda $0 e (and (river:t $0)
(loc:t $0 s0)) (size:i $0))

2 what is the capital of the
smallest state

(capital:c (argmin $1
(state:t $1) (size:i $1)))

(capital:c (argmax $1
(state:t $1) (size:i $1)))

3 how many rivers does col-
orado have

(count $0 (and (river $0) (loc $0
colorado)))

(count $0 (and (state $0) (loc $0 usa)))

4 how large is texas (size texas) (argmax $0 (river $0) (density $0))
5 how many states does mis-

souri border
(count $0 (and
(state $0) (next to $0 missouri)))

(count $0 (and
(state $0) (next to $0 delaware)))

6 how many states does the
missouri river run through

(count $0 (and
(state $0) (loc $0 missouri)))

(lambda $0 e (and
(state $0) (loc $0 missouri)))

Table 4: Examples of Meaning Representations generated by the model trained with transfer learning and original
target model using 10% fraction of various GeoQuery datasets.

compared to the original target model, indicating
better model generalisation when the training data
is small. With bigger subset (i.e 70% and more),
the results from transfer learning models are com-
parable to the original models, indicating that the
out-of-domain data does not impair the model per-
formance. We show that our transfer learning
method helps the target model to have a better per-
formance when the training data is very small.

4.4 Error Analysis on Transfer Learning

We also looked into samples generated from the
transfer learning models and original target mod-
els. Table 4 presents six samples from three dif-
ferent setups described in Table 3 with the target
model trained with 10% subset of training exam-
ples. The first two samples are obtained from the
models trained with GeoQuery. In the first ex-
ample, the model trained with transfer learning
can identify correct meaning representation, while
the original target model generates wrong mean-
ing representation due to the generation of extra
tokens. The second example shows the model
trained with transfer learning correctly identified
the token ”smallest” to generate ”argmin” instead
of ”argmax”.

The third and fourth samples show examples of
meaning representations generated by the model
trained with un-anonymised GeoQuery. In the
third examples, the model with transfer learning
correctly identified the entity ”river”. On the other
hand, the model without transfer learning gener-
ates ”state”, which is more common in the train-
ing set. On the fourth example, the original target
model generates an irrelevant meaning representa-
tion.

The last two samples are obtained from mod-
els trained with un-anonymised GeoQuery with

query-split. The fifth example shows how the
original target generates a wrong entity name
”delaware” instead of ”missouri”. Similarly, the
sixth example shows original target model pro-
duces a token ”lambda” instead of ”count”. This
error may be due to the fact that the original target
model tends to generate the token they are familiar
with in the training set. Examples described above
shows how the model trained with transfer learn-
ing has a better ability to generate tokens that are
different with training examples, thus improve the
performance of the model.

5 Conclusion and Future Work

We proposed a transfer learning method by train-
ing a model using a larger dataset and fine-tuning
with another related low-resource dataset. With
this method, we can use a bigger dataset with a
similar composition to improve the performance
of a model trained with a smaller dataset.

For future work, it would be interesting to com-
bine transfer learning and data selection methods
so that the source model is trained only with the
most similar instances in respect with the target
domain. Another direction would be to explore
transfer learning on a more complex model such as
sequence-to-tree, which has a better performance
than sequence-to-sequence models when trained
with large datasets.

Acknowledgement

We would like to thank Xiang Li for his insight
throughout the project. We would also like to
thank the three anonymous reviewers for their
valuable comments and insights. This work is a
part of Individual Computing Project Course at the
Australian National University taken by the first
author with the same title.

111

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Deborah A. Dahl, Madeleine Bates, Michael Brown,
William Fisher, Kate Hunicke-Smith, David Pallett,
Christine Pao, Alexander Rudnicky, and Elizabeth
Shriberg. 1994. Expanding the scope of the atis
task: The atis-3 corpus. In HUMAN LANGUAGE
TECHNOLOGY: Proceedings of a Workshop held at
Plainsboro, New Jersey, March 8-11, 1994.

Marco Damonte, Rahul Goel, and Tagyoung Chung.
2019. Practical semantic parsing for spoken lan-
guage understanding. CoRR, abs/1903.04521.

Li Dong and Mirella Lapata. 2016. Language to Log-
ical Form with Neural Attention. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
ACL 2016, pages 33–43, Berlin, Germany. Associa-
tion for Computational Linguistics.

Li Dong and Mirella Lapata. 2018. Coarse-to-Fine De-
coding for Neural Semantic Parsing. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), ACL 2018, pages 731–742, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Xing Fan, Emilio Monti, Lambert Mathias, and Markus
Dreyer. 2017. Transfer Learning for Neural Seman-
tic Parsing. In Proceedings of the 2nd Workshop on
Representation Learning for NLP, Rep4NLP 2017,
pages 48–56, Vancouver, Canada. Association for
Computational Linguistics.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam,
Rui Zhang, and Dragomir Radev. 2018. Improving
text-to-SQL evaluation methodology. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 351–360, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Jonathan Herzig and Jonathan Berant. 2017. Neural
Semantic Parsing over Multiple Knowledge-bases.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), ACL 2017, pages 623–628, Van-
couver, Canada. Association for Computational Lin-
guistics.

Jonathan Herzig and Jonathan Berant. 2018. Decou-
pling structure and lexicon for zero-shot semantic
parsing. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1619–1629, Brussels, Belgium. Associ-
ation for Computational Linguistics.

Robin Jia and Percy Liang. 2016. Data Recombination
for Neural Semantic Parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2016, pages 12–22, Berlin, Germany. Association
for Computational Linguistics.

Nal Kalchbrenner and Phil Blunsom. 2013. Recur-
rent Continuous Translation Models. In Proceed-
ings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2013,
pages 1700–1709, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Tomáš Kočiský, Gábor Melis, Edward Grefenstette,
Chris Dyer, Wang Ling, Phil Blunsom, and
Karl Moritz Hermann. 2016. Semantic Parsing with
Semi-Supervised Sequential Autoencoders. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2016,
pages 1078–1087, Austin, TX, USA. Association
for Computational Linguistics.

Wang Ling, Phil Blunsom, Edward Grefenstette,
Karl Moritz Hermann, Tomáš Kočiský, Fumin
Wang, and Andrew Senior. 2016. Latent Predic-
tor Networks for Code Generation. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), ACL 2016, pages 599–609, Berlin, Germany.
Association for Computational Linguistics.

Minh-Thang Luong and Christopher D. Manning.
2015. Stanford neural machine translation sys-
tems for spoken language domains. In International
Workshop on Spoken Language Translation.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1412–1421, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

Sinno Jialin Pan and Qiang Yang. 2010. A survey on
transfer learning. Trans. on Knowledge and Data
Eng., 22(10):1345–1359.

P. J. Price. 1990. Evaluation of spoken language sys-
tems: the ATIS domain. In Speech and Natural Lan-
guage: Proceedings of a Workshop Held at Hidden
Valley, Pennsylvania, June 24-27,1990.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computa-
tional Linguistics.

Christophe Servan, Josep Maria Crego, and Jean Senel-
lart. 2016. Domain specialization: a post-training
domain adaptation for neural machine translation.
ArXiv, abs/1612.06141.

112

Yu Su and Xifeng Yan. 2017. Cross-domain se-
mantic parsing via paraphrasing. In Proceedings
of the 2017 Conference on Empirical Methods in
Natural Language Processing, pages 1235–1246,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Raymond Hendy Susanto and Wei Lu. 2017. Neural
Architectures for Multilingual Semantic Parsing. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), ACL 2017, pages 38–44, Vancouver,
Canada. Association for Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. CoRR, abs/1409.3215.

T. Tieleman and G. Hinton. 2012. Lecture 6.5—
RmsProp: Divide the gradient by a running average
of its recent magnitude. COURSERA: Neural Net-
works for Machine Learning.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
CoRR, abs/1409.2329.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to Parse Database Queries Using Inductive Logic
Programming. In Proceedings of the 13th Na-
tional Conference on Artificial Intelligence, vol-
ume 2, pages 1050–1055, Portland, Oregon, USA.
AAAI Press / The MIT Press.

Luke Zettlemoyer and Michael Collins. 2007. On-
line learning of relaxed CCG grammars for parsing
to logical form. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL), pages 678–687,
Prague, Czech Republic. Association for Computa-
tional Linguistics.

Luke S. Zettlemoyer and Michael Collins. 2005.
Learning to map sentences to logical form: Struc-
tured classification with probabilistic categorial
grammars. In Proceedings of the Twenty-First Con-
ference on Uncertainty in Artificial Intelligence,
UAI’05, pages 658–666, Arlington, Virginia, United
States. AUAI Press.

113

A Pointer Network Architecture for Context-Dependent Semantic Parsing

Xuanli He♣ Quan Hung Tran♥ Gholamreza Haffari♣

♣Monash University, Australia
♥Adobe Research, San Jose, CA

{xuanli.he1,gholamreza.haffari}@monash.edu
qtran@adobe.com

Abstract

Semantic parsing targets at mapping human
utterances into structured meaning represen-
tations, such as logical forms, programming
snippets, SQL queries etc. In this work, we
focus on logical form generation, which is ex-
tracted from an automated email assistant sys-
tem. Since this task is dialogue-oriented, in-
formation across utterances must be well han-
dled. Furthermore, certain inputs from users
are used as arguments for the logical form,
which requires a parser to distinguish the func-
tional words and content words. Hence, an
intelligent parser should be able to switch be-
tween generation mode and copy mode. In or-
der to address the aforementioned issues, we
equip the vanilla seq2seq model with a pointer
network and a context-dependent architecture
to generate more accurate logical forms. Our
model achieves state-of-the-art performance
on the email assistant task.

1 Introduction

Recently, due to the breakthrough of the deep
learning, numerous and various tasks within the
filed of natural language processing (NLP) have
made impressive achievements (Vaswani et al.,
2017; Devlin et al., 2018; Edunov et al., 2018).
However, most these achievements are assessed by
automatic metrics, which are relatively superficial
and brittle, and can be easily tricked (Paulus et al.,
2017; Jia and Liang, 2017; Läubli et al., 2018).
Hence, understanding the underlying meaning of
natural language sentences is crucial to NLP tasks.

As an appealing direction in natural language
understanding, semantic parsing has been widely
studied in the NLP community (Ling et al., 2016;
Dong and Lapata, 2016; Jia and Liang, 2017).
Semantic parsing aims at converting human ut-
terances to machine executable representations.
Most existing work focuses on parsing individual

utterances independently, even they have an access
to the contextual information. In spite of several
pioneering efforts (Zettlemoyer and Collins, 2009;
Srivastava et al., 2017), these pre-neural models
suffer from complicated hand-crafted feature en-
gineering, compared to their neural counterparts
(Dong and Lapata, 2018; Rabinovich et al., 2017).
One notable exception is the work of Suhr et al.
(2018), who incorporate context into ATIS data
with a neural approach.

In this work, we propose a neural semantic
parser for email assistant task which incorporates
the conversation context as well as a copy mech-
anism to fill-in the arguments of the logical forms
from the input sentence. Our model achieves state-
of-the-art (SOTA) performance. We further pro-
vide details analysis about where these improve-
ments come from.

2 Models

To build our models, we follow a process of error-
driven design. We first start with a simple seq2seq
model, then we closely examine the errors, group
them, and then propose a solution to each of these
error groups. From our examination, we identify
two main sources of errors of a seq2seq model: i)
the overly strong influence of the language model
component, and ii) the lack of contextual informa-
tion. Thus we design our model to incorporate the
Pointer Mechanism and Context-dependent Mech-
anism to solve these problems. From this point,
we refer to the errors caused by the first source
(language model) as Copy-related errors, and the
ones caused by the second source (lack of context)
as Context-related errors.

2.1 Word Copy using the Pointer Mechanism

With the basic seq2seq architecture, the model’s
generation is heavily influenced by the language

114

Figure 1: A example of semantic parsing on the email
assistant system.

model aspect. Thus, it tends to use the strings it
has seen in the training dataset (see Table 1).

current utterance:
set body to blue
logical form
reference: (setFieldFromString (getProbMutableField-
ByFieldName body) (stringValue ” blue ”))
seq2seq: (setFieldFromString (getProbMutableFieldBy-
FieldName body) (stringValue ” charlie is on his way ”)
)

Table 1: An error made by the base seq2seq model.
Copy mechanism can fix it.

From this analysis, we realize that it would be
crucial for the model to learn when to copy from
the source sentence, and when to generate a new
token. Thus, we incorporate the pointer mecha-
nism into our base seq2seq approach.

As shown in Figure 1, for an email assistant sys-
tem, users inputs are usually comprised of a func-
tional part and a content part. A semantic parser
should be able to distinguish and handle them in a
different way. Specifically, the parser must gener-
ate a series of lambda-like functions for the func-
tional part, while the content part should be copied
to the argument slot.

Our pointer network is inspired by that of See
et al. (2017) designed for the summarisation task.
Given an utterance x and a logical form y, at each
time step t, we have a soft switch which deter-
mines the contributions of the token generator and
the copier which uses a pointer over the words of
the input utterance:

P (yt) = pgenPvocab(yt) + (1− pgen)
∑

i:xi=yt

αt
i

where αt
i is the attention score over the position i

in the t-th generation step, and Pvocab is a prob-
ability distribution over the vocabulary. pgen ∈
[0, 1] is the generation probability, modelled as:

pgen = σ(wT
c ct +wT

s st +wT
xxt + b)

where ct and st are the context vector and the de-
coder state respectively, while wT

c , wT
s , wT

x and b
are learnable parameters.

2.2 Conditioning on Conversation Context
Understanding conversations between a user and
the system requires the comprehension of the flow
of the discourse among sequence of utterances.
Processing utterances independently within a con-
versation leads to misinterpreting users inputs,
which will result in incorrect logical form genera-
tion (see Table 2). Therefore, we incorporate the
context when processing the current utterance for
a better generation.

dialog history
...
user: compose a new email. the recipient is mom. the
subject is hello
user: cancel
...
current utterance:
cancel
logical form
reference: (undo)
seq2seq: (cancel)

Table 2: An error made by the base seq2seq model. It
is clear that without the context information, the model
cannot infer the correct logical form.

Basically, a conversation consists of a sequence
of user utterances:{x1, ...,xT } paired with a list
of logical forms: {y1, ...,yT }. For a given ut-
terance sequence xi = {xi

1, ...,x
i
m}, a semantic

parser should predict its associated logical form
yi = {yi

1, ...,y
i
n}. Inspired by Suhr et al. (2018),

we introduce a hierarchical architecture to model
both utterance-level and conversation-level infor-
mation; see Figure 2. At the utterance level, we
use an attentional seq2seq model to establish the
mapping from an utterance xi to its corresponding
logical form yi:

hi
1:m = Encoder(xi

1, ...,x
i
m), (1)

cit = Attention(hi
1:m, s

i
t−1), (2)

yi
t, s

i
t = Decoder(yi

t−1, s
i
t−1, c

i
t) (3)

As the seq2seq model, we investigate the use of
RNN-based and Transformer-based architectures.
Furthermore, we make use of a conversation-level
RNN to capture the wider conversational context:

gi = RNN(hi
m,gi−1) (4)

where hi
m is the last hidden state of the ith ut-

terance, and g is the conversational hidden state.

115

In order to incorporate the conversational infor-
mation into our model, we modify the Equ. 1 by
injecting gi−1:

hi
1:m = Encoder([xi

1 : gi−1], ..., [x
i
m : gi−1])

where [:] denotes a concatenation operation.

Figure 2: Overall architecture of our semantic parser.
We omit the pointer network due to lack of space.

Similar to memory networks (Sukhbaatar et al.,
2015), it is essential to give the decoder a di-
rect access to the last k utterances, if we want
to leverage the discourse information effectively.
Hence, we concatenate the previous k utterance
{xi−k, ..,xi−1} with the current utterance. Now
Equ. 2 is rewritten as:

cit = Attention(hi−k
1:m, ..,h

i−1
1:m,h

i
1:m, s

i
t−1)

In addition, since the importance of the concate-
nated utterances is different, it is significant to
differentiate these utterances to reduce confusion.
Therefore, as suggested by Suhr et al. (2018), we
add relative position embeddings Epos[·] to the ut-
terances when we compute attention scores. De-
pending on their distances from the current utter-
ance, we append Epos[0], ..,Epos[k] to the previ-
ous utterances respectively.

3 Experiments

Dataset Semantic paring is crucial to dialogue
systems, especially for multi-turn conversations.
Additionally, understanding users’ intentions and
extracting salient requirements play an important
role in the dialogue-related semantic parsing. We
use a dataset created by Srivastava et al. (2017)

as a case study to explore the performance of se-
mantic parsing in dialogue systems. This dataset is
collected from an email assistant, which can help
users to manage their emails. As shown in Table 3
Users can type some human sentences from the
interface. Then the email assistant can automati-
cally convert the natural sentences to the machine-
understandable logical forms.

dialog history
...
user: Define the concept “ contact ”
user: add field “ email ” to concept “ contact ”
user: create contact “ Mom ”
...
logical form
...
(defineConcept (stringNoun “ contact ”))
(addFieldToConcept contact (stringNoun “ email ”))
(createInstanceByFullNames contact (stringNoun “ mom
”))
...

Table 3: A partial conversation from the data

Following Srivastava et al. (2017), we partition
the dataset into a training fold (93 conversations)
and a test fold (20 conversations) as well. How-
ever, this partition might be different from Sri-
vastava et al. (2017), as they only release the raw
Email Assistant dataset. The total number of user
utterances is 4759, the number of sessions is 113,
and the mean/max of the number of utterances per
interactive session is 42/273.

3.1 Main Results
Prior to this work, Srivastava et al. (2017) also in-
corporate the conversational context into a CCG
parser (Zettlemoyer and Collins, 2007). CCG re-
quires extensive hand-feature engineering to con-
struct text-based features. However, neural se-
mantic parsers have been demonstrating impres-
sive improvement over various and numerous
dataset (Suhr et al., 2018; Dong and Lapata, 2018).
Hence, we explore both RNN-based (Bahdanau
et al., 2014) and transformer-based (Vaswani et al.,
2017) architectures for our attentional seq2seq
model, denoted as RNNS2S and Transformer re-
spectively. Hyperparameters, architecture details,
and other experimental choices are detailed in the
supplementary material. Unless otherwise men-
tioned, we use 3 previous utterances as the his-
tory. Since there is no validation set, we use 10-
fold cross validation over the training set to find
the best parameters.

116

Table 4 demonstrates the accuracy of differ-
ent models. Our RNNS2S baseline already sur-
passes the previous SOTA result with a large mar-
gin. However, since we use our own partition,
this comparison should not be as a reference.
Both pointer network and conversational architec-
ture dramatically advance the accuracy. Finally,
our transformer model combining these two tech-
niques obtains a new SOTA result.

Accuracy
Previous methods
Seq2seq (Srivastava et al., 2017) 52.3
SPCon (Srivastava et al., 2017) 62.3
Our models
RNNS2S 68.0
RNNS2S + pointer 69.3
RNNS2S + context 69.8
RNNS2S + context + pointer 70.5
Transformer 69.3
Transformer + pointer 72.2
Transformer + context 71.0
Transformer + context + pointer 73.4

Table 4: Test accuracy on Email Assistant dataset.
Bold indicates the best result. SPCon is the best CCG
parser with contextual information in Srivastava et al.
(2017)

3.2 Analysis
In this section we provide some deep analysis
on our models. Since we see the same trend in
both RNNS2S and Transformer, we only report
the analysis of RNNS2S. The supplementary ma-
terial reports the analysis of Transformer.
The effects of the copy mechanism We analyze
the test data, and count the number of errors that
can be rectified by introducing the pointer network
for both vanilla and context-dependent seq2seq
models. In the test set, we identify that a total of
37 errors made by the seq2seq model and 36 er-
rors made by the seq2seq+context model can be
rectified by the copy mechanism. According to
Figure 3, our pointer network fixes at least half of
the incorrect instances. Clearly, the pointer mech-
anism cannot solve all copy-related errors. After
scrutinizing the system-generated results, we re-
alize that the pointer network tends to retain the
copy mode once it is triggered. This phenomenon
is consistent with the observations by See et al.
(2017). Consequently, the extra copies impinge
on the accuracy of the system.

Figure 3: Number of copy-related incorrect instances
that can be corrected by a pointer network.

The effects of the context-dependent mecha-
nism. In the experiments, our context-dependent
mechanism is shown to be able to address context-
related errors, especially when user’s input implies
a complex and compositional command. These
complex commands usually involve a series of
complicated actions, as shown in Table 5. Ac-
cording to Table 6, our context-dependent model
rectifies 27 out of 68 context-related errors.

Figure 4: Accuracy of different size of history.

Figure 5: Heat map of different size of history.

Since we notice that previous utterances can
also obfuscate the model, we conduct an ablation
study over the size of history. As shown in Fig-
ure 4, incorporating 3 previous utterances reach
the best performance. According to Figure 5, we
believe that incorporating 3 previous utterances
covers sufficient contextual information. Less than
this number, the system cannot better utilize con-
text, while the salient information is contaminated
by the extra history. The same behavior is ob-
served in Transformer model. We argue that the
size of the effective history would be dependent

117

utterance:
Set recipient to Mom’s email . Set subject to hello and send the email
logical form:
(doSeq (setFieldFromFieldVal (getProbMutableFieldByFieldName body) (evalField (getProbFieldByInstanceName-
AndFieldName inbox body))) (doSeq (setFieldFromFieldVal (getProbMutableFieldByFieldName recipient list) (eval-
Field (getProbFieldByInstanceNameAndFieldName inbox sender))) (send email)))

Table 5: An example of complex and compositional commands.

#incorrect
complex command
RNNS2S 39
RNNS2S + context 20
context dependency
RNNS2S 29
RNNS2S + context 21

Table 6: Incorrect instances of RNNS2S and context-
dependent RNNS2S models in terms of complex com-
mands and context dependency.

on different datasets, but they will demonstrate the
same trend.

4 Conclusions

In this work, we explore a neural semantic parser
architecture that incorporates conversational con-
text and copy mechanism. These modelling im-
provements are solidly grounded by our analysis,
and they significantly boost the performance of the
base model. As a result, our best architecture es-
tablish a new state-of-the-art on the Email Assis-
tant dataset. In the future, we would explore other
architectural innovations for the system, for exam-
ple, the neural denoising mechanisms.

5 Acknowledgement

We would like to thank three anonymous re-
viewers for their valuable comments and sugges-
tions. This work was supported by the Multi-
modal Australian ScienceS Imaging and Visual-
isation Environment (MASSIVE).1 This work is
partly supported by the ARC Future Fellowship
FT190100039 to G.H.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep

1https://www.massive.org.au/

bidirectional transformers for language understand-
ing.

Li Dong and Mirella Lapata. 2016. Language to
logical form with neural attention. arXiv preprint
arXiv:1601.01280.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-
coding for neural semantic parsing. arXiv preprint
arXiv:1805.04793.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. arXiv preprint arXiv:1808.09381.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
arXiv preprint arXiv:1707.07328.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Samuel Läubli, Rico Sennrich, and Martin Volk. 2018.
Has machine translation achieved human parity? a
case for document-level evaluation. arXiv preprint
arXiv:1808.07048.

Wang Ling, Edward Grefenstette, Karl Moritz Her-
mann, Tomáš Kočiskỳ, Andrew Senior, Fumin
Wang, and Phil Blunsom. 2016. Latent predic-
tor networks for code generation. arXiv preprint
arXiv:1603.06744.

Romain Paulus, Caiming Xiong, and Richard Socher.
2017. A deep reinforced model for abstractive sum-
marization. arXiv preprint arXiv:1705.04304.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract syntax networks for code gen-
eration and semantic parsing. arXiv preprint
arXiv:1704.07535.

Abigail See, Peter J Liu, and Christopher D Man-
ning. 2017. Get to the point: Summarization
with pointer-generator networks. arXiv preprint
arXiv:1704.04368.

Shashank Srivastava, Amos Azaria, and Tom M
Mitchell. 2017. Parsing natural language conversa-
tions using contextual cues. In IJCAI, pages 4089–
4095.

Alane Suhr, Srinivasan Iyer, and Yoav Artzi. 2018.
Learning to map context-dependent sentences
to executable formal queries. arXiv preprint
arXiv:1804.06868.

118

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In Advances
in neural information processing systems, pages
2440–2448.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Luke Zettlemoyer and Michael Collins. 2007. Online
learning of relaxed ccg grammars for parsing to log-
ical form. In Proceedings of the 2007 Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pages 678–687.

Luke S Zettlemoyer and Michael Collins. 2009. Learn-
ing context-dependent mappings from sentences to
logical form. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP: Volume 2-Volume
2, pages 976–984. Association for Computational
Linguistics.

A Implementation Details

In RNNS2S model, at the utterance level, a one-
layer bidiretional RNNs for the encoder, while the
decoder is a two-layer RNNs. We use a one-layer
RNNs to represent the conversational information
flow. All RNNs use LSTM cells, with a hidden
size of 128. The sizes of word embeddings and
position embeddings are 128 and 50 respectively.
We train our models for 10 epochs by Adam opti-
mizer (Kingma and Ba, 2014) with an initial learn-
ing rate of 0.001. The batch size of non-context
training is 16, while the context variant is 1.

For Transformer model, we use 3 identical
transformer blocks for both encoder and decoder.
Within each block, the size of the embeddings is
256, while the feed forward network has 512 neu-
rons. We set the size of heads to 4. The conversa-
tional encoder is a one-layer RNNs with the size of
256. The optimizer and training schedule is same
as Vaswani et al. (2017), except warmup steps =
500. Due to the warmup steps, We train this model
for 14 epochs. The batch size is same as that of
RNNS2S.

B Analysis of Transformer

The effects of the pointer mechanism According
to Figure 6, half of the incorrect instances are fixed
by the pointer mechanism.

#incorrect
complex command
Transformer 35
Transformer + context 24
context dependency
Transformer 25
Transformer + context 16

Table 7: Incorrect instances of Transformer and
context-dependent Transformer models in terms of
complex commands and context dependency.

Figure 6: Number of copy-related incorrect instances
that can be corrected by a pointer network.

The effects of the context-dependent mecha-
nism. Similarly, incorporating the contextual in-
formation is able to address the context-oriented
issues by a larger margin (see Table 7).

Finally, as observed in the main paper, having
an access to the 3 previous utterances achieves the
best performance.

Figure 7: Accuracy of different size of history.

119

CNLER: A Controlled Natural Language for Specifying
and Verbalising Entity Relationship Models

Bayzid Ashik Hossain, Gayathri Rajan and Rolf Schwitter
Department of Computing

Macquarie University, Sydney, Australia
{bayzid-ashik.hossain|rolf.schwitter}@mq.edu.au

gayathri.rajan@students.mq.edu.au

Abstract

The first step towards designing an informa-
tion system is conceptual modelling where do-
main experts and knowledge engineers iden-
tify the necessary information together to build
an information system. Entity relationship
modelling is one of the most popular concep-
tual modelling techniques that represents an
information system in terms of entities, at-
tributes and relationships. Entity relationship
models are constructed graphically but are of-
ten difficult to understand by domain experts.
To overcome this problem, we suggest to ver-
balise these models in a controlled natural lan-
guage. In this paper, we present CNLER,
a controlled natural language for specifying
and verbalising entity relationship (ER) mod-
els that not only solves the verbalisation prob-
lem for these models but also provides the ben-
efits of automatic verification and validation,
and semantic round-tripping which makes the
communication process transparent between
the domain experts and the knowledge engi-
neers.

1 Introduction

An information system is a piece of software that
has integrated components for organizing and ana-
lyzing data to aid decision making in an organiza-
tion (Laudon and Laudon, 2015). One of the ma-
jor roles of an information system is to accumu-
late data, turn it into information and later trans-
form that information into organizational knowl-
edge (Bourgeois, 2014). To be successful an infor-
mation system always depends on a good design
and conceptual modelling is the first step in the de-
sign process (Olivé, 2007). Information systems
are best specified on the conceptual level using
a language with names for individuals, concepts,
and relations that occur in the application domain.
Such a language is easy to understand by the do-
main experts and enhances correctness, compati-

bility, productivity and clarity in information sys-
tem design (Halpin, 1998). Conceptual modelling
involves different parties (e.g., domain experts and
knowledge engineers) who brainstorm together to
identify the necessary information for building
the system (Hossain and Schwitter, 2018). Af-
ter identifying the required information, knowl-
edge engineers build a conceptual model of the in-
formation system by using conceptual modelling
techniques such as entity relationship modelling
(ERM) (Richard, 1990; Frantiska, 2018), object
oriented modelling (UML) (O’Regan, 2017), or
object role modelling (ORM) (Halpin, 2009).

One of the problems with these models is that
they are constructed graphically and as a result
they are often hard to understand for domain ex-
perts (Jarrar et al., 2006). Another problem with
these conceptual modelling techniques is that they
have no formal semantics; therefore, they are
not machine comprehensible, do not support au-
tomatic verification and validation nor automatic
reasoning (Calvanese, 2013).

To overcome these problems previous works
used logic in parallel with traditional conceptual
modelling techniques (Lutz, 2002; Berardi et al.,
2005; Franconi et al., 2012). There are tools (Fil-
lottrani et al., 2012; Lembo et al., 2016b,a) that al-
low knowledge engineers to draw the conceptual
model and then translate the model constructs into
a logical representation. This logical representa-
tion is then used to verify and validate the model.
Using logic with traditional conceptual modelling
techniques also introduces some problems like the
difficulty to generate logical representations. Fur-
thermore, it is not easy to understand these logical
representations for domain experts since no well
established methodology is available to make this
process transparent (Calvanese, 2013).

Recent research on conceptual modelling
showed that using a controlled natural language

120

Figure 1: A CNL based conceptual modelling framework

(CNL) for specification and verbalisation can
overcome the problems introduced by logic in
the conceptual modelling process (Hossain and
Schwitter, 2018). A CNL can be defined as a sub-
set of natural language that is obtained by con-
straining the grammar and vocabulary in order to
eliminate the ambiguity as well as the complexity
of the language. A CNL can be designed in such a
way that it has well defined computational proper-
ties and thus can be translated unambiguously into
a formal representation (Schwitter, 2010). Us-
ing a CNL in conceptual modelling helps the do-
main experts to understand the conceptual mod-
els through specification and verbalisation, allows
the machine to understand the models as the CNL
can be translated into a formal representation, and
therefore supports automated reasoning and ques-
tion answering.

2 Motivation

The idea of using natural language for con-
ceptual modelling is not new but previous ap-
proaches (Saeki et al., 1989; Mich, 1996; Har-
main and Gaizauskas, 2003; Ambriola and Ger-
vasi, 2006; Ibrahim and Ahmad, 2010) did not
constrain the natural language enough and did
not use logic to formally represent the concep-
tual models. Furthermore, the idea of semantic
round-tripping from a specification to a conceptual
model and from a conceptual model to a specifica-
tion (verbalisation) is novel in this context. A re-
cent survey (Störrle, 2017) on conceptual models
showed that there are three modes of conceptual
modelling: 1. informal modelling for cognition
and communication; 2. semi-formal modelling for
planning and documentation; and 3. formal mod-
elling for generation and contracts. In the software
industry 70-79% of the modelling is done infor-
mally (Störrle, 2017).

We want to use CNL in the conceptual mod-
elling process to overcome the problems that occur

in traditional conceptual modelling approaches.
We want to bridge the gap between an informal
and formal conceptual model. We also want to of-
fer verbalisation for ERM. ERM is frequently used
in the industry and has no verbalisation support.
Existing tools that support creating ERM models
do not provide the facility of writing specifica-
tions for conceptual models and therefore seman-
tic round-tripping is not possible. We have devel-
oped a CNL-based conceptual modelling frame-
work [Fig. 3] that supports the following points:

1. Writing textual specifications for the concep-
tual modelling process.

2. Description logic based common formal rep-
resentation (DL ALCQI) for different con-
ceptual models.

3. Generating a conceptual model from a writ-
ten specification and the other way around.

4. Verification and validation of the written
specification.

In this paper we present CNLER, a controlled nat-
ural language that is specially designed to specify
and verbalize ERM constructs.

3 ERM Constructs

An ERM represents an information system in
terms of entities, attributes and relationships (Song
and Chen, 2009). ERM is mainly used to design
relational databases and to do the planning and re-
quirement analysis of an information system. The
outcome of an ERM process is a graphical model
often known as ER diagram (ERD). The basic
components of an ERD are entities, attributes, and
relationships [Fig. 2].

An entity is a real world object having inde-
pendent existence (e.g., person, place, organisa-
tion) (Song and Chen, 2009). An entity is also
known as a class or a concept. There are two types

121

Figure 2: ERM constructs

of entities: (1) strong entities that have key at-
tributes to uniquely identify each instance of an
entity (e.g., student has student id as a key at-
tribute); and (2) weak entities that do not have
any key attributes and they depend on other strong
entities to get identified (e.g., a room can not ex-
ist without a building, so “room" is a weak entity
whereas “building" is a strong entity).

An attribute indicates a property or character-
istic of an entity (Li and Chen, 2009). For exam-
ple, if a student is an entity then “student name",
“student id", and “phone number" would be the
attributes for that student. Attributes help us to
differentiate between entities. An attribute can
be single valued (e.g., “student name") or multi-
valued (e.g., “skills"). A single valued attribute or
a collection of single valued attributes that iden-
tify an instance of an entity uniquely is known as
A key attribute or a primary key.

A relationship depicts the association between
or among the entities. For example, if “student"
and “program" are entities then in the fact “student
is enrolled in program", the expression “is enrolled
in" is the relationship between “student" and “pro-
gram". Every relationship has a cardinality which
defines the number of occurrences (minimum and
maximum) of one entity that is related to a sin-
gle occurrence of the other entity (Song and Chen,
2009). Based on the form of cardinality, we can
divide a relationship in ERM into three types: one-
to-one, one-to-many and many-to-many. Some-
times a many-to-many relationship acts as an en-
tity itself which is known as an associative entity.
An associative entity can have attributes that rep-
resent the properties of the corresponding relation-
ship (Li and Chen, 2009). For example, if “stu-
dent" and “course" are entities then the facts “ev-
ery student studies 1 or more courses" and “ev-
ery course is studied by 1 or more students" in-
dicate that “student" and “course” have a many-

to-many relationship. So the relationship between
these two entities can act as an associative entity.
We can consider “study details" as an associative
entity that can have “study start date" and “study
end date" as attributes.

Entity Declaration
1. Student is an entity type.
2. Department is an entity type.
3. Course is an entity type.
4. Teacher is an entity type.
5. Enrolment is an entity type.
6. Section is an entity type.

Attribute Declaration
7. Student id is of integer data type.
8. Student name is of string data type.
9. Department number is of integer data type.
10. Department name is of string data type.
11. Teacher id is of integer data type.
12. Teacher name is of string data type.
13. Course id is of integer data type.
14. Course name is of string data type.
15. Enrolment semester is of integer data type.
16. Enrolment grade is of integer data type.
17. Section id is of integer data type.
18. Section name is of string data type.

Relationship Declaration
19. Student belongs to department.
20. Department contains student.
21. Teacher works in department.
22. Department employs teacher.
23. Course is offered by department.
24. Department offers course.
25. Course is offered in sections.
26. Teacher teaches students in course.
27. Enrolment associates

"Teacher teaches students in course".

Constraint Declaration
28. Every student belongs to exactly 1 department.
29. Every department contains 1 or more students.
30. Every teacher works in exactly 1 department.
31. Every department employs 1 or more teachers.
32. Every course is offered by exactly 1 department.
33. Every department offers 1 or more courses.
34. Every enrolment includes exactly 1 teacher.
35. Every enrolment includes exactly 1 student.
36. Every enrolment includes exactly 1 course.
37. Every student owns exactly 1 student id and owns

exactly 1 student name.
38. Every teacher owns exactly 1 teacher id and owns

exactly 1 teacher name.
39. Every course owns exactly 1 course id and owns

exactly 1 course name.
40. Every department owns exactly 1 department

number and owns exactly 1 department name.
41. Every enrolment consists of exactly 1 enrolment

semester and consists of exactly 1 enrolment
grade.

42. Every section is dependent of exactly 1 course.

Table 1: Extended example scenario from the ER pa-
per (Frantiska, 2018) expressed using CNLER

122

Listing 1: Grammar rules for entity declaration

% Input: Student is an entity.
% Output: entity(A, student)

s([mode:M, type:entity, sem:L1-L2]) -->
np([mode:M, num:sg, type:entity, pos:subj, sem:L1-L2]),
[is, an, entity, type], [’.’].

np([mode:M, num:N, type:T, pos:P, sem:L1-L2]) -->
noun([mode:M, num:N, type:T, pos:P, sem:L1-L2]).

noun([mode:proc, num:N, type:entity, pos:P, sem:[L1|L2]-[[L0|L1]|L2]]) -->
lexical_rule([cat:noun, num:N, type:entity, pos:P, sem:L0]).

noun([mode:gen, num:N, type:entity, pos:P, sem:[[L0|L1]|L2]-[L1|L2]]) -->
{lexicon([cat:noun, wform:WForm, num:N, type:entity, pos:P, arg:_X, sem:L0])},
WForm.

4 CNLER for ERM Constructs

In this section we discuss how to express ERM
constructs using CNLER. For this purpose, we
have taken an example scenario from the pa-
per (Frantiska, 2018) and extended it by adding a
weak entity and modifying the associative entity.
CNLER has a distinct sentence format to declare
an entity in ERM. For example, to define the fact
that a student is an entity, CNLER has the follow-
ing sentence pattern with a noun (student) in sub-
ject position, followed by a copula (is) and the key
phrase an entity type in object position (e.g., see
sentences 1-6 in table [1]).

CNLER also has a particular sentence pattern to
declare attributes in ERM. For example, to spec-
ify an attribute of type integer, CNLER uses a
sentence that contains a previously declared entity
name (e.g., student) followed by an attribute name
(e.g., id); this forms a data property name (student
id) which is followed by a copula (is), and the key
phrase (e.g., of integer data type). For example,
sentences 7-18 in Table [1] show the attribute dec-
larations for the example scenario.

To declare a relationship, we use a declared en-
tity type name (e.g., student) in subject position
and a declared entity type name (e.g., department)
in object position with a relationship name (e.g.,
belongs to) in between. (e.g., see sentences 19-27
in table [1] for relationship declarations).

To define cardinality constraints over the rela-
tionships, CNLER uses a quantifying expression
followed by entities and attributes: a quantifier
(every) in subject position and either a quantifier
(0 or more, 1 or more) or a cardinality constraint

(at least, at most, exactly) in object position. For
example, to define a one-to-one relationship cardi-
nality between the entities “student" and “depart-
ment", sentence (28) in table [1] is used, and to
define a one-to-many relationship cardinality, sen-
tence (29) in table [1] is used.

In order to define a many-to-many relationship
in CNLER, we have to write two sentences that ex-
press the relationship between the entities in both
direction. For example, to express a may-to-many
relationship between “student" and “course", we
have to write the following two sentences.

• Every student studies 1 or more courses.

• Every course is studied by 1 or more stu-
dents.

To declare an associative entity in CNLER

(e.g., “enrolment"), we have to declare the entity
first. After that the entity needs to be linked with
a many-to-many relationship using a predefined
word “associates". The sentence 27 in table [1]
declares an associative entity that links the ternary
relationship among a teacher, a student and a unit.
The relationship “includes" in the sentences 34, 35
and 36 of table [1] is predefined and can only be
used together with an associative entity. An asso-
ciative entity can have attributes like other entities.
For example, sentence 41 in table [1] specifies at-
tributes for the associative entity “enrolment".

To declare a weak entity in CNLER, we have to
declare both strong and weak entities first as enti-
ties (e.g., “course" and “section" in table [1]). Af-
ter that we need to specify that the weak entity is
dependent of the strong entity. For example, to

123

declare that a section is a weak entity, sentence
42 specifies that “section" is a dependent of the
“course" entity by using a predefined relationship
“dependent of" in table [1].

5 Grammar

We use a definite clause grammar (DCG) (Pereira
and Shieber, 2002) to process and translate a
CNLER specification. The key advantage of using
a DCG is that it implements a logic program that
allows us to build a bi-directional grammar. The
grammar translates the CNLER sentences into a
corresponding internal description logic (DL) rep-
resentation. This internal DL representation is fur-
ther processed to generate an ERD.

A specification in CNLER consists of function
words and content words. Function words (quan-
tifiers, cardinality constraints and operators) de-
scribe the structure of the sentences and the num-
ber of these function words is fixed. In contrast,
content words (nouns and verbs) are domain spe-
cific and are added to the lexicon during the writ-
ing process when they are declared. It is impor-
tant to note that the bi-directional DCG contains
grammar rules that translate every CNLER sen-
tence into the internal DL representation and vice
versa; this enable semantic round-tripping in our
conceptual modelling framework. In this paper,
we discuss the DCG rules that process some of
the core ERM constructs. Below we discuss the
grammar rules that process entity, attribute, rela-
tionship, constraint and associative entity declara-
tions.

5.1 Entity Declaration

Listing [1] shows the grammar rules for an entity
declaration. The first grammar rule states that a
declarative sentence (s) consists of a noun phrase
(np) and a key phrase (“is an entity type"), fol-
lowed by a full stop (.). The grammar rule contains
additional arguments that implement feature struc-
tures in the form of attribute:value pairs whereas
the value can be a simple term or a complex
term (for example in the form of a difference list:
[Head|Tail]-Tail). The feature structure mode:M
specifies whether the rule is used in the process-
ing or generating mode and the feature structure
type:entity specifies the type of the ERM con-
struct. The feature structure sem:L1-L2 is used to
build up the semantic representation for an entity.
The grammar rule for the noun phrase (np) con-

tains a feature structure (num:N) that deals with
number agreement (singular or plural), a feature
structure (arg:X) that defines the argument of an
entity, and one (pos:subj) that specifies the po-
sition of the noun. Finally, the feature structure
cat:noun specifies a noun and wform:WForm spec-
ifies a word form consisting of potentially multi-
ple elements. To extract an entity from the input
list, a lexical rule lexical_rule/1 is used that gener-
ates lexical entries with their corresponding singu-
lar and plural forms (e.g., student and students) for
that entity with the help of a morphological com-
ponent.

5.2 Attribute Declaration
To process a sentence that is used to declare an at-
tribute, we use similar grammar rules as shown in
listing [1] but with a different key phrase (e.g., of
integer data type). To process an attribute and its
data type, a lexical rule is used that extracts the
attribute from the input list by excluding the cop-
ula and the key phrase and by identifying the type
(e.g., integer, string, date) from the key phrase.
After that the lexical rule is used to insert the at-
tribute and its type information into the lexicon.

5.3 Relationship Declaration
Listing [2] shows the grammar rules for a rela-
tionship declaration. The first grammar rule states
again that a declarative sentence (s) consists of a
noun phrase (np) and a verb phrase (vp), followed
by a full stop (.). The feature structures for the
mode declaration and the semantic representation
are similar to the entity declaration whereas the
feature structure type:fact specifies the ERM con-
struct relationship.

The second grammar rule states that a verb
phrase (vp) consists of a verb (verb) and a noun
phrase (np). In the case of processing, the gram-
mar rule for the verb consists of a lexical rule (lexi-
cal_rule/1) that extracts a relationship from the in-
put list by identifying the noun phrases in the sub-
ject and object position. After that, the lexical rule
adds the extracted relationship to the lexicon and
adds the semantic representation (L0) for that rela-
tionship to the outgoing part ([[L0|L1]|L2]) of the
difference list. In the case of generating, the gram-
mar rule for a verb removes the semantic represen-
tation (L0) from the incoming part ([[L0|L1]|L2])
of the difference list and tries to find this represen-
tation in the lexicon in order to return the corre-
sponding lexical entry.

124

Listing 2: Grammar rules for relationship declaration

% Input: Student is enrolled in program.
% Output: [entity(A, student), relation(A, B, is_enrolled_in), entity(B, program)]

s([mode:M, type:fact, sem:L1-L3]) -->
np([mode:M, num:N, type:fact, pos:subj, arg:X, sem:L1-L2]),
vp([mode:M, num:N, type:fact, arg:X, sem:L2-L3]),
[’.’].

vp([mode:M, num:N, type:fact, arg:X, sem:L1-L3])-->
verb([mode:M, num:N, type:fact, arg:X, arg:Y, sem:L1-L2]),
np([mode:M, num:_N, type:fact, pos:obj, arg:Y, sem:L2-L3]).

np([mode:M, num:N, type:T, pos:P, arg:X, sem:L1-L2) -->
noun([mode:M, num:N, type:T, pos:P, arg:X, sem:L1-L2]).

noun([mode:proc, num:N, type:fact, pos:P, arg:X, sem:[L1|L2]-[[L0|L1]|L2]]) -->
{lexicon([cat:noun, wform:WForm, num:N, type:entity, pos:P, arg:X, sem:L0])},
WForm.

noun([mode:gen, num:N, type:fact, pos:P, arg:X, sem:[[L0|L1]|L2]-[L1|L2]]) -->
{lexicon([cat:noun, wform:WForm, num:N, type:entity, pos:P, arg:X, sem:L0])},
WForm.

verb([mode:proc, num:N, type:fact, arg:X, arg:Y, sem:[L1|L2]-[[L0|L1]|L2]]) -->
lexical_rule([cat:verb, num:N, arg:X, arg:Y, sem:L0]).

verb([mode:gen, num:N, type:fact, arg:X, arg:Y, sem:[[L0|L1]|L2]-[L1|L2]])-->
{lexicon([cat:verb, wform:WForm, num:N, type:brel, arg:X, arg:Y, sem:L0])},
WForm.

Figure 3: ERD of the example scenario (Frantiska, 2018) generated by the proposed CNL based conceptual mod-
elling framework.

5.4 Constraint Declaration

To process a sentence that declares a cardinality
constraint over a relationship, we use a grammar
rule that is quite similar to the grammar rule in list-
ing [2] with an additional quantifier (qnt) in sub-
ject position and a constraint (cst) in the object po-
sition. Note that the grammar rules for a quantifier

and a cardinality constraint play an important role
because they provide the relevant structure for the
internal representation. For example, the gram-
mar rule for the universal quantifier (every) results
in a pattern of the form sem:forall(X, Res ==>
Sco) that takes a restrictor (Res) that contains the
information derived from the noun phrase in sub-

125

Listing 3: Grammar rules for associative entity declaration

% Fact Type "Association"
% Input: Enrolment associates "student is enrolled in program".
% Output: [entity(A, enrollment), associates(A, B), entity(C, student),
% B#relation(C, D, is_enrolled_in), entity(D, program)]

s([mode:M, type:fact_ob, sem:L1-L4]) -->
np([mode:M, num:N, type:fact, pos:subj, arg:X, sem:L1-L2]),
verb([mode:M, wform:[associates], num:N, type:fact_ob, arg:X, arg:R, sem:L2-L3]),
[’"’],
s([mode:M, type:ob_fact, rel:R, sem:L3-L4]),
[’"’, ’.’].

np([mode:M, num:N, type:T, pos:P, arg:X, sem:L1-L2) -->
noun([mode:M, num:N, type:T, pos:P, arg:X, sem:L1-L2]).

noun([mode:proc, num:N, type:fact, pos:P, arg:X, sem:[L1|L2]-[[L0|L1]|L2]]) -->
{lexicon([cat:noun, wform:WForm, num:N, type:entity, pos:P, arg:X, sem:L0])},
WForm.

noun([mode:gen, num:N, type:fact, pos:P, arg:X, sem:[[L0|L1]|L2]-[L1|L2]]) -->
{lexicon([cat:noun, wform:WForm, num:N, type:entity, pos:P, arg:X, sem:L0])},
WForm.

verb([mode:proc, wform:WForm, num:N, type:fact_ob, arg:X, arg:Y,
sem:[L1|L2]-[[L0|L1]|L2]]) -->

{lexicon([cat:verb, wform:WForm, num:N, type:ob_rel, arg:X, arg:Y, sem:L0])},
WForm.

verb([mode:gen, wform:WForm, num:N, type:fact_ob, arg:X, arg:Y,
sem:[[L0|L1]|L2]-[L1|L2]]) -->

{lexicon([cat:verb, wform:WForm, num:N, type:ob_rel, arg:X, arg:Y, sem:L0])},
WForm.

ject position and the scope (Sco) that contains the
information derived from the verb phrase and re-
turns a pattern for an implication. In the case of a
cardinality constraint that pattern might have the
following form: exists(X, Res & min(L) : Sco :
max(U)). Note also that the restrictor and scope
are built up in these grammar rules with the help
of specific feature structures.

5.5 Associative Entity Declaration
Listing [3] shows an excerpt of the grammar rules
that are used to process and generate sentences for
an associative entity. The first rule reuses the rule
for a relationship and uses a key verb word (asso-
ciates) to process an associative entity declaration.
The first rule states that a sentence consists of a
noun phrase (np) in subject position, a verb (verb)
and a sentence in object position that refers to a
particular relationship in the lexicon.

The grammar rule for np is the same as we used
for the relationship declaration (see listing [2]) and
for the ease of understanding we keep it in listing
[3]. The feature structure rel:R in the sentence rule

in object position states that this is a "reified" rela-
tionship available in the lexicon and unlike the re-
lationship rule stated in listing [2], it does not need
to be processed by the lexical rule (lexical_rule/1).

This relationship could be a binary relationship
or a ternary relationship. This grammar rule is
used to link an entity to a relationship that makes
the entity an associative entity.

6 Evaluation

We took an example scenario from the ER pa-
per (Frantiska, 2018), extended the scenario and
expressed the scenario in CNLER (see table [1]).
After that we translated the CNLER specification
into an internal DL representation and translated
the resulting ERM constructs into a RuleML (Bo-
ley et al., 2010) JSON1 representation (see figure
4). This JSON representation is used by our con-
ceptual modelling tool for building an interactive
diagram. The implementation of our conceptual
modelling tool is based on the GoJS 2.0 frame-

1https://wiki.ruleml.org/index.php/RuleML_in_JSON

126

{"And":
{"Atom":

[{
"Rel": "entity",
"Ind": "department",
"Var": "X"

},
{

"Rel": "relation",
"Ind": "employ",
"Var": ["X","Y"]

},
{

"Rel": "entity",
"Ind": "teacher",
"Var": "Y"

}]
}

}

Figure 4: RuleML JSON representation of the sentence
(22) from table [1].

work2.
The JSON representation is parsed to identify

the entities, attributes and relationships for the re-
sulting diagram. Unique entity names and re-
lationship names are identified and added to a
node array. Relationships are assessed individu-
ally to identify the links and added to a link array.
These constructs are then translated into the inter-
nal GoJS representation that is used by the GoJS
engine to render the diagram in a web browser (see
figure 3). New entities, attributes and relation-
ships can be added to a diagram and existing com-
ponents can be modified or deleted by the user.
Building a new diagram from scratch is also possi-
ble, since we designed the graphical editor for con-
ceptual modelling as a standalone tool. When a
diagram is saved, its internal GoJS representation
is produced from which the internal JSON repre-
sentation can be derived to generate the CNLER

specification again.
To evaluate the controlled natural language

CNLER, we then checked the expressiveness of
the language in terms of ERM constructs. We
compared the constructed diagram with the textual
CNLER specification of the scenario and found
that the diagram correctly represented all cor-
responding entities, attributes and relationships.
Furthermore, it is possible to generate a seman-
tically equivalent CNLER specification from the
diagram in a round-tripping fashion.

2https://gojs.net/latest/index.html

7 Discussion

In this paper we presented CNLER, a controlled
natural language that can be used to specify and
verbalise ER models. Our main objective is to
develop a controlled natural language based uni-
versal conceptual modelling framework where a
domain expert can actively participate in the con-
ceptual modelling process with a knowledge engi-
neer. CNLER is a controlled natural language that
can express ERM constructs in natural language
and the language processor can translate it into a
formal language (e.g., any serialization of DL AL-
CQI (Lutz, 2002; Berardi et al., 2005; Franconi
et al., 2012)). This formal representation can be
further used for verification and validation. After
that the formal representation can be processed to
generate an ERD.

The goal of this work is to improve the current
conceptual modelling process and enable domain
domain experts to express their knowledge in a
well defined subset of natural language that can
be used as high-level interface language to con-
struct conceptual models. Future work will in-
vestigate the scalability of CNLER by extending
the coverage of the language so that also UML
class diagrams (Calvanese, 2013) and ORM dia-
grams (Franconi et al., 2012) can be expressed in
the same grammatical framework. These exten-
sions involve parametrising and modularising the
existing grammar to support additional modelling
constructs.

8 Conclusion

CNLER is a high-level specification and verbalisa-
tion language for ER models that supports a con-
trolled natural language based conceptual mod-
elling approach. A textual specification of a con-
ceptual model in CNLER can be translated via
an internal representation into a JSON represen-
tation that is then used to generate an ER diagram.
The translation works also in the other direction
and supports the verbalisation of ER diagrams in
CNLER. Because of these properties, CNLER has
the potential to bridge the communication gap be-
tween a domain expert and a knowledge engineer
in the domain of entity relationship modelling and
makes the modelling process at the same time for-
mal in a seemingly informal way.

127

References
Vincenzo Ambriola and Vincenzo Gervasi. 2006. On

the systematic analysis of natural language require-
ments with circe. Automated Software Engineering,
13(1):107–167.

Daniela Berardi, Diego Calvanese, and Giuseppe De
Giacomo. 2005. Reasoning on uml class diagrams.
Artificial Intelligence, 168(1):70–118.

Harold Boley, Adrian Paschke, and Omair Shafiq.
2010. Ruleml 1.0: the overarching specification
of web rules. In International Workshop on Rules
and Rule Markup Languages for the Semantic Web,
pages 162–178. Springer.

David Bourgeois. 2014. Information systems for busi-
ness and beyond. The Saylor Foundation.

Diego Calvanese. 2013. Description Logics for Con-
ceptual Modeling Forms of reasoning on UML Class
Diagrams. EPCL Basic Training Camp.

Pablo R Fillottrani, Enrico Franconi, and Sergio Tes-
saris. 2012. The icom 3.0 intelligent conceptual
modelling tool and methodology. Semantic Web,
3(3):293–306.

Enrico Franconi, Alessandro Mosca, and Dmitry Solo-
makhin. 2012. Orm2: formalisation and encoding
in owl2. In OTM Confederated International Con-
ferences" On the Move to Meaningful Internet Sys-
tems", pages 368–378. Springer.

Joseph Frantiska. 2018. Entity-relationship diagrams.
In Visualization Tools for Learning Environment De-
velopment, pages 21–30. Springer.

Terry Halpin. 1998. ORM/NIAM Object-Role Model-
ing. Springer Berlin Heidelberg, Berlin, Heidelberg.

Terry Halpin. 2009. Object-role modeling. In Ency-
clopedia of Database Systems, pages 1941–1946.
Springer.

HM Harmain and Robert Gaizauskas. 2003. Cm-
builder: A natural language-based case tool for
object-oriented analysis. Automated Software En-
gineering, 10(2):157–181.

Bayzid Ashik Hossain and Rolf Schwitter. 2018. Spec-
ifying conceptual models using restricted natural
language. In Proceedings of the Australasian
Language Technology Association Workshop 2018,
pages 44–52, Dunedin, New Zealand.

Mohd Ibrahim and Rodina Ahmad. 2010. Class di-
agram extraction from textual requirements using
natural language processing (nlp) techniques. In
2010 Second International Conference on Computer
Research and Development, pages 200–204. IEEE.

Mustafa Jarrar, C Maria, and Keet Paolo Dongilli.
2006. Multilingual verbalization of orm conceptual
models and axiomatized ontologies.

Kenneth C. Laudon and Jane P. Laudon. 2015. Man-
agement Information Systems: Managing the Digi-
tal Firm Plus MyMISLab with Pearson eText – Ac-
cess Card Package, 14th edition. Prentice Hall
Press, Upper Saddle River, NJ, USA.

Domenico Lembo, Daniele Pantaleone, Valerio
Santarelli, and Domenico Fabio Savo. 2016a. Easy
owl drawing with the graphol visual ontology
language. In Fifteenth International Conference on
the Principles of Knowledge Representation and
Reasoning.

Domenico Lembo, Daniele Pantaleone, Valerio
Santarelli, and Domenico Fabio Savo. 2016b.
Eddy: A graphical editor for owl 2 ontologies. In
IJCAI, pages 4252–4253.

Qing Li and Yu-Liu Chen. 2009. Entity-Relationship
Diagram, pages 125–139. Springer Berlin Heidel-
berg, Berlin, Heidelberg.

Carsten Lutz. 2002. Reasoning about entity relation-
ship diagrams with complex attribute dependencies.
In Proceedings of the International Workshop in
Description Logics 2002 (DL2002), number 53 in
CEUR-WS (http://ceur-ws.org), pages 185–194.

Luisa Mich. 1996. Nl-oops: from natural language to
object oriented requirements using the natural lan-
guage processing system lolita. Natural language
engineering, 2(2):161–187.

Antoni Olivé. 2007. Conceptual Modeling of Informa-
tion Systems. Springer-Verlag, Berlin, Heidelberg.

Gerard O’Regan. 2017. Unified modelling language.
In Concise Guide to Software Engineering, pages
225–238. Springer.

Fernando CN Pereira and Stuart M Shieber. 2002. Pro-
log and natural-language analysis. Microtome Pub-
lishing.

Barker Richard. 1990. CASE Method: Entity Relation-
ship Modelling. Addition-Wesley Publishing Com-
pany, ORACLE Corporation UK Limited.

Motoshi Saeki, Hisayuki Horai, and Hajime Enomoto.
1989. Software development process from natu-
ral language specification. In 11th International
Conference on Software Engineering, pages 64–73.
IEEE.

Rolf Schwitter. 2010. Controlled natural languages for
knowledge representation. In Proceedings of the
23rd International Conference on Computational
Linguistics: Posters, pages 1113–1121. Association
for Computational Linguistics.

Il-Yeol Song and Peter P. Chen. 2009. Entity Relation-
ship Model, pages 1003–1009. Springer US, Boston,
MA.

128

Harald Störrle. 2017. How are conceptual models used
in industrial software development?: A descriptive
survey. In Proceedings of the 21st International
Conference on Evaluation and Assessment in Soft-
ware Engineering, pages 160–169. ACM.

129

Measuring English Readability for Vietnamese Speakers

Thuan Nguyen and Alexandra L. UITDENBOGERD
RMIT University - School of Science

124 La Trobe St
Melbourne VIC 3000

john.nguyen09@outlook.com,sandra.uitdenbogerd@rmit.edu.au

Abstract

Reading is important for language learners, but
text difficulty needs to match a reader’s skill
level for efficient vocabulary acquisition. Tra-
ditional readability measures may not be ef-
fective for those who speak English as a sec-
ond or additional language. This study ex-
amines English readability for Vietnamese na-
tive speakers (VL1). A collection of text dif-
ficulty judgements of nearly 100 English text
passages was obtained from 12 VL1 partic-
ipants, using a 5-point Likert scale. Using
features from traditional readability measures,
support vector machines and Dale-Chall fea-
tures gave more accurate predictions than lin-
ear models using either Flesch or Dale-Chall
features. VL1 participants’ text judgements
were strongly correlated with their past En-
glish test scores. This study introduces a first
approximation to readability of English text
for VL1, with suggestions for further improve-
ments.

1 Introduction

Extensive reading, that is, reading a large amount
of text at a comfortable level of difficulty, is an
efficient way to improve language skills, as learn-
ers acquire vocabulary as they read, retain it for
longer than if they use rote memorisation (Her-
mann, 2003), and greatly improve their receptive
skills (Elley and Mangubhai, 1983). However, the
level of difficulty of the text needs to match the
learner, for example, to guess the meaning of new
words, readers typically need to know at least 95%
of the words (Laufer, 1989). Further, text needs to
be well below the learner’s frustration level (Klare,
1988). As most text written for native (L1) speak-
ers is beyond the beginner and intermediate lan-
guage learner, students need to start with simple
or simplified text and work their way up to more
advanced texts as they learn. Thus a method of

measuring the readability of text is crucial for lan-
guage learners, and can be incorporated in to read-
ing recommender systems.

There have been many proposed English text
readability measurement techniques, most of
which were modelled on native English-speaking
(EL1) children, or texts written for them (for
example (Flesch, 1948; Dale and Chall, 1948;
Schwarm and Ostendorf, 2005)). English com-
prehension is different for people with differ-
ent backgrounds and language skills, causing
readability measurement techniques developed for
EL1 to perform poorly for other L1-L2 combi-
nations (Oller et al., 1972; Uitdenbogerd, 2005).
The focus of this study was English readability for
Vietnamese speakers (VL1). To our knowledge,
no techniques have been built and tested specifi-
cally for this cohort.

While there is existing work on readability for
non-native (L2) speakers, the majority is trained
on data sets that assume texts written for different
language levels match the comprehension experi-
enced by L2 speakers. Examples include François
and Miltsakaki (2012) for French L2 and Xia et al.
(2016) for English. Xia et al. (2016) extended
readability measurement techniques by adapting
a model trained on texts for English L1 speak-
ers using data from Cambridge English language
tests at different Common European Framework
of Reference for languages (CEFR) levels. While
some studies use corpora that are fairly homoge-
nous, it has been pointed out that other corpora re-
veal considerable inconsistency across text classes
used as ground truth (François, 2014). Further-
more, there is evidence that expert or publisher-
based ground truth is a poor surrogate for gen-
uine language learner experience (Vajjala and Lu-
cic, 2019).

This paper replicates two well-known readabil-
ity measures, Flesch (1948) and Dale and Chall

130

(1948) by using their features and techniques, but
building the model on new data collected from
Vietnamese speakers. Prior research has shown
that Machine Learning (ML) algorithms and Nat-
ural Language Processing (NLP) features provide
better results than traditional formulae (François
and Miltsakaki, 2012). Therefore, we also tested
Support Vector Machines (SVMs) to produce the
model for assessing English text readability as per-
ceived by Vietnamese speakers.

Collecting appropriate ground truth was chal-
lenging, leading to a smallish data set with a
skewed rating distribution. We report on the main
techniques relevant to this project (Section 2), de-
tails about the ground truth data collection (Sec-
tion 3), the results of applying linear models and
SVMs, and further analysis and discussion of the
data set and results.

2 Readability Measurement

Much research has demonstrated that extensive
reading increases language acquisition (Hermann,
2003; Elley and Mangubhai, 1983; Laufer, 1989;
Klare, 1988). Further research has tried to deter-
mine how to select appropriate reading material
for learners through the development of readabil-
ity measurement techniques, either simple metrics
that can be applied manually to small samples,
or more recently, complex predictive models us-
ing NLP features (for example François and Milt-
sakaki (2012)).

Readability for non-native speakers is likely
to be affected by their knowledge of other lan-
guages. The principal way that this is experienced
is through cognates (and loanwords), that is, words
that are similar in appearance and meaning be-
tween a pair of languages. Their impact on read-
ability of French for English speakers has been
demonstrated (Uitdenbogerd, 2005).

Some studies measure readability (or complex-
ity) of different units of language. While the ma-
jority of research estimates readability of whole
documents, there is some work on readability of
sentences (Pilán et al., 2014) as well as lexi-
cal complexity in isolation (Paetzold and Specia,
2016). In this work we look at text passages of
50-200 words in length, being short enough for
participants to judge quickly, and long enough to
provide context and features.

Flesch (1948) and Dale and Chall (1948) are
two of the most popular readability measures for

English, both of which extract two statistical fea-
tures from text and calculate the difficulty level us-
ing a linear model. Both measures try to capture
the syntactic complexity of a text using the aver-
age word count per sentence (WPS). Flesch (1948)
captures vocabulary complexity via the average
syllable count per word (SPW), whereas Dale and
Chall (1948) use a predefined list of 3000 famil-
iar words to calculate the percentage of difficult
words (PDW).

The Flesch formula, shown below, produces a
readability score that normally falls in the range 0–
100 (theoretical maximum would be 121.22), with
0–30 being classed as very difficult, and 90–100
being very easy.

(1)RE = 206.835− 1.015(
wrds

snts
)− 84.6(

syll

wrd
)

Dale-Chall’s formula calculates the grade-level of
text.

DC = 0.0496(
words

sents
)+0.1579(

hard words

words
∗100)

(2)

Schwarm and Ostendorf (2005) assessed text
readability using SVMs and a combination of NLP
features and statistical features. The present study
also uses SVMs with statistical features from tra-
ditional models, but with ground truth data from
Vietnamese speakers.

3 Vietnamese Ground truth data
collection

Our aim was to collect a text corpus of a wide
range of difficulty, and to collect human judge-
ments of their perceived difficulty from VL1
speakers. The intention was to obtain multiple
judgements per text to allow some analysis of how
different individuals perceive the difficulty of the
same text.

We selected a variety of texts to make up ten
categories from four different sources: Oxford
Bookworms graded readers for learners of En-
glish as a second language (EL2) consisting of
five levels ranging from level 0 (Starter) to level 4,
children’s literature, young adult texts, and clas-
sic English literature. Oxford Bookworms texts
were selected randomly from a digitised data-set.
Three children’s literature texts were arbitrarily se-
lected from Project Gutenberg’s Children’s litera-
ture bookshelf. Four young adult texts were arbi-
trarily selected from a library’s Young Adult sec-
tion. The classical literature stories selected were

131

the top three from a top ten list of classics found
via a web search. Due to an oversight leading to
original classic texts being used instead of the sim-
plified version for Oxford Bookworms levels 5 and
6, there were three times as many texts from classi-
cal literature than other sources or levels. Despite
the uneven representation of books, with David
Copperfield and The Woman in White having ten
samples each, versus only one to five samples for
all others, each category was distinct, and had ten
randomly selected extracts, allowing sufficient va-
riety for testing readability, and providing a wide
range of difficulty.

Extracting sentences from the books was via a
script that randomly generated a starting sentence
number, and the number of sentences to extract
from that point. However, this process was not
applied to young adult books since they were not
electronically available, therefore a random num-
ber generator was used instead, to generate a page
number, paragraph number and the number of sen-
tences to extract. Ten texts from each level or
source were randomly selected, each around 50-
200 words in length, leading to a total of 100 texts.
This text length and number of judgements was
chosen to minimise the time commitment of vol-
unteer participants and provide sufficient context
to assess the readability of the text. It is a similar
quantity to samples in previous studies (See for ex-
ample, Björnsson (1968)). Text was presented to
participants in a random order to eliminate order-
ing effects.

Participants were recruited via an invitation to
complete an on-line survey posted in a large Face-
book group for Vietnamese students in Australia.
Twelve participants completed the entire question-
naire, resulting in 120 samples of data. One par-
ticipant who did not complete all questions was
excluded to avoid potential bias in the data-set to-
ward specific participants’ responses. The partic-
ipants were Vietnamese students studying in Aus-
tralia, the majority of whom had English IELTS
levels 6 to 8, being equivalent to CEFR B2–C1/C2.

Participants were asked to read 10 texts with no
time limit, each from a different reading level or
source, and to choose an answer based on a 5-point
Likert scale, with each point worded specifically
for learners of English as a foreign language (Uit-
denbogerd et al., 2017) as shown below.

1. The text was very easy. I knew every word.
2. The text was easy, but I did not understand some words.
3. The text was not easy, but I understood the story.

4. The text was difficult. I would need a dictionary.

5. The text was very difficult. A dictionary will not help
me.

4 Linear models

Using the ground truth data-set obtained from
Vietnamese speakers, we replicated methods used
for traditional measures (Flesch, 1948; Dale and
Chall, 1948). These new models were built using
linear regression and statistical features of texts.

The Natural Language Toolkit (Loper and Bird,
2002) was used to extract the statistical features in
the text, and scikit-learn (Pedregosa et al., 2011)
was used for training and testing, as well as for
calculating mean squared error (MSE). Syllable
counts were based on those found in the Carnegie-
Mellon Pronouncing Dictionary (cmudict). All
words used in the study corpus were in cmudict.

These experiments replicate the techniques and
features from Flesch and Dale-Chall, using the
collected data-set to feed into the linear regression
model. Bootstrapping was also attempted to com-
pensate for the small data size and uneven distri-
bution of responses.

The experiments were set up to train and test ten
times on the collected data, the split ratio being
67% and 33% respectively, and each time split-
ting the data randomly. The aim was to build the
model with the least mean squared error (MSE),
which measures how well the linear model fits the
data; and the least over-fitting amount, measured
as the difference between the MSE of the training
and test data sets. That is, a good model has a low
MSE and a low measure of over-fitting. The co-
efficients of features of the best run become the
recommended model for the given set of features.

When bootstrapping was applied, the data was
sampled with replacement 100 times for each Lik-
ert scale point, from 1-3. No participants selected
5 (very difficult), and only one selected 4 (diffi-
cult), thus 4 was excluded.

4.1 Linear Model based on Flesch features

Table 1 shows the result of using WPS and SPW in
the linear regression model based on VL1 judge-
ments of English text difficulty.

The average train MSE and test MSE were 0.25
and 0.31 respectively. The best run produced an
MSE of 0.23 for predicting unknown situations,
having an over-fitting result of 0.05. The MSE was

132

Run
no

Coeffs (WPS,
SPW)

Train
MSE

Test
MSE

Over-
fitting

1 0.005, 1.5 0.29 0.21 0.08
2 0.002, 1.4 0.28 0.23 0.05
3 -0.0004, 0.86 0.30 0.21 0.09
4 0.022, 0.59 0.15 0.51 0.36
5 0.016, 1.355 0.32 0.17 0.15
6 0.008, 1.367 0.30 0.19 0.11
7 0.003, 0.759 0.12 0.57 0.45
8 0.017, 0.459 0.18 0.46 0.28
9 0.013, 0.505 0.35 0.11 0.24
10 0.015, 0.647 0.19 0.41 0.22

Table 1: Results of replicating the Flesch formula

calculated using the following formula:

MSE =

∑n
i=1(actual(i)− predicted(i))2

n

where n is the number of test samples.
Therefore an average MSE of 0.31 in the test

data suggests instability, since the distance be-
tween the data rating score and the predicted rating
score is the middle of 2 rating levels.

The model can be represented as:

(3)VFlesch = 0.002 ∗ (# words

sents
) + 1.4 ∗ (# sylls

words
)

This formula shows that the coefficient of SPW
has more importance than WPS, at a vocabulary to
grammar feature ratio of 700 (See Table 2). This
suggests that the original Flesch model, which has
a feature ratio of 83.4, has less emphasis on vo-
cabulary, and would therefore be less effective for
Vietnamese speakers. On looking at the second
and third best runs based on over-fitting score, it
can be seen that WPS is consistently small, and
in one case is negative, indicating that sentence
length can virtually be ignored to get a good es-
timate of readability for this cohort of speakers.
The run with a coefficient ratio most similar to the
original Flesch score is Run 5, which has a vocab-
ulary to grammar coefficient ratio of 84.7 and is
in the middle of the runs when compared by over-
fitting amount, indicating that the new coefficients
would be more stable.

Applying bootstrapping increased the error sig-
nificantly with average MSE of 0.54 and resulted
in an unpredictable model, so was not helpful in
this case.

4.2 Linear Model based on Dale-Chall
Features

In Table 3 we report on the model based on WPS
and PDW, which are taken from the Dale-Chall
formula.

The MSE in predicting training data and test
data respectively are 0.28 and 0.24 for the best
model, and its coefficients for percentage of dif-
ficult words and average word count per sentence
are 0.015 and 0.020 respectively. The average
MSE across 10 runs are 0.31 and 0.20. This model
has less error than the Flesch-based model. The
coefficients produced by the runs are also more
stable than the Flesch ones, suggesting that the
Dale-Chall vocabulary feature is superior. None
of the runs produced coefficients with a similar ra-
tio of PDW to WPS as the original Dale-Chall for-
mula (approximately 3.18).

The resulting formula for this model is as fol-
lows:

VDC = 0.020(
words

sents
) + 0.015(

hard words

words
∗ 100)

(4)

In this model, the coefficients of the two features
are quite similar to each other. That is, unlike
for Flesch, in the Dale-Chall formula WPS is rel-
atively more important for VL1 than vocabulary,
since the PDW was weighted 3.18 times more than
WPS in the original Dale-Chall formula, but in this
model is only 0.75 times (shown in Table 2).

In the previous model, applying bootstrapping
increased the error significantly. We also applied
bootstrapping in this model to confirm if features
are the factor that causes the significant increase in
error. Indeed, using bootstrapped data produced a
very high level of error (> 0.60 MSE). Therefore,
it is safe to conclude that bootstrapping does not
work very well with linear models of this data-set.

Additionally, we tested a modified version of
the Dale-Chall word list that was potentially more
suitable for VL1. The Vietnamese first author of
the present study — who found many of the words
on the original list unfamiliar and therefore diffi-
cult — modified the list by removing any words
that seemed difficult. We acknowledge that this
is not a robust approach, however it was a good
first approximation, and a more representative list
for VL1 may be future work. The results of the
modified word list were very similar to the orig-
inal results. Further analysis showed that 26 of
the 100 texts contained a slightly higher number
of difficult words when using the modified list,
2 texts with 3, 4 with 2 and 20 with 1 respec-
tively, being less than 3% change in a PDW score.
Mean (0.35), standard deviation (0.07) and maxi-
mum (0.6) PDW remained about the same for both

133

Coefficients Vocab/Grammar Ratios VL1 Ratio/Orig. Ratio

WPS SPW PDW SPW/WPS PDW/WPS
Coeff. Type Grammar Vocab Vocab
Original Flesch 1.015 84.6 83.4
Best VFlesch 0.002 1.4 700 8.4
Original Dale-Chall 0.0496 0.158 3.18
Best VDC 0.02 0.015 0.75 0.24

Table 2: Vocabulary to grammar coefficient ratios for Flesch, Dale-Chall, and the best linear model runs with VL1
data.

Run
no

Coeffs (PDW,
WPS)

Train
MSE

Test
MSE

Over-
fitting

1 0.013, 0.014 0.32 0.16 0.16
2 0.010, 0.011 0.34 0.12 0.22
3 0.014, 0.006 0.33 0.16 0.17
4 0.012, 0.020 0.32 0.17 0.15
5 0.014, 0.015 0.25 0.31 0.06
6 0.003, 0.020 0.20 0.40 0.20
7 0.015, 0.020 0.28 0.24 0.04
8 0.009, 0.010 0.35 0.11 0.24
9 0.014, 0.014 0.34 0.13 0.11
10 0.014, 0.013 0.32 0.16 0.16

Table 3: Results of replicating the Dale-Chall formula

versions and the minimum increased from 0.18 to
0.19.

To summarise, the model produced by using
features from Dale-Chall gave a lower error rate
than the model using Flesch features, and the fea-
tures appeared to be more stable.

4.3 Combined features from Flesch and
Dale-Chall formulas

The features used in this experiment are taken
from Flesch and Dale-Chall formulas, which are:
WPS, SPW and PDW. Our hypothesis is that this
will not affect the model’s performance because
the Flesch and Dale-Chall formulae try to repre-
sent the vocabulary complexity by SPW or PDW
respectively, and there may not be much gain by
combining the two features. The result confirmed
this by producing an MSE of 0.27, which does
not provide any improvement on previous models.
The two vocabulary features have a correlation of
0.53 for our data-set.

4.4 Using Dale-Chall and Flesch score as a
feature

The results of the original Dale-Chall formula and
our linear model are in different formats, that is
the Dale-Chall score is a grade level ranging from
0-10+ and our model is a difficulty level ranging
from 1-5. Therefore, it is not straightforward to

scale the result from our model to Dale-Chall and
vice versa. Therefore to compare our model with
the original Dale-Chall formula we calculated the
Dale-Chall score for the text using the original
weights and then used it as a feature (Table 4)
to calculate the error rate as for previous experi-
ments.

Run
no

Coeffs (Dale-
Chall)

Train
MSE

Test
MSE

Over-
fitting

1 0.078 0.31 0.19 0.12
2 0.119 0.27 0.26 0.01
3 0.097 0.34 0.13 0.21
4 0.017 0.19 0.44 0.15
5 0.080 0.16 0.49 0.27

Table 4: Results of using Dale-Chall as a feature

The errors of the model fluctuated and produced
different results for each random train and test data
split resulting high average prediction error across
multiple runs. This indicates in some cases the re-
sult from Dale-Chall formula does not resemble
participant ratings, for example some cases pro-
duce a test error of almost 0.50 (run 4 and 5),
meaning the model is not learning anything. We
conclude that while the features in Dale-Chall for-
mula worked best for VL1, the original Dale-Chall
formula is less effective for Vietnamese speakers.

When running the same validation against the
original Flesch reading ease score, even though the
MSE were lower than using original DC as a fea-
ture, the same error fluctuation pattern occurs (See
Table 5). This suggests that the original Flesch
gives a better result than the original DC for VL1,
but is still less effective for Vietnamese speakers
than than the model trained on DC features with
VL1 data.

5 Using SVMs on statistical features

ML is known to be effective in text classifica-
tion, and has also been applied to text readabil-
ity (Schwarm and Ostendorf, 2005). Here we ap-

134

Run
no

Coeffs
(Flesch)

Train
MSE

Test
MSE

Over-
fitting

1 -0.013 0.31 0.15 0.24
2 -0.008 0.15 0.49 0.34
3 -0.011 0.30 0.19 0.11
4 -0.012 0.29 0.20 0.04
5 -0.009 0.23 0.31 0.14

Table 5: Results of using Flesch as a feature

ply SVMs with a radial basis kernel function to
determine whether they will improve readability
assessment of English for VL1.

We tested three feature sets: Flesch only, Dale-
Chall only, and the combined features of both. The
split ratio was different for this experiment, being
70% training data and 30% test data due to the
small data-set. As the data-set was quite small for
SVMs to be effective we also used bootstrapping
to re-sample the data-set from 120 samples to 300
samples, despite the method increasing the error
rate in the previous experiments.

We used cross-validation, with the training and
test data split randomly for each cross-validation.
The experiment was to start with 5 runs and in-
creased to 10 runs for each data-set. The aim
of this was to observe the MSE and the variance
to see if more cross-validation increases variance,
which might indicate an unreliable model. The
reason 5-10 runs were chosen is that for each run
we generated a random cross-validation to train
and test, and since the data is small, after 10 runs it
is possible that the model will be over-trained and
produce an unreliable prediction model.

The results of using raw data are shown in Ta-
ble 6 and Table 7.

Feature set MSE (+/- var.)
Flesch Features 0.14 (+/- 0.08)
Dale-Chall Features 0.15 (+/- 0.09)
Combined features 0.15 (+/- 0.09)

Table 6: 5 runs of SVMs on raw data

Feature set MSE (+/- var.)
Flesch Features 0.19 (+/- 0.13)
Dale-Chall Features 0.19 (+/- 0.13)
Combined features 0.19 (+/- 0.13)

Table 7: 10 runs of SVMs on raw data

Observing the results, there are two things to
notice. Firstly, the MSE increases significantly
and the variance also increases, which indicates

that the model becomes over-fitted to the data and
increased validation increases the error. This can
be caused by the small data-set since ML requires
large data-sets to be effective.

The data was then re-sampled using the boot-
strap method to increase to 300 samples, even
though 300 is not a large number for ML (previ-
ous ML experiments all have roughly more than
1000 data-points (François and Miltsakaki, 2012;
Schwarm and Ostendorf, 2005)), but since it is re-
sampled from 120 data-points, then 300 is a rea-
sonable number. The results are shown in Table 8
and Table 9.

Feature set MSE (+/- var.)
Flesch Features 0.39 (+/- 0.07)
Dale-Chall Features 0.21 (+/- 0.05)
Combined features 0.28 (+/- 0.03)

Table 8: Five runs of SVMs on bootstrapped data

Feature set MSE (+/- var.)
Flesch Features 0.38 (+/- 0.07)
Dale-Chall Features 0.21 (+/- 0.06)
Combined features 0.27 (+/- 0.07)

Table 9: Ten runs of SVMs on bootstrapped data

In this experiment with the bootstrap method,
the results stay almost consistent, even with more
cross-validation. This model is confirmed to be
more effective, since ML requires a large data-set.
The model also gives a better performance than the
linear models because it isn’t prone to over-fitting,
even though the bootstrap method increases MSE.

Additionally, features from the Dale-Chall for-
mula have the best performance across the three
feature sets tested. Features from Flesch produced
the worst performance, being even worse than lin-
ear models, while combined features were not far
behind and were comparable to results of linear
models.

6 Analysis

In this section we examine some properties of the
judgements that were collected, including English
skill level of participants, and how that related to
their text ratings. We also examine general prop-
erties of the texts in each category in the hope of
shedding some light on the slightly contradictory
results occurring in the readability models.

135

Figure 1: Average rating over twelve human judge-
ments for each type of text.

6.1 Judgements

We collected 10 judgements for each category of
text, each from a different participant. Due to the
method of random allocation of texts to partici-
pants, not all texts in the collection received judge-
ments and some texts received up to four judge-
ments. There were 6–8 text samples judged from
each category. Figure 1 shows the average judge-
ments for each text category. When a regression
line is fit between the five Oxford Bookworms lev-
els and their averages, the resulting equation had
a slope of 0.017 and an R2 of 0.05, suggesting a
very poor fit. This is likely because all the Book-
worms texts were too easy for the pool of partic-
ipants, leading to insufficient difference in ratings
across the levels. It can be observed that levels 1-3
all had the same average rating of 1. That is, every
participant rated all texts of those levels as being
very easy. For level 0, one participant gave a rat-
ing of 3 to a text (10). The same participant was
the only one to rate any text with a 4 (difficult),
and had the highest average ratings of difficulty.
Two participants rated all texts as very easy, and
therefore provided no information to the models
of readability.

Nine of the twelve participants had provided
their past IELTS test score. We compared their av-
erage ratings and their past IELTS test score (See
Figure 2). The R2 was 0.779, thus a high correla-
tion (0.88). The rating distribution, however, was
exponential, with 99, 19, 3, 1 and 0 ratings respec-
tively from very easy to very difficult (fitting a line
to the log of the non-zero rating counts has an R2

of 0.99).

Figure 2: Average rating given by each participant ver-
sus their most recent IELTS score.

The only text to be given a rating above 3 by any
participant was an extract from David Copperfield,
which was presented as below.

Mr. Micawber was extremely glad to see me, but
a little confused too. He would have conducted
me immediately into the presence of Uriah, but I
declined.

’I know the house of old, you recollect,’ said I,
’and will find my way upstairs. How do you like
the law, Mr. Micawber?’

’My dear Copperfield,’ he replied. ’To a man
possessed of the higher imaginative powers, the
objection to legal studies is the amount of detail
which they involve. Even in our professional cor-
respondence,’ said Mr. Micawber, glancing at
some letters he was writing, ’the mind is not at
liberty to soar to any exalted form of expression.
Still, it is a great pursuit. A great pursuit!’

Of the public domain texts, The Woman in
White (WW in Figure 1) was generally considered
easier than the pool of classic literature by par-
ticipants. Bookworms texts were generally con-
sidered easy, and David Copperfield was the most
difficult.

6.2 Analysis of Text Features
On examining the relationship between the ex-
tracted features and the texts in each category (See
Table 10), it was clear that the Bookworms text
extracts had an almost monotonically increasing
average sentence length from Level 0 (6.1) to 4
(13.95). All other texts had a higher average sen-
tence length (15.6–22.5) except the YA text cate-
gory (13.2).

136

Text Category SPW PDW WPS
Children’s lit. 1.26 17.7% 17.21
Level 0 1.19 21.9% 6.10
Level 1 1.19 22.8% 7.94
Level 2 1.20 16.2% 12.07
Level 3 1.23 15.5% 10.32
Level 4 1.31 24.9% 13.95
David Copperfield 1.32 22.5% 22.54
The Woman in White 1.29 18.4% 15.56
Top 3 classics 1.35 22.1% 20.33
Young Adult 1.29 24.7% 13.22

Table 10: Features averaged across each text category

While the average SPW increased monotoni-
cally for the Bookworm text levels, with all but
Level 4 having a lower average SPW than other
text categories, the PDW average varied consid-
erably, with Level 4 having the highest average
PDW across all categories of text. Clearly, the
Dale-Chall word list is not a factor in setting the
levels of Oxford Bookworm texts. Interestingly,
the easiest non-Bookworm category based on av-
erage judgements (YA), had the second highest
average PDW. A correlation across texts between
SPW and WPS of 0.33 is probably due to the con-
straints placed on Oxford Bookworm text. While
there was a fairly high correlation between SPW
and PDW (0.53), clearly there were systematic dif-
ferences.

7 Discussion of Results and Limitations

The models applied to the data did not display
huge differences in effectiveness, but the Dale-
Chall features generally outperformed the Flesch
ones, in both the regression and SVM-based mod-
els. In the Flesch case, vocabulary became much
more important as a feature relative to sentence
length, compared to the original Flesch formula,
whereas for Dale-Chall vocabulary was slightly
less important than in the original formula.

Despite inconsistency in the relative importance
of vocabulary to sentence length for Vietnamese
speakers between feature sets, the collected text
ratings showed a strong relationship with the level
of English language skill of the participants, as
measured by IELTS tests. On average across par-
ticipants, text ratings appeared to follow logical
trends, with Bookworm texts being easy, and clas-
sical literature being more challenging.

There were several limitations to our prelimi-
nary study, some of which can be addressed in fu-
ture analysis, but most would require a new exper-
iment with a greater number of participants. As

with most empirical research, the more data avail-
able, the more robust the results. For any tech-
niques that involve machine learning and many
features, large sets of data are required. From a
statistical perspective, having only about 100 data
points only allows one to build good models in-
volving multiple predictors if the effect size is ex-
pected to be large. We did, however, have a rea-
sonable fit for both linear models on two features.

One of the difficulties was a mismatch be-
tween the participants and the experimental appa-
ratus. Because of their relatively high level En-
glish background, being in the range IELTS 6–8
(for those who completed an IELTS test), the ma-
jority of the texts were too easy. This didn’t pro-
vide enough discrimination between texts in the
lower levels of difficulty. Based on an examina-
tion of the relationship between ratings and IELTS
background, the current apparatus would require
participants who have a much lower IELTS level.

There may have been a better model produced
if the Likert scale was more fine-grained, to al-
low a greater spread of rating scores. For exam-
ple, the research that developed the Lix readability
model used a nine-point scale (Björnsson, 1968).
However, one advantage of the Likert scale used
here is that it should create more consistent ratings
across participants, due to the precise wording for
each point on the scale. Despite this, there is a
drawback, in that the wording emphasises lexical
difficulty. For a future study the wording should
remove that emphasis to reduce potential bias to-
ward vocabulary.

To make the test less onerous for lower level
participants the wording would need to be further
changed. Asking beginners to read a difficult text
would result in them spending considerable time
trying to decipher it, whereas what is required is
a quick judgement as to its difficulty. So future
questionnaires should ask participants to look at
the text instead.

The most difficult text, as judged by Viet-
namese participants, had long sentences and fairly
long words, and a moderate percentage of dif-
ficult words, based on the Dale-Chall list. The
texts judged the easiest had shorter sentences and
words, and somewhat fewer difficult words. How-
ever, there was not a direct linear relationship
between published simplified texts and human
judgements. Perhaps there would be a linear re-
lationship if the experiment had a different com-

137

bination of participants and rating scale, but the
current experiment does not provide evidence that
the use of published scales as ground truth for hu-
man perception of reading difficulty is any more
than a convenient substitute.

7.1 Future Work

We have been considering how to obtain a larger
set of judgements from participants with lower
levels of English comprehension, to provide a bet-
ter spread of readability ratings. Using existing
crowd-sourcing platforms is not really an option,
since those who use them would already need a
functional level of English to navigate the plat-
forms. To our knowledge there is no equivalent
platform available in Vietnamese.

We contemplated using students studying En-
glish in Vietnam, but this was unlikely to result
in many participants due to the constraints on re-
cruitment. An alternative may be using social me-
dia sites that are popular in Vietnam to advertise
to participants, or providing a free Massive Open
On-line Course (MOOC) for the collection of data
from students. Evidence from this study and else-
where (Jacob and Uitdenbogerd, 2019) suggests
that to obtain enough participants with beginner
or intermediate L2 skills, it is essential to recruit
and present the study in their L1, or ratings will be
exponential in distribution.

This initial study was limited to three traditional
readability features. Further work would involve a
wider range of features, with particular focus on
those that are related to the human experience of
reading (Crossley et al., 2008). However, a larger
set of human judgements is needed before mean-
ingful experimentation with ML techniques can be
contemplated.

It may be useful to create a validated equivalent
to the Dale-Chall list for Vietnamese speakers be-
yond our initial attempt at modifying the list with
the input from a single Vietnamese participant.
Due to the French colonial background of Vietnam
there are also French-Vietnamese cognates (for ex-
ample, ga tô for gateau) which may impact read-
ability by being more memorable (Beinborn et al.,
2014). However, the impact is likely to be much
less than for more related language pairs such as
Spanish-Italian, or French-English.

In this work we focused on the readability of
passages of English text for speakers with Viet-
namese L1. We are currently also working with

other language backgrounds. Difficulty varies
greatly across text, which with traditional for-
mulae was managed by taking multiple samples.
Flesch (1948) recommended 25-30 samples for
measuring a book’s readability, if the whole book
is not being analysed, and Björnsson (1968) used
20 100-word samples for lexical complexity and
20 ten-sentence samples for grammatical com-
plexity. We may explore sentence-level readability
in future (Pilán et al., 2014).

8 Conclusion

This study is the first to attempt to measure En-
glish readability for Vietnamese speakers. Our
contribution consists of a small data-set of human
judgements of English text by Vietnamese volun-
teers, and the application of linear regression and
SVM models to predict readability, using tradi-
tional readability features.

SVMs produced a model with the best perfor-
mance in terms of MSE. Bootstrapping increased
the MSE in linear models, but helped significantly
in building an effective SVM model.

The features from Dale-Chall performed con-
sistently well across all models (linear regression
and SVMs). The small data-set prevented the rig-
orous use of a large feature set, despite a combi-
nation of statistical features and NLP features be-
ing likely to produce a better model (François and
Miltsakaki, 2012). Thus future work includes ap-
plying more features to a larger data-set, prefer-
ably with a better match between text samples and
participants, and using the Vietnamese data-set to
tune a model produced from a larger data-set (Xia
et al., 2016).

Acknowledgments

We thank Mr Patrick Jacob for suggesting differ-
ent methodologies in the experiment.

References
Lisa Beinborn, Torsten Zesch, and Iryna Gurevych.

2014. Readability for foreign language learning:
The importance of cognates. ITL-International
Journal of Applied Linguistics, 165(2):136–162.

Carl-Hugo Björnsson. 1968. Läsbarhet: hur skall man
som författare nå fram till läsarna? Bokförlaget
Liber.

Scott A Crossley, Jerry Greenfield, and Danielle S Mc-
Namara. 2008. Assessing text readability using cog-

138

nitively based indices. Tesol Quarterly, 42(3):475–
493.

Edgar Dale and Jeanne S. Chall. 1948. A formula
for predicting readability: Instructions. Educational
Research Bulletin, 27(2):37–54.

Warwick B Elley and Francis Mangubhai. 1983. The
impact of reading on second language learning.
Reading research quarterly, pages 53–67.

R Flesch. 1948. A new readability yardstick. Journal
of Applied Psychology, 32(3):221–233.

Thomas François and Eleni Miltsakaki. 2012. Do NLP
and machine learning improve traditional readabil-
ity formulas? In Proceedings of the First Work-
shop on Predicting and Improving Text Readability
for Target Reader Populations, PITR ’12, pages 49–
57, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Thomas François. 2014. An analysis of a French as a
foreign language corpus for readability assessment.
In Proceedings of the third workshop on NLP for
computer-assisted language learning, pages 13–32.

Frank Hermann. 2003. Differential effects of reading
and memorization of paired associates on vocabu-
lary acquisition in adult learners of english as a sec-
ond language. TESL-EJ, 7(1):1–16.

Patrick Jacob and Alexandra L. Uitdenbogerd. 2019.
In Australasian Language Technology Workshop
ALTW 2019.

George R Klare. 1988. The formative years. In Bev-
erly L. Zakaluk and S. Jay Samuels, editors, Read-
ability: Its past, present, and future, pages 14–34.
ERIC.

Batia Laufer. 1989. What percentage of text-lexis is
essential for comprehension? In Christer Laurén
and Marianne Nordman, editors, Special language:
From humans thinking to thinking machines, pages
316–323.

Edward Loper and Steven Bird. 2002. NLTK: The nat-
ural language toolkit. In Proceedings of the ACL-02
Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Com-
putational Linguistics - Volume 1, ETMTNLP ’02,
pages 63–70, Stroudsburg, PA, USA. Association
for Computational Linguistics.

John W Oller, J Donald Bowen, Ton That Dien, and
Victor W Mason. 1972. Cloze tests in English,
Thai, and Vietnamese: Native and non-native per-
formance. Language Learning, 22(1):1–15.

Gustavo Paetzold and Lucia Specia. 2016. Semeval
2016 task 11: Complex word identification. In Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation (SemEval-2016), pages 560–569.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Ildikó Pilán, Elena Volodina, and Richard Johansson.
2014. Rule-based and machine learning approaches
for second language sentence-level readability. In
Proceedings of the ninth workshop on innovative use
of NLP for building educational applications, pages
174–184.

Sarah E. Schwarm and Mari Ostendorf. 2005. Read-
ing level assessment using support vector machines
and statistical language models. In Proceedings of
the 43rd Annual Meeting on Association for Com-
putational Linguistics, ACL ’05, pages 523–530,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

A. L. Uitdenbogerd, S. Kablaoui, and A. Martin. 2017.
Defining a unified model of vocabulary acquisition
via extensive reading : Final report. Grant Report
for the Office for Learning and Teaching.

A.L. Uitdenbogerd. 2005. Readability of French as
a foreign language and its uses. J. Kay, A. Turpin
and R. Wilkinson (ed.) ADCS 2005: Proceedings of
the Tenth Australasian Document Computing Sym-
posium, pages 19–25.

Sowmya Vajjala and Ivana Lucic. 2019. On under-
standing the relation between expert annotations of
text readability and target reader comprehension. In
Proceedings of the Fourteenth Workshop on Innova-
tive Use of NLP for Building Educational Applica-
tions, pages 349–359, Florence, Italy. Association
for Computational Linguistics.

Menglin Xia, Ekaterina Kochmar, and Ted Briscoe.
2016. Text readability assessment for second lan-
guage learners. In Proceedings of the 11th Work-
shop on Innovative Use of NLP for Building Educa-
tional Applications, pages 12–22.

139

Does Multi-Task Learning Always Help?
An Evaluation on Health Informatics Tasks

Aditya Joshi, Sarvnaz Karimi, Ross Sparks, Cécile Paris, C Raina MacIntyre
CSIRO Data61, Sydney, Australia

Kirby Institute, University of New South Wales, Sydney, Australia
{firstname.lastname}@csiro.au , r.macintyre@unsw.edu.au

Abstract

Multi-Task Learning (MTL) has been an at-
tractive approach to deal with limited labeled
datasets or leverage related tasks, for a vari-
ety of NLP problems. We examine the benefit
of MTL for three specific pairs of health in-
formatics tasks that deal with: (a) overlapping
symptoms for the same classification problem
(personal health mention classification for in-
fluenza and for a set of symptoms); (b) over-
lapping medical concepts for related classifi-
cation problems (vaccine usage and drug us-
age detection); and, (c) related classification
problems (vaccination intent and vaccination
relevance detection). We experiment with a
simple neural architecture: a shared layer fol-
lowed by task-specific dense layers. The nov-
elty of this work is that it compares alterna-
tives for shared layers for these pairs of tasks.
While our observations agree with the promise
of MTL as compared to single-task learning,
for health informatics, we show that the benefit
also comes with caveats in terms of the choice
of shared layers and the relatedness between
the participating tasks.

1 Introduction

Health informatics is the discipline concerned
with the systematic processing of data, infor-
mation and knowledge in medicine and health-
care (Hasman, 1998). Health informatics tasks
tend to be specific in terms of parameters such as
symptoms, regions of interest or the phenomenon
to be detected. As a result, datasets for different
health informatics tasks have been reported. How-
ever, it remains to be seen if these datasets or clas-
sification tasks help each other in terms of how
similar the participating datasets or tasks are. In
this paper, we examine the utility of Multi-Task
Learning (MTL) for several pairs of health infor-
matics tasks that are related in different ways.

MTL pertains to the class of learning algorithms
that jointly train predictors for more than one task.
In Natural Language Processing (NLP) research,
MTL using deep learning has been used either to
learn shared representations for related tasks, or
to deal with limited labeled datasets (Xue et al.,
2007; Zhang and Yeung, 2012; Søgaard and Gold-
berg, 2016; Ruder, 2017; Liu et al., 2017) for a
variety of NLP problems such as sentiment analy-
sis (Huang et al., 2013; Mishra et al., 2017). Most
of this work that uses MTL presents architectures
utilising multiple shared and task-specific layers.
In contrast, we wish to see if the benefit comes
from the simplistic notion of ‘learning these clas-
sifiers together’. Therefore, we use a basic archi-
tecture for our MTL experiments consisting of a
single shared layer and single task-specific lay-
ers, and experiment with different alternatives for
the shared layer. This simplicity allows us to un-
derstand the benefit of MTL in comparison with
Single-Task Learning (STL) for different configu-
rations of shared layers, for task pairs that are re-
lated in different ways.

We experiment with datasets of English tweets
for three pairs of boolean classification problems.
The first pair deals with two datasets which were
annotated for the same classification problem but
differed in their scope in terms of illnesses that
they cover. The second pair deals with different
classification problems with some overlap in terms
of the scope of medical concepts taken into ac-
count. The third pair deals with related classifica-
tion problems: one problem influences the proba-
bility of output of the other.

Through our experiments with simple architec-
tures for popular tasks in health informatics, we
examine the question:
‘Does multi-task learning always help?’

140

2 Related Work

MTL has been applied to a variety of text clas-
sification tasks (Søgaard and Goldberg, 2016; Xue
et al., 2007; Ruder, 2017; Zhang and Yeung, 2012;
Liu et al., 2017). The impact of task related-
ness on MTL has been explored in case of statis-
tical prediction models (Zhang and Yeung, 2012;
Ben-David and Schuller, 2003). In the case of
deep learning-based models, Bingel and Søgaard
(2017) show how fundamental NLP tasks (such as
MWE detection, POS tagging and so on) of dif-
ferent complexities perform when paired. (Mishra
et al., 2017) use MTL for two related tasks in opin-
ion mining: sentiment classificaton and sarcasm
classification. (Wu and Huang, 2016) use MTL for
personalisation of sentiment classification where
global and local classifiers are jointly learned. A
survey of MTL approaches using deep learning is
by (Ruder, 2017).

In the context of health informatics, MTL has
been applied in different kinds of tasks. Zou et al.
(2018) predict influenza counts based on search
counts for different geographical regions - how-
ever, they do not use a neural architecture. The
task in itself is similar to Pair 1 in our experi-
ments. Chowdhury et al. (2018) use MTL for
pharmacovigilance, where each tweet is labeled
with adverse drug reaction and indication labels.
This is similar to the drug usage detection task in
our experiments. For this, they use bi-directional
LSTM as the shared layer, in addition to other
task-specific layers before and after the shared
layer. Benton et al. (2017) use MTL for pre-
diction of mental health signals. Their architec-
ture uses multi-layer perceptrons as shared lay-
ers. Bingel and Søgaard (2017) use bi-directional
LSTM as the shared layer and compares different
pairs of NLP tasks. In contrast, we experiment
with three alternatives of shared sentence repre-
sentations. The above are classification formula-
tions for health informatics. MTL has also been
used for other tasks such as biomedical entity ex-
traction (Crichton et al., 2017), non-textual data
based on medical tests to predict disease progres-
sion (Zhou et al., 2011) and so on.

We use datasets introduced in past work for our
experiments. The sources of these datasets are de-
scribed in the appropriate sections. In addition to
the differences with past work as described above,
to the best of our knowledge, the results of a MTL
model have not been reported for the tasks and the

task pairs that we consider. Our systematic analy-
sis in terms of parameters of tasks and our experi-
mentation with different shared layers sets us apart
from past work.

3 Task Pairs Under Consideration

We consider three task pairs for our experimenta-
tion. These task pairs are related in different ways
allowing an investigation into understanding con-
figurations in terms of task relatedness in which
MTL may be useful. The three configurations can
be described as follows:

1. Overlapping symptoms for the same clas-
sification problem: The first pair corre-
sponds to the same classification problem:
personal health mention detection, i.e., to
predict if a given tweet reports an incidence
of an illness, for overlapping concepts. For
example, ‘I have been sneezing since morn-
ing’ is a true instance, while ‘Strong per-
fumes may cause sneezing’ is a false in-
stance. Although the definition of the clas-
sification tasks is the same, we consider a
pair of datasets that cover overlapping symp-
toms. The first dataset is labeled for per-
sonal health mentions of influenza, while the
second dataset is labeled for personal health
mentions of multiple symptoms, namely,
cough, cold, fever and diarrhoea. Thus,
this pair represents a configuration where the
overarching classification task is the same but
the set of multiple symptoms overlaps with
the symptoms of influenza1. We refer to this
as Pair 1.

2. Overlapping medical concepts for differ-
ent classification problems: As Pair 2, we
consider a pair of classification problems in-
volving overlapping medical concepts. The
tasks are: (1) Vaccination behaviour detec-
tion: To classify whether or not a person
has received or intends to receive a vaccine;
and, (2) Drug usage detection: To classify
whether or not a person has received or in-
tends to receive a medicinal drug. The rela-
tionship between these tasks arises because
of the relationship between the medical con-
cepts. For example, ‘I got a flu shot yester-
day’ is an instance of vaccine usage while ‘I

1https://www.cdc.gov/flu/consumer/
symptoms.htm; Last accessed on 3rd September, 2019.

141

took a pain-killer yesterday’ is an instance
of drug usage. Since a ‘vaccine’ is a spe-
cific type of a general medical entity ‘drug’2,
we expect that the classification tasks may be
semantically different but deal with overlap-
ping medical concepts.

3. Related classification problems: Finally,
Pair 3 corresponds to the configuration of re-
lated classification problems. The two classi-
fication problems that we consider are: (1)
Vaccine relevance detection: To classify
whether or not a tweet is relevant to vaccina-
tion; and, (2) Vaccine intent detection: To
classify whether or not a tweet expresses in-
tent to receive a vaccine. The classification
tasks in pair 3 bear a notion of implication
between them, because a tweet relevant to
vaccines can alone express intent to receive
a vaccine. For example, ‘I don’t think I will
get a flu shot this year’ is relevant to vaccines
but does not express vaccine intent.

For tasks in Pairs 1 and 2, we use datasets which
contain labels for either of the tasks. Since the
tasks in Pair 3 are related classification problems,
each instance contains labels for both the tasks.
The datasets were provided by three separate pa-
pers and may not contain purposeful overlaps.

4 MTL Architecture

We experiment with basic MTL architectures so as
to understand the contribution of MTL to a funda-
mental architecture. The basic outline of our MTL
architecture is shown in Figure 1. The input text is
converted to a vector of embeddings using an em-
bedding layer. This then goes to the shared sen-
tence representation (hereafter referred to as the
‘shared layer’ for the sake of brevity), followed by
the dropout layer. The dropout layer serves as an
input to two dense layers, one for each classifica-
tion task. The dotted rectangle in the architecture
represents the shared layer. This layer is expected
to capture the shared representation across the dif-
ferent classification tasks. In order to compare the
role of different shared layers, we experiment with
three configurations of neural layers as alternatives
for the shared layer: BiLSTM, Convolutional, and
BiLSTM followed by Convolutional. These are

2https://www.cdc.gov/vaccines/vac-gen/
imz-basics.htm; Last accessed on 3rd September, 2019.

represented as B, C and B + C in the rest of the
paper.

In the case of Pairs 1 & 2, each instance carries
values for exactly one of the two tasks because
they were derived from two sources. Therefore,
we consider it to be a case of missing labels. For
each instance, we add a mask value of minus one (-
1) for the label which is not present. We use a cus-
tomised loss function which skips instances that
bear the mask value. This means that instances
that do not carry a label for a classification task
are not incorporated when calculating the loss. For
Pair 3, both labels are available for each instance.
In this case, both labels are incorporated in com-
puting the training loss.

5 Experimental Setup

All our tasks involve boolean text classification.
We refer to the labels as ‘true’ and ‘false’ in the
rest of the paper, although the semantics of these
labels depend on the classification problem. We
use the following datasets for our experiments:

• Pair 1:

– As the ‘influenza’ dataset, We use the
dataset by Lamb et al. (2013) for in-
fluenza. The dataset contains 2,661
tweets (of which 1,304 are labeled as
true). The original paper reports an n-
gram baseline of 67%.

– As the ‘multiple symptoms’ dataset, we
use a dataset of 9,006 tweets (of which
2,306 are labeled as true) by (Robinson
et al., 2015). The tweets consist of ill-
nesses, such as cough, cold, fever, and
diarrhoea. No cross-validation results
on this dataset have been reported in the
original paper.

• Pair 2:

– For vaccination usage detection, we use
the dataset provided as a shared task as
reported in Weissenbacher et al. (2018).
The dataset consists of 5,751 tweets (of
which 1,692 are true). The winning
team by Joshi et al. (2018) reported a
F-score of 80.87% for 10-fold cross-
validation.

– For drug usage detection, we use 13,409
tweets (of which 3,167 are true) pro-
vided by Jiang et al. (2016). No cross-

142

Figure 1: Our MTL architecture.

Figure 2: STL architecture corresponding to our MTL architecture.

validation results on this dataset have
been reported in the original paper.

• Pair 3: We use a dataset of 10,688 tweets
by Dredze et al. (2016). Out of these, 9,517
are labeled true for vaccine relevance while
3,097 are labeled true for vaccine intent. No
experimental evaluation for these tasks has
been reported in the paper or its derivative pa-
pers, to the best of our knowledge.

Since these datasets have been reported in past pa-
pers, we use Tweepy3 to download the datasets
of tweets using their identifiers. To implement
the deep learning models, we use Keras (Chollet,
2015), with the Adam optimiser and binary cross-
entropy as the loss function during training, with

3http://www.tweepy.org/; Last accessed on 3rd
September, 2019.

a dropout of 0.25 and number of units for inter-
mediate layers as 25. We use word embeddings
with 200 dimensions, pre-trained on a Twitter cor-
pus using GLoVe (Pennington et al., 2014). These
embeddings have been trained on 2 billion tweets
with 27 billion tokens.

The general outline of our experimentation is
a comparison of MTL with the equivalent single-
task learning (STL) version. The corresponding
STL architecture is shown in Figure 2. This ar-
chitecture is identical to MTL, except that it sepa-
rately learns the classifiers for the two tasks. The
STL version uses one dense layer to obtain the
classification output after the embedding layer and
a layer to capture the semantic representation (the
equivalent of the shared layer in MTL). For all our
experiments, we report average accuracy and F-
score values on ten-fold cross-validation.

143

STL MTL

Shared Layer Acc. F-score Acc. F-score

Influenza

B 76.52 75.90 77.85 76.41
C 76.74 76.75 73.46 66.79
B+C 75.84 74.41 77.89 76.86

Multiple symptoms

B 78.49 48.48 75.34 56.50
C 74.91 54.43 79.58 44.29
B+C 78.39 45.34 79.28 51.31

Table 1: Accuracy and F-score (%) for Pair 1: Per-
sonal health mention detection for influenza and per-
sonal health mention detection for multiple symptoms.

6 Results

The effectiveness of Pair 1 for the three shared lay-
ers BiLSTM (B), Convolutional (C), and BiLSTM
plus Convolutional (B+C) is shown in Table 1.
These values are higher than the reported baseline
for the influenza detection task. For both tasks, B
and B+C result in an improvement when MTL is
used. The highest improvement is 6% in case of
influenza for B+C. However, there is a degrada-
tion when the shared layer is C. The improvement
in case of B and B+C for ‘Multiple symptoms’ is
statistically significant (p < 0.05, paired t-test).
The improvement in the case of influenza, how-
ever, is not statistically significant.

The corresponding effectiveness of Pair 2 is
shown in Table 2 for the pair: vaccine usage detec-
tion and drug usage detection. The best F-score for
vaccine usage detection is 76.82%, when a BiL-
STM layer is used as a shared representation in
the MTL architecture. The best F-score for drug
usage detection is 56.83%, when a combination of
BiLSTM and convolutional layers is used in a cor-
responding setting. We observe that, for vaccine
usage detection, there is an improvement of 2-3%
in case of either B or B+C. The improvement is
not statistically significant. Similar trends are ob-
served for Pair 3, as shown in Table 3. We observe
that the F-scores are also high (around 97-98%)
for vaccine relevance detection, purely due to the
skew in the dataset. However, we observe that, in
this case, the improvement in F-score when MTL
is used is observed only in the case of B+C. Since
vaccine intent implies vaccine relevance, our re-
sults show that MTL may not be beneficial for re-

STL MTL

Shared Layer Acc. F-score Acc. F-score

Vaccine Usage Detection

B 85.46 74.85 85.90 76.82
C 85.53 75.50 85.59 75.47
B+C 84.28 73.49 85.62 75.59

Drug Usage Detection

B 78.78 53.74 79.27 56.47
C 77.20 55.59 80.74 54.59
B+C 78.09 52.79 80.71 56.83

Table 2: Accuracy and F-score (%) for Pair 2: Vacci-
nation usage detection and drug usage detection.

STL MTL

Shared Layer Acc. F-score Acc. F-score

Vaccine Relevance Detection

B 97.71 98.80 97.40 98.64
C 97.60 98.75 97.27 98.58
B+C 97.56 98.73 97.86 98.88

Vaccine Intent Detection

B 75.72 75.29 86.55 78.93
C 86.03 76.93 83.88 75.00
B+C 85.62 75.59 85.82 77.15

Table 3: Accuracy and F-score (%) for Pair 3: Vaccine
relevance detection and vaccine intent detection.

lated classification tasks where one task implies
another.

It is possible that the benefit of MTL depends
on the size of the training set from the conjugate
task (i.e., tweets labeled for drug usage detection
in order to improve the effectiveness of vaccine us-
age detection). Therefore, the impact of the size of
training dataset on accuracy of four tasks of pairs
1 and 2, for the best performing architecture is
shown in Figure 3. In general, the performance
improves with an increase in training set size. The
improvement is higher for Pair 2 than Pair 1. The
datasets in Pair 2 were created using separate sets
of keywords (drug names versus vaccine names,
in specific), while the ones in Pair 1 were created
using overlapping sets of keywords. Thus, the ex-
tent of relatedness or similarity governs the perfor-
mance gain due to MTL. It may be noted that this
comparison is not relevant for Pair 3 since every

144

Figure 3: Change in accuracy values with an increase in the proportion of training set from the additional task in
the pair for pairs 1 and 2.

instance in the dataset contains both the labels.

7 Error Analysis

We analyse the errors in two parts. In the first part,
we compare errors made by the architectures that
use STL and MTL. This helps to understand sit-
uations in which MTL does better than STL. In
the second part, we evaluate errors made by MTL.
These can serve as pointers for future work.

We manually analyse 50 randomly selected er-
roneous instances each from STL and MTL for all
pairs of tasks. The benefit of MTL over STL was
observed in the following cases for Pairs 1 and 2:

• Pair 1: For personal health mention detec-
tion, false positives were observed in the
form of tweets that express the fear of flu
(for example, the tweet ‘i feel like im getting
sick!=[UGH piggy flu stay away!’ was mis-
classified) in the case of STL but not in MTL.
Errors due to figurative language (for exam-
ple, ‘because theres times when i want to just
check my facebook feed and not feel sick to
my stomach’) occurred with STL (6 out of 50)
more often than with MTL (2 out of 50).

• Pair 2: Errors in tweets where the speaker
was reluctant to take a drug (for example, the
tweet ‘do i take my migraine medicine and
pray for no interactions or do i take a muscle
relaxant or tramadol and hope for the best’
was mis-classified) were reduced when MTL

(1 out of 50) was used instead of STL (8 out
of 50).

We observe no specific patterns of errors for Pair 3
when we compare the mis-classified instances for
STL and MTL.

In contrast, an analysis of errors obtained from
MTL showed the following patterns:

• Errors in Pair 1 include long tweets which
contain a rant along with a personal health
mention (11 out of 50). For example, ‘8 hrs
sleep still feel like shit laying in pitch black
listening to my belly make some weird arsed
noises think im gunna hurl again’.

• Errors in Pair 2 include (a) Apprehen-
sions/fears expressed before a flu shot/Intent
to receive a flu shot (16 out of 50, in case of
vaccination usage detection); (b) Mentions of
a drug for dramatic effect (14 out of 50, in
case of drug usage detection). For example,
‘i dont usually remember drunk dreams. un-
less combined w melatonin’.

These show that MTL may be unable to guard
against topic drifts observed due to rants, appre-
hensions or dramatisation.

8 Conclusions & Future Work

We evaluate multi-task learning (MTL) for three
pairs of similar health informatics tasks deal-
ing with: (1) Overlapping symptoms (detection

145

of influenza and multiple symptoms); (2) Gen-
eral/specific medical concepts (detection of the us-
age of drugs and vaccines); and, (3) Related classi-
fication problems (vaccine relevance detection and
vaccine intent detection). We compare STL with
MTL where the pair of tasks are jointly learned for
three kinds of shared sentence representations. In
general, for shared layers based on BiLSTM and
BiLSTM + Convolutional, MTL helps the three
pairs. However, this improvement is not observed
when the Convolutional layer is used as a shared
representation. The improvement, wherever ap-
plicable, is around 2-4% for all the pairs. While
MTL has been considered almost a ‘silver bul-
let’ in situations where related classification prob-
lems or datasets are available, our results highlight
the caveats therein. We observe that the benefit
of MTL depends on the type of shared layer and
the relationship between the tasks under consider-
ation.

Our results show that MTL can help to lever-
age different datasets annotated for related health
informatics tasks. This is potentially useful since
specialised tasks are common in health informat-
ics and large datasets may or may not be available.
It remains to be verified if the benefit can be gener-
alised for other tasks. Similarly, while we present
the relatedness between the participating tasks in
a qualitative manner, their similarity could be em-
pirically determined as a future work. A correla-
tion between the similarity of classification tasks
and the expected benefit of MTL is a possible fu-
ture work.

References

Shai Ben-David and Reba Schuller. 2003. Exploiting
task relatedness for multiple task learning. In Learn-
ing Theory and Kernel Machines, pages 567–580.
Springer.

Adrian Benton, Margaret Mitchell, and Dirk Hovy.
2017. Multitask learning for mental health condi-
tions with limited social media data. In Proceedings
of the Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 152–
162, Valencia, Spain.

Joachim Bingel and Anders Søgaard. 2017. Identify-
ing beneficial task relations for multi-task learning
in deep neural networks. In Proceedings of the Con-
ference of the European Chapter of the Association
for Computational Linguistics, pages 164–169, Va-
lencia, Spain.

Franois Chollet. 2015. Keras. https://github.
com/fchollet/keras.

Shaika Chowdhury, Chenwei Zhang, and Philip S
Yu. 2018. Multi-task pharmacovigilance mining
from social media posts. In Proceedings of the
World Wide Web Conference, pages 117–126, Lyon,
France. International World Wide Web Conferences
Steering Committee.

Gamal Crichton, Sampo Pyysalo, Billy Chiu, and Anna
Korhonen. 2017. A neural network multi-task learn-
ing approach to biomedical named entity recogni-
tion. BMC bioinformatics, 18(1):368.

Mark Dredze, David Broniatowski, Michael Smith, and
Karen M Hilyard. 2016. Understanding vaccine re-
fusal: why we need social media now. American
journal of preventive medicine, 50(4):550–552.

Arie Hasman. 1998. Education and health informatics.
International journal of medical informatics, 52(1-
3):209–216.

Shu Huang, Wei Peng, Jingxuan Li, and Dongwon Lee.
2013. Sentiment and topic analysis on social media:
A multi-task multi-label classification approach. In
Proceedings of the Annual ACM web science confer-
ence, pages 172–181, Paris, France.

Keyuan Jiang, Ricardo Calix, and Matrika Gupta.
2016. Construction of a personal experience tweet
corpus for health surveillance. In Proceedings of the
ACL Workshop on biomedical natural language pro-
cessing, pages 128–135, Berlin, Germany.

Aditya Joshi, Xiang Dai, Sarvnaz Karimi, Ross Sparks,
Cecile Paris, and C Raina MacIntyre. 2018. Shot or
not: Comparison of nlp approaches for vaccination
behaviour detection. In Proceedings of the EMNLP
Workshop SMM4H: The 3rd Social Media Mining
for Health Applications Workshop & Shared Task,
pages 43–47.

Alex Lamb, Michael Paul, and Mark Dredze. 2013.
Separating fact from fear: Tracking flu infections
on Twitter. In Proceedings of the Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 789–795, Atlanta, Georgia.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2017.
Adversarial multi-task learning for text classifica-
tion. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics, pages 1–
10, Vancouver, Canada.

Abhijit Mishra, Kuntal Dey, and Pushpak Bhat-
tacharyya. 2017. Learning cognitive features from
gaze data for sentiment and sarcasm classification
using convolutional neural network. In Proceedings
of the Annual Meeting of the Association for Com-
putational Linguistics, pages 377–387, Vancouver,
Canada.

146

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the conference on
empirical methods in natural language processing,
pages 1532–1543, Doha, Qatar.

Bella Robinson, Ross Sparks, Robert Power, and Mark
Cameron. 2015. Social media monitoring for health
indicators. In International Congress on Modelling
and Simulation, Gold Coast, Australia.

Sebastian Ruder. 2017. An overview of multi-task
learning in deep neural networks. arXiv preprint
arXiv:1706.05098.

Anders Søgaard and Yoav Goldberg. 2016. Deep
multi-task learning with low level tasks supervised
at lower layers. In Proceedings of the Annual Meet-
ing of the Association for Computational Linguis-
tics, volume 2, pages 231–235, Berlin, Germany.

Davy Weissenbacher, Abeed Sarker, Michael Paul, and
Graciela Gonzalez-Hernandez. 2018. Overview of
the third social media mining for health (SMM4H)
shared tasks at EMNLP 2018. In Proceedings of
the EMNLP Workshop on The Social Media Mining
for Health Applications Workshop and Shared Task,
pages 13–16, Brussels, Belgium.

Fangzhao Wu and Yongfeng Huang. 2016. Person-
alized microblog sentiment classification via multi-
task learning. In Proceedings of the 13th AAAI Con-
ference on Artificial Intelligence.

Ya Xue, Xuejun Liao, Lawrence Carin, and Balaji Kr-
ishnapuram. 2007. Multi-task learning for classifi-
cation with dirichlet process priors. Journal of Ma-
chine Learning Research, 8(Jan):35–63.

Yu Zhang and Dit-Yan Yeung. 2012. A convex for-
mulation for learning task relationships in multi-task
learning. arXiv preprint arXiv:1203.3536.

Jiayu Zhou, Lei Yuan, Jun Liu, and Jieping Ye. 2011.
A multi-task learning formulation for predicting dis-
ease progression. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 814–822. ACM.

Bin Zou, Vasileios Lampos, and Ingemar Cox. 2018.
Multi-task learning improves disease models from
web search. In Proceedings of the World Wide Web
Conference, pages 87–96, Lyon, France. Interna-
tional World Wide Web Conferences Steering Com-
mittee.

147

An Improved Coarse-to-Fine Method for Solving Generation Tasks

Wenyu Guan1,2, Qianying Liu3, Guangzhi Han2, Bin Wang4 and Sujian Li1
1 Key Laboratory of Computational Linguistics, MOE, Peking University

2 School of Software and Microelectronics, Peking University
3 Graduate School of Informatics, Kyoto University

4 Xiaomi AI Lab, Xiaomi Inc.
{guanwy, hanguangzhi10, lisujian}@pku.edu.cn

ying@nlp.ist.i.kyoto-u.ac.jp, wangbin11@xiaomi.com

Abstract

The coarse-to-fine (coarse2fine) methods have
recently been widely used in the generation
tasks. The methods first generate a rough
sketch in the coarse stage and then use the
sketch to get the final result in the fine stage.
However, they usually lack the correction abil-
ity when getting a wrong sketch. To solve
this problem, in this paper, we propose an
improved coarse2fine model with a control
mechanism, with which our method can con-
trol the influence of the sketch on the final re-
sults in the fine stage. Even if the sketch is
wrong, our model still has the opportunity to
get a correct result. We have experimented
our model on the tasks of semantic parsing
and math word problem solving. The results
have shown the effectiveness of our proposed
model.

1 Introduction

The coarse-to-fine (coarse2fine) methods have
been applied in many generation tasks such as
machine translation (Xia et al., 2017) , abstract
writing (Wang et al., 2018b) and semantic pars-
ing (Dong and Lapata, 2018). They have shown
excellent performances but still have many disad-
vantages. Traditional coarse2fine models usually
tackle one task in two stages. In the first stage
(coarse stage), a low-level seq2seq model is used
to generate a rough sketch, which makes the data
more compact and alleviates the problem of data
sparsity. Some examples of sketches are shown in
Table 1. Besides, Sketches in this stage are also
easier to generate. Then, in the fine stage, both
text and previous sketches will be input to another
high-level seq2seq model to predict the final result
so that the high-level model can produce a precise
output.

In the coarse2fine models, the concept of tem-
plate sketch provides a new view of compiling a

rough template, but how to guarantee its quality
is still a problem. Meanwhile, details from the
fine stage will be filled into sketches to produce
the final result, so the quality of sketches serves an
essential influence on the result. If the generated
sketches are in high quality, the coarse2fine model
performs well. Otherwise, we fail to get an excel-
lent output. The main reason is that the sketch is
misleading and has no possibility to be corrected
once it is wrong.

In this paper, we propose an improved
coarse2fine model to solve this problem. It has a
similar framework which consists of two levels of
seq2seq models. First, the model predicts a rough
sketch in the coarse stage. In the fine stage, com-
pared with traditional coarse2fine model, we use
the generated sketches in the coarse stage as as-
sistant information to help the decoder. Besides,
We set a weight to control the degree of how
the sketch affects the fine stage. Higher weight
means that the fine stage is strictly guided by the
sketch. Lower weight will decrease the impact of
the sketch on the final output and give the model
more flexibility to generate the result which does
not rely on the sketch. For different tasks, we will
tune the weights by experience and make a bal-
ance between the sketch guidance and the model’s
correction ability.

Our model is a universal framework which can
apply on many generation tasks. In this work, we
apply it on two semantic parsing tasks (text2logic
and text2code) and math word problem (MWP)
solving task. Experimental results show that our
model achieves a better performance than some
baseline models in these tasks.

2 Related Work

In this section, we briefly introduce the tasks
where we experimented our model and also the

148

Tasks Type Example

Text2logic
logic (argmin $0 (and (place:t $0) (loc:t $0 s0)) (elevation:i $0))
sketch (argmin #1 (and place:t @1 loc:t @2) elevation:i @1)
text what is the lowest point in s0 ?

Text2code
code decode = curry(proxy method, method=bytes.decode)
sketch NAME = NAME(NAME, NAME=NAME.NAME)
text call the function curry with 2 arguments: proxy method and method

set to bytes.decode[bytes.decode], substitute the result for decode.

MWP
equation x = 150 + 2− 50
sketch x = 〈num〉+ 〈num〉 − 〈num〉
text There are 150 science books, and the storybooks are 50 books less than

the science books. How many books are there in the storybooks?

Table 1: Examples of text, sketches and generating goals in different datasets.

method we applied.

2.1 Semantic Parsing

Semantic parsing is a task of translating natu-
ral language into computer executable language
such as logic form, code in computer language
and SQL query. Traditional semantic parsing usu-
ally adopts rule based method Tang and Mooney
(2000); Wong and Mooney (2007); Andreas et al.
(2013). Recently, with the development of neu-
ral network techniques, there are many new se-
mantic parsing models with neural methods. Of
them, Seq2seq models have been widely applied
in semantic parsing tasks. The encoder encodes
the text and the decoder predicts the logic sym-
bols (Dong and Lapata, 2016). The seq2tree
model encodes inputs by LSTM and generates the
logic form by conditioning the output sequences
or trees on the encoding vectors.(Dong and Lap-
ata, 2016). Abstract syntax networks (ASN) repre-
sent the output as the abstract syntax trees (ASTs)
(Rabinovich et al., 2017). Its decoder uses a
dynamically-determined modular structure paral-
leling the structure of the output tree.

2.2 Math Word Problem

Math word problem (MWP) aims to teach comput-
ers to read the questions in natural language and
generate the corresponding math equations. The
methods of solving math word problems can be
mainly classified into two categories. The first cat-
egory is the template-based models which summa-
rize some templates through locating similar ques-
tions from a given dataset and then fill the con-
crete numbers into the templates to solve prob-
lems (Huang et al., 2017; Wang et al., 2017).

Some cases of math word problems, math equa-
tions, templates and sketches are shown in Ta-
ble 2 These methods are intuitive, but it is diffi-
cult to obtain high-quality templates due to data
sparsity and transfer them to other datasets. The
second category of methods mainly exploits the
seq2seq framework to generate the solution equa-
tions (Wang et al., 2018a). Recently this kind
of methods have shown outstanding performance
without manual feature engineering, but they are
prone to generate wrong numbers due to its gen-
eration flexibility. Some researches have applied
reinforcement learning (Huang et al., 2018) or a
stack (Chiang and Chen, 2018) to improve the de-
coding process.

2.3 Coarse-to-fine method

Generalized coarse-to-fine method divides prob-
lems into different stages and solves them from
coarse to fine. This method is widely applied in
computer vision (Gangaputra and Geman, 2006;
Pedersoli et al., 2011; Wen et al., 2019) and natu-
ral language process (Mei et al., 2016; Choi et al.,
2017). The special coarse-to-fine method in this
paper is based on end-to-end framework. It has
two seq2seq models, generating target data from
a coarse stage to a fine stage. Xia et al. (2017)
proposed polish mechanism with two levels of de-
coders. The first decoder generates a raw sequence
and the second decoder polishes and refines the
raw sentence with deliberation. Their model per-
forms excellently on machine translation and text
summarization, which is also the first time to use
this kind of coarse-to-fine model. Wang et al.
(2018b) used a similar framework to write pa-
per abstracts. In the fields of semantic pars-

149

Question Woodpeckers can eat 645 pests per day, and frogs can eat 608 pests in 8 days. How
many insects do woodpeckers eat more than frogs every day?

Equation x = 645− 608/8
Template x = 〈num1〉 − 〈num2〉/〈num3〉
Numbers {〈num1〉 : 645, 〈num2〉 : 608, 〈num3〉 : 8}
Question The garment factory originally planned to make 1080 sets of suits, which would be

completed in 20 days. Actually they finished 72 sets per day, How many sets they
produced everyday more than the original plan?

Equation x = 72− 1080/20
Template x = 〈num3〉 − 〈num1〉/〈num2〉
Numbers {〈num1〉 : 1080, 〈num2〉 : 20, 〈num3〉 : 72}
Question The shirt factory produced 640 shirts in the past 4 days, but now it produces 350

shirts per day. How many shirts it produces each day more than it used to ?
Equation x = 350− 640/4
Template x = 〈num3〉 − 〈num1〉/〈num2〉
Numbers {〈num1〉 : 640, 〈num2〉 : 4, 〈num3〉 : 350}
Sketch x = 〈num〉 − 〈num〉/〈num〉

Table 2: Examples of math word problems with different equations but same sketches.

ing, Dong and Lapata (2018) applied a two-level
coarse-to-fine model in text2logic, text2python
and text2SQL. This framework also shows signif-
icant improvement in these parsing tasks.

3 Problem Formulation

In this work, we aim at generating structured lan-
guages. Each instance contains a piece of text in
natural language withmwords {wi}m1 , generating
the target output {ei}|e|1 . We learn sketches {si}|s|1
from {wi}m1 . We decompose the probability distri-
bution p(e|w) into a combination of sketch’s con-
ditional probability:

p(e|w) = p(e|s, w)p(s|w) (1)

In this paper, we compute p(e|s, w) and p(s|w)
step by step:

p(s|w) =
|s|∏

t=1

p(st|s1,...,t−1, w) (2)

p(e|s, w) =
|e|∏

t=1

p(et|e1,...,t−1, s, w) (3)

3.1 Framework
The coarse2fine model consists of four main com-
ponents: text encoder, sketch decoder, sketch en-
coder, and final decoder.

During the coarse stage, the text encoder and
sketch decoder predicate sketch by computing

p(s|w) step by step. Then, in fine stage, the sketch
encoder will encode the sketch and the decoder
takes the text encoder’s output and sketch to com-
pute the probability distribution. The framework
is shown in Figure 1.

3.2 Coarse Stage

In the coarse stage, a basic seq2seq architecture is
used to generate sketches. Firstly, question text is
split into tokens and sent into an embedding layer.
Then, a two-layer bidirectional LSTM (Hochreiter
and Schmidhuber, 1997) will read the embedded
word one-by-one and produce a sequence of hid-
den states {qi}m1 :

qfi = LSTM(emb(wi), q
f
i−1) (4)

qbi = LSTM(emb(wi), q
b
i+1) (5)

qi = [qfi , q
b
i] (6)

Each decoding step, the embedding vector of
previously symbol and previous hidden state are
sent to LSTM. Then, we calculate the probability
distribution of the sketch through attention mech-

150

* -

150 502* -

there are 150 science

Fine

Decoding

Sketch

Decoding

Sketch

Encoding

Text

Encoding

Fine

Stage

Coarse

Stage

Figure 1: Improved Coarse-to-Fine Model framework.

anism:

hj = LSTM(emb(sj−1), hj−1)

(7)

aji = softmax(qihj) (8)

cj =
m∑

i=0

ajihj (9)

p(sj |s1,...,j−1, w) = softmax(U [tanh(

W [cj ;hj] + battn)] + b)
(10)

hj is the decoder hidden state in j step, aji is the
attention score, cj is the context vector. Beyond
that, U,W, battn and b are model’s parameters.

3.3 Fine Stage

In this stage, the fine decoder uses the sketch as
assistant information to predict the final result.
At the beginning of the fine stage, a bidirectional
LSTM is used as sketch encoder to encode the
sketch. After taking the encoded sketch as a part
of the input, the fine decoder has perceptions of
the whole sketch in low-level meaning. The pro-
cess of sketch encoding is similar to question en-
coding, while the difference is that the input of (4)
and (5) are changed to sketch symbols {si}|s|1 .

Then, the fine decoder will use the encoded
sketch to help its decoding process. As shown in
Figure 1, fine decoder shares the same common
text encoder with sketch decoder. The decoding
process of fine stage is also similar to sketch de-
coding (7)-(10), but the input of LSTM is designed

as follows:

it =

λ · vt−1 + (1− λ)emb(et−1),
et−1is determined byst−1

emb(et−1), otherwise
(11)

ht = LSTM(it, ht−1) (12)

If et−1 is determined by st−1, the input is the com-
bination of the embedding of et−1 and the sketch
encoder’s output vt−1. Otherwise, it is set as the
embedding of et−1. We assume the number of
sketch decoding outputs is the same shape as the
ones from fine decoding. So the et and the st are
aligned one by one. λ is a hyper parameter that
controls the combination of vt−1 and emb(et−1),
ranging from 0 to 1. It indicates how much the fine
decoder is guided by sketches. If λ is 1, the pro-
cess of fine decode will be strictly guided by the
sketch. Once the sketch is wrong, the fine decoder
has little possibilities to generate a correct result.
On the contrary, if λ is 0, the coarse stage will
become useless and our model will degrade into
one stage model. Like equations (7)-(10), we com-
pute the final probability distribution according to
w and s step by step. And p(et|e1,...,t−1, s, w) is
calculated analogously equation (10).

3.4 Model Training

As shown in equation (1), our goal is to maximize
the likelihood of sketches and optimize the final
results. It can be trained in a supervised way with
gold sketches and results. The objective function

151

aims to maximize L:

L = Lske + Lres (13)

Lske =
∑

(s,w)

log p(s|w) (14)

Lres =
∑

(s,w,e)

log p(e|s, w) (15)

(s, w, e) belongs to training pairs. When the
model is in testing mode, the final result is com-
puted according ŝ = argmaxs′ p(s

′ |w) and ê =

argmaxe′ p(e
′ |w, s). s′ and e

′
are sketch candi-

dates and result candidates.

4 Experiments

4.1 Dataset

Text-to-Logic In this task, we conduct our model
on GEO dataset, which contains 880 sentences
and their corresponding logical queries. Follow-
ing Dong and Lapata(2018)’s work, we extract
the sketches from λ-calculus-based meaning rep-
resentations. These sketches ignore the arguments
and variables and concentrate on operators and
logic structures. ”$” means an ignored argument
and ”#” represents an omitted token.
Text-to-Code We chose the Django dataset which
has 18805 pairs of natural language expression
texts and python codes. We get the sketches by re-
placing the objects, numbers, functions, and vari-
ables with their type names. The symbols of the
basic framework are reversed, such as keyword
and operators.
MWP Math23k is one of the most popular math
word problem datasets which has 23,162 Chinese
algebra problems. Each item contains a ques-
tion in Chinese, a math equation and a answer to
the question. To get sketches, we use a place-
holder 〈num〉 to replace the detail numbers in
math equations, so sketches only include operators
(”+-*/”) and 〈num〉. Another large-scale MWP
dataset is Dolphin23K, but its authors just release
a construction tool, so we can’t get the standard
data. All the experiments on it are finished by the
dataset’s author and they never release the code.
Because we can’t evaluate the result fairly, we give
up conducting our experiment on Dolphin23K.
Examples of original data and sketches of these
three datasets are shown in Table 1.

Dataset Train Dev Test
GEO 600 100 180

Django 16000 1000 1805
Math23k 21162 1000 1000

Table 3: Statics of datasets

Task Emb Hidden Epoch LR
Text2logic 150 250 50 0.005
Text2code 200 300 150 0.005

MWP 128 512 150 0.01

Table 4: Model parameters and training settings

4.2 Preprocess

To compare the result equally, we made our
preprocessing in accord with Dong and Lapata
(2018)’s experiment as much as possible. For
GEO, we followed Dong and Lapata’s work, trans-
forming all words into lower type and replacing
the entity mentions with a sign and a counting
number. And for Django, we chosed to use the
processed data given by Yin and Neubig (2017).
They tokenized and POS tagged sentences using
NLTK. In MWP, we followed Wang et al.’s work.
To reduce the influence of OOV, we normalized
numbers as the order of their appearance. Ex-
amples of some processed cases of Math23k are
shown in Table 2, who have same sketches.

4.3 Results

We has compared our improved coarse2fine model
with different published models. The optimizer is
Adam and many details of training and testing are
shown in Table 3 and Table 4. To compare the re-
sult equally, we chose the same model parameters
as Dong and Lapata (2018) in semantic parsing
tasks. Accuracy in this paper (except the MWP) is
calculated by comparing the generated result to the
gold result(sketches, logic expressions and Python
codes), while, in MWP, the accuracy means that
whether the math formula predicated by our model
it is equal to the given answer.

The results of text2logic are presented in Table
5. Dong and Lapata has experimented the seq2seq
and seq2tree method in this task. Seq2tree is a
novel framework that has the ability to generate a
sequence in hierarchical tree structure. It has an
excellent performance in semantic parsing tasks.
And Rabinovich et al. has used an abstract syn-
tax tree to generate logic expressions. In our ex-

152

Model Acc
Seq2seq (Dong and Lapata, 2016) 84.6%
Seq2tree (Dong and Lapata, 2016) 87.1%
Asn (Rabinovich et al., 2017) 85.7%
Asn+supatt (Rabinovich et al., 2017) 87.1%
One stage 85.0%
Coarse2fine (Dong and Lapata, 2018) 88.2%
Improved coarse2fine 88.6%

Table 5: Results of text2logic on GEO

Model Acc
Seq2seq+unk replacement 45.1%
Seq2tree+unk replacement 39.4%
Lpn+copy (Ling et al.) 62.3%
Snm+copy (Yin and Neubig, 2017) 71.6%
One stage 69.5%
Coarse2fine (Dong and Lapata, 2018) 74.1%
Improved coarse2fine 76.1%

Table 6: Results of text2code on Django

periment, the sketch decoder can get 89.3% accu-
racy and the highest accuracy of logic expression
is 88.6% when λ is 0.9. Compared to Dong and
Lapata’s model, our accuracy rise by 0.4%.

Table 6 reports the results of text2code task.
The accuracy of sketches in this task is 77.4%.
First two lines are Dong and Lapata’s experiments
with seq2seq model and seq2tree model. In ad-
dition, Ling et al. has designed Latent-Predictor-
Network with copy mechanism. And a syntac-
tic neural model also shows good performance
in code generation (Yin and Neubig, 2017). As
we can see, our model has an outstanding perfor-
mance in Django dataset. We achieve 76.1% ac-
curacy when λ is 0.6.

The results of MWP are shown in Table 7. As
mentioned in Section 2.2, models can be classi-
fied into various categories according to the way
they get the equation. Classification models get
templates through classifier based on Bi-LSTM or
Self-Attention (Robaidek et al., 2018). Generation
models get equations based on seq2seq models.
They are improved with many assistant compo-
nents. Chiang and Chen (2018) has used a stack,
so they could build a tree structure math formula
by pushing and popping generated items. Wang
et al. (2019) has designed a template-based model
which could predict the tree structure formula
from bottom to up. In our experiment, sketches
have 68.3% accuracy, whereas the accuracy of our

Model Acc
Self-Attention (Robaidek et al., 2018) 56.8%
Bi-LSTM (Robaidek et al., 2018) 57.9%
Seq2seq+stack (Chiang and Chen, 2018) 65.8%
T-RNN (Wang et al., 2019) 66.9%
Coarse2fine 66.7%
Improved coarse2fine 67.9%

Table 7: Result of MWP on Math 23K.

model reaches 67.9% when λ is 0.3.

4.4 Further Test and Analysis

We present the performance with different hyper
parameter λ in Table 8. For semantic parsing
tasks, our model has a more obvious improvement
in text2code. When λ is 1, the model is equal to
Dong and Lapata’s model and it has 74.9% ac-
curacy. With the decrease of λ, the influence of
sketch declines. In the range of (1, 0.6), the lower
λ gives the fine decoder more chances to generate
a correct result. When λ is lower than 0.6, correct
sketches’ help will be decreased, which leads to
a poor result . The model should keep λ in a ap-
propriate value, so it can take coarse2fine model’s
advantage and have chances to predict a correct
result even the sketch is wrong.

We are the first one to apply coarse2fine method
in MWP task. To check whether using sketches
makes a good contribution to this task, we sus-
pend the coarse stage and give gold sketches to
sketch encoder1. The hyper parameter λ is set to 1
so the equation generation will be strictly guided
by the sketch. We compared it with one stage
model (Wang et al., 2018a). As shown in Fig-
ure 2, our model can improve its accuracy highly
and shows faster convergence speed after applying
gold sketches. Also, its accuracy hits 77.0% under
such circumstances.

5 Conclusions

We propose an improved coarse-to-fine generating
model in this paper, which takes the advantages
of using sketches to help the generating process.
When the sketches have mistakes, our model still
has a chance to generate a correct result, which
will be conducive to the final accuracy. Besides,
it is a general framework for many tasks and easy

1Giving gold sketches to the sketch encoder in the former
two tasks has been accomplished by Dong and Lapata. The
accuracies are 93.9% and 83.0%

153

Task λ 1 0.8 0.6 0.4 0.2
Text2logic 88.2% 88.5% 87.8% 86.5% 85.2%
Text2django 74.9% 76.0% 76.1% 75.2% 74.9%
MWP 66.7% 66.9% 67.4% 67.8% 67.8%

Table 8: Accuracy of three tasks with different hyper parameters.

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

Epoch

D
ev

A
cc

coarse2fine
seq2seq

Figure 2: Training record of coarse2fine model and
seq2seq model.

to follow. We have conducted our model in many
generation tasks (text2logic, text2code, MWP). As
a result, compared with the basic model, our accu-
racy has increased by 0.4%, 2.0%, 1.2% respec-
tively in these three tasks.

Acknowledgments

We thank the anonymous reviewers for their help-
ful comments on this paper. This work was
partially supported by National Natural Science
Foundation of China (61572049 and 61876009).
The corresponding author is Sujian Li.

References
Jacob Andreas, Andreas Vlachos, and Stephen Clark.

2013. Semantic parsing as machine translation. In
Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 47–52.

Ting-Rui Chiang and Yun-Nung Chen. 2018.
Semantically-aligned equation generation for
solving and reasoning math word problems. arXiv
preprint arXiv:1811.00720.

Eunsol Choi, Daniel Hewlett, Jakob Uszkoreit, Illia
Polosukhin, Alexandre Lacoste, and Jonathan Be-
rant. 2017. Coarse-to-fine question answering for
long documents. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 209–220.

Li Dong and Mirella Lapata. 2016. Language to logi-
cal form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 33–43.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-
coding for neural semantic parsing. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 731–742.

Sachin Gangaputra and Donald Geman. 2006. A
design principle for coarse-to-fine classification.
In Proceedings of the 2006 IEEE Computer So-
ciety Conference on Computer Vision and Pat-
tern Recognition-Volume 2, pages 1877–1884. IEEE
Computer Society.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Danqing Huang, Jing Liu, Chin-Yew Lin, and Jian Yin.
2018. Neural math word problem solver with rein-
forcement learning. In Proceedings of the 27th In-
ternational Conference on Computational Linguis-
tics, pages 213–223.

Danqing Huang, Shuming Shi, Chin-Yew Lin, and Jian
Yin. 2017. Learning fine-grained expressions to
solve math word problems. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 805–814.

Wang Ling, Edward Grefenstette, Karl Moritz Her-
mann, Tomáš Kociskỳ, Andrew Senior, Fumin
Wang, and Phil Blunsom. Latent predictor networks
for code generation.

Hongyuan Mei, TTI UChicago, Mohit Bansal, and
Matthew R Walter. 2016. What to talk about and
how? selective generation using lstms with coarse-
to-fine alignment. In Proceedings of NAACL-HLT,
pages 720–730.

Marco Pedersoli, Andrea Vedaldi, and Jordi Gonzàlez.
2011. A coarse-to-fine approach for fast deformable
object detection. In CVPR 2011, pages 1353–1360.
IEEE.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract syntax networks for code genera-
tion and semantic parsing. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1139–1149.

154

Benjamin Robaidek, Rik Koncel-Kedziorski, and Han-
naneh Hajishirzi. 2018. Data-driven methods for
solving algebra word problems. arXiv preprint
arXiv:1804.10718.

Lappoon R Tang and Raymond J Mooney. 2000. Au-
tomated construction of database interfaces: Inte-
grating statistical and relational learning for seman-
tic parsing. In Proceedings of the 2000 Joint SIG-
DAT conference on Empirical methods in natural
language processing and very large corpora: held in
conjunction with the 38th Annual Meeting of the As-
sociation for Computational Linguistics-Volume 13,
pages 133–141. Association for Computational Lin-
guistics.

Lei Wang, Yan Wang, Deng Cai, Dongxiang Zhang,
and Xiaojiang Liu. 2018a. Translating a math word
problem to a expression tree. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 1064–1069.

Lei Wang, Dongxiang Zhang, Jipeng Zhang, Xing Xu,
Lianli Gao, Bingtian Dai, and Heng Tao Shen. 2019.
Template-based math word problem solvers with re-
cursive neural networks.

Qingyun Wang, Zhihao Zhou, Lifu Huang, Spencer
Whitehead, Boliang Zhang, Heng Ji, and Kevin
Knight. 2018b. Paper abstract writing through edit-
ing mechanism. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 260–265.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 845–
854.

Yang Wen, Bin Sheng, Ping Li, Weiyao Lin, and
David Dagan Feng. 2019. Deep color guided coarse-
to-fine convolutional network cascade for depth im-
age super-resolution. IEEE Transactions on Image
Processing, 28(2):994–1006.

Yuk Wah Wong and Raymond Mooney. 2007. Learn-
ing synchronous grammars for semantic parsing
with lambda calculus. In Proceedings of the 45th
Annual Meeting of the Association of Computational
Linguistics, pages 960–967.

Yingce Xia, Fei Tian, Lijun Wu, Jianxin Lin, Tao Qin,
Nenghai Yu, and Tie-Yan Liu. 2017. Deliberation
networks: Sequence generation beyond one-pass de-
coding. In Advances in Neural Information Process-
ing Systems, pages 1784–1794.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 440–450.

155

Abstract

Background: Datasets available for abstract

sentence classification modelling are

predominately comprised of abstracts

sourced from biomedical research.

Aims: To contribute a large non-biomedical

multidisciplinary dataset for abstract

sentence classification model research.

Method: Bulk extract and transformation of

Emerald Group Publishing structured

abstracts indexed on Scopus.

Results: We present the largest

multidisciplinary dataset for abstract

sentence classification modelling,

consisting of 1,050,397 sentences from

103,457 abstracts.

1 Introduction

Abstracts enable researchers to efficiently

determine the relevance of literature to their

research (Rowley, 1982, Collision, 1971,

Cleveland and Cleveland, 2013). The desire to

optimise this efficiency has resulted in the adoption

of structured abstracts, which feature explicit

headings reflecting key characteristics of a study.

Examples of these headings include: aim, method,

results and contributions. The alternative to

structured abstracts are those where sentences

addressing such characteristics are not specified.

Compared to unstructured alternatives,

structured abstracts are perceived to offer greater

value for researchers (Sharma and Harrison, 2006,

Taddio et al., 1994 and Guimarães, 2006); permit

advanced access to research findings (Mosteller et

al., 2004), contain more relevant information

(Budgen et al., 2008) and are easier to read

(Kitchenham et al., 2008 and Budgen et al., 2008).

Structured abstracts also increase the likelihood

that relevant research is discovered (Eldredge,

2006, Mulrow, 1987, Haynes et al., 1990, Hartley,

1997, Bayley et al., 2002 and Bayley and Eldredge,

2003).

Natural language processing (NLP) has been

used to automate the structuring of unstructured

abstracts (Gonçalves et al., 2018; Jin and Szolovits,

2018, Dernoncourt et al., 2016); which is achieved

through the development of Abstract Sentence

Classification Models (ASCM), capable of

classifying sentences sourced from unstructured

abstracts into structured abstract headings.

This paper presents a novel dataset to advance

ASCM research. The dataset introduced is unlike

those already leveraged in ASCM development,

primarily as it is comprised of abstracts originating

from disciplines not yet explored in current

research. The adoption of our dataset in future

model development will enable the benchmarking

of ASCM capability in new disciplines.

2 Related Work

There are numerous datasets available to

researchers seeking to develop ASCM. These are

outlined in table 1, an extension of the table

presented by Dernoncourt and Lee (2017, p. 3). We

extend their table by identifying the abstract’s

disciplinary domain. The size represents the

number of abstracts reflected in the dataset. The

‘manual’ flag identifies if sentences were manually

classified into structured abstract headings by the

authors (Y) or were pre-structured in the original

abstract (N).

The number of datasets available for ASCM

does not directly correspond to the number of

ASCM studies, as researchers re-use datasets to

benchmark performance and to test novel

algorithms. Further, studies may develop a dataset

for model development without contributing the

dataset as an artefact. Dernoncourt and Lee (2017)

also presented a dataset in a standalone paper,

Emerald 110k:

A Multidisciplinary Dataset for Abstract Sentence Classification

Connor Stead 1 Stephen Smith 1 Peter Busch 1 Savanid Vatanasakdakul 2

1 Department of Computing, Macquarie University, Australia

2 Carnegie Mellon University, Qatar

connor.stead@hdr.mq.edu.au stephen.smith@mq.edu.au

peter.busch@mq.edu.au savanid@cmu.edu

156

much like this body of work. Table 2 provides a

summary of ASCM development efforts, along

with the dataset used in model development.

Dataset Size Manual Domain

Hara et al. (2007) 200 Y BM (RCT)

Hirohata et al. (2008) 104k N BM

Chung (2009) 327 Y BM (RCT)

Boudin et al. (2010) 29k N BM

Kim et al. (2011) 1k Y BM

Huang et al. (2011) 23k N BM

Robinson (2012) 1k N BM (RCT)

Zhao et al. (2012) 20k Y BM

Davis and Mollá (2012) 194 N BM (RCT)

Huang et al. (2013) 20k N BM (RCT)

Dernoncourt and Lee

(2017)
196k N BM (RCT)

Table 1: Existing ASCM datasets, BM = Biomedicine

RCT = Randomised Controlled Trials.

It is evident the dataset contributed by Kim et al.

(2011) and Dernoncourt and Lee (2017) enjoys

significant adoption in ASCM development. This

dataset represents in practice the concern that the

almost exclusive benefactor of advancements in

ASCM studies are researchers in the biomedical

discipline, and that the abstracts of non-biomedical

disciplines have predominately not been included

in model development.

There are a few studies representing exceptions

to the biomedical exclusive trend. These are

identified in table 2 with an asterisk (*). The first

example is Teufel and Moens (1998), who

developed a Naive Bayes classifier using sentences

retrieved from 201 computational linguistics and

cognitive science abstracts, achieving 68.6%

precision (p. 24). Further non-biomedical

examples include Wu et al. (2006) who used the

computer and information science academic index

Citeseer as an abstract source and Liu et al. (2013)

who used ScienceDirect, a primarily scientific and

health science academic literature index. These

datasets are not available for researcher utilisation.

In response to the lack of disciplinary diversity,

we are exploring greater non-biomedical grounded

ASCM development. We desire to increase the

likelihood that ASCM capability can become a

viable inter-disciplinary mechanism to increase

research discovery and accessibility. As part of our

research, we have created a novel multi-

disciplinary abstract sentence dataset for future

ASCM development. The dataset development

process is outlined in the following section.

Study Dataset

Teufel and Moens

(1998) *

Study developed

(Computation and language

archive)

McKnight and

Srinivasan (2003)

Study developed

(Medline)

Shimbo et al. (2003) Study developed

(Medline)

Ito et al. (2004) Study developed

(Medline)

Yamamoto and Takagi

(2005)

Study developed

(Medline)

Wu et al. (2006) * Study developed

(Citeseer)

Lin et al. (2006) Study developed

Xu et al. (2006) Study developed

(RCT – source unknown)

Ruch et al. (2007) Study developed

(Medline)

Hirohata et al. (2008) Study developed

(Medline)

Chung (2009) Study developed

(Medline)

Kim et al. (2011) Study developed

(Medline)

Lui (2012) Kim et al., 2011

Verbeke et al. (2012) Kim et al., 2011

Liu et al. (2013) * Study developed

(Science Direct)

Hassanzadeh et al.

(2014)

Kim et al., 2011

Dernoncourt et al.

(2016)

Kim et al., 2011

Dernoncourt et al., 2016

Nam et al. (2016) Study developed

(PubMed)

Jin and Szolovits (2018) Kim et al., 2011

Dernoncourt and Lee, 2017

Gonçalves et al. (2018) Dernoncourt and Lee, 2017

Table 2: Existing ASCM studies.

3 Dataset Development

We present a novel abstract sentence dataset for

ASCM research. The dataset contains sentences

retrieved from multi-disciplinary non-biomedical

journal abstracts. Each sentence is classified as

belonging to one of the following heading classes:

• Purpose

• Design/methodology/approach

• Findings

• Originality/value

• Social implications

• Practical implications

• Research limitations/implications

157

3.1 Abstract Identification

As of 2019, Emerald Group Publishing

(henceforth: Emerald) publishes over 300 double-

blind peer reviewed journals (Emerald Group

Publishing, 2019). Emerald journals publish

research from management, information science

and engineering disciplines. This includes fields

such as aerospace technology, management

information systems, corporate governance,

marketing, computing, accounting, public health,

supply chain management and tourism (Emerald

Group Publishing, 2019).

In 2005 Emerald began mandating the use of

structured abstracts in their journal publications

(Emerald Group Publishing Limited, 2005). The

multidisciplinary nature of Emerald’s journal

portfolio combined with their mandated structured

abstract adoption policy has resulted in a unique

opportunity for ASCM development. However,

existing ASCM research has failed to leverage

Emerald journal abstracts for model development.

3.2 Abstract Extract

The Scopus academic literature index was

utilised to obtain Emerald journal abstracts. This

was due to the availability of an API to access

Scopus content, as well as the reach and scope of

the index. An initial examination of Scopus

identified 336 Emerald journals available where

research was published between 2005 and 2019.

This count indicated that the Emerald portfolio was

widely available through Scopus.

After determining the availability of Emerald

journals on Scopus, we developed a Python

program capable of autonomously querying

Scopus for Emerald journal records, downloading

results and storing them on a local machine. This

was made possible by Elsevier’s Scopus API

(https://dev.elsevier.com/) and the Python package

Pybliometrics (https://github.com/pybliometrics-

dev/pybliometrics).

The program processed a CSV file containing a

list of Emerald journal ISSN codes. The program

iterated over each observation in the CSV, querying

Scopus for all publications from the journal

between 2004 and 2019. The year 2004 was chosen

as it was possible that some journals adopted

structured abstracts prior to 2005, the time in which

Emerald mandated the use of structured abstracts

across their publications (Emerald Group

Publishing Limited, 2005). The downloaded

observations did not include the full text of the

article, only metadata such as: DOI, article title,

authors, publication date and the abstract.

There were 138,613 journal article metadata

observations retrieved from the Scopus queries.

These were exported into a Microsoft Excel

workbook for manual unstructured/structured

abstract classification. An abstract was deemed to

be structured if it featured the Emerald structured

abstract headings and these headings were used to

separate components of what would otherwise

have been free text abstracts. As a result, 109,608

abstracts were classified as structured, with the

remaining abstracts discarded.

3.3 Abstract Sentence Transformation

Existing datasets utilised in ASCM research are

presented as sentence level observations, featuring

a sentence string with its corresponding structured

abstract class. To ensure easy adoption in model

development, it was necessary to deconstruct the

abstracts into sentences, whilst maintaining the

structured abstract class they reflected.

A program was developed which processed each

abstract, identifying the locations of the structured

headings and treating them as delimiters. This

segmented the base abstract string into heading

level substrings. We then used a tokenizer to split

these into sentence strings, which were reviewed to

identify data quality issues such as: sentences

incorrectly split from the tokenizer (for example,

seeing i.e. as an end of sentence condition),

presence of a copyright indicator as the last

sentence observation and invalid heading classes.

Any data quality issues identified were managed

either through sentence modification or removal of

the base abstract; which ensured the dataset

contained all sentences from base abstracts.

3.4 Resulting Dataset

Post sentence transformation, we formed a

dataset consisting of 1,050,397 sentences

originating from 103,457 abstracts. A heading level

summary of the sentence abstract count is provided

in table 3. Sentence per abstract and token per

sentence frequency as well as descriptive statistics

are provided in figures 1 and 2. We note the low

frequency for the ‘Social implications’ class. Table

4 identifies the sentence and abstract counts for the

top 15 (of 406) journals featuring abstracts. This

demonstrates its multidisciplinary nature.

We named our dataset Emerald 110k, following

the ASCM dataset naming convention set by

158

Dernoncourt and Lee (2017) with their biomedical

dataset PubMed 200k. The 110k reflects the

103,457 Emerald abstracts from which sentences

originate. Our dataset is available via GitHub

(https://github.com/connorstead/emerald_ascm) in

.CSV, .SAS7BDAT and Python .PKL to enable

cross platform utilisation.

Heading Sentences Abstracts

Purpose 198,277 103,394

Design/methodology/approach 223,312 101,328

Findings 269,321 103,268

Originality/value 187,986 102,559

Social implications 26 15

Practical implications 92,243 48,689

Research limitations

/implications

79,232 40,544

Table 3: Heading level summary of resulting dataset

Figure 1: Sentence per Abstract Frequency. Minimum:

1 Maximum: 60 Mean: 10.1530 Standard Deviation:

3.4253 Skewness: 1.2720 Kurtosis: 5.2848

Figure 2: Tokens per Sentence Frequency. Minimum: 1

Maximum: 309 Mean: 23.34 Standard Deviation:

10.4790 Skewness: 1.3217 Kurtosis: 5.5276

Journal (ISSN) Sentences Abstracts

International Journal for

Computation and Mathematics

in Electrical and Electronic

Engineering (03321649)

16,659 1,627

British Food Journal

(0007070X)

15,821 1,477

Kybernetes (0368492X) 14,676 1,513

Management Decision

(00251747)

14,518 1,455

International Journal of

Numerical Methods for Heat

and Fluid Flow (09615539)

12,365 1,217

European Journal of Marketing

(03090566)

12,283 1,136

Industrial Management and

Data Systems (02635577)

10,728 978

International Journal of

Contemporary Hospitality

Management (09596119)

10,629 1,046

Engineering Computations

(02644401)

10,471 1,026

International Journal of Social

Economics (03068293)

9,730 970

Industrial Lubrication and

Tribology (00368792)

9,611 941

Rapid Prototyping Journal

(13552546)

9,593 863

Strategic Direction (02580543) 9,355 1,267

Benchmarking (14635771) 9,343 815

Journal of Knowledge

Management (13673270)
9,017 859

Table 4: Sentence and abstract frequency for the top 15

journals in the dataset (ordered by sentence count)

4 Conclusion and Ongoing Research

This paper explored the development of a novel

dataset for ASCM research. The novelty of this

dataset is primarily due to its composition of

abstract sentences from a range of non-biomedical

disciplinary literature. Our dataset is also the

second largest dataset available. It offers a unique

opportunity for ASCM researchers to explore the

performance of their models outside of biomedical

abstract datasets.

Our future research is concerned with expanding

ASCM outside of biomedicine and providing

associated advancements to new disciplines.

Accordingly, we are utilizing this dataset in our

own exploration of state of the art ASCM

development. We also intend to update this dataset

as additional Emerald structured abstracts are

published each year, whilst seeking to identify new

sources of structured abstracts for ASCM research.

159

5 Acknowledgements

The authors wish to acknowledge the Australian

Government Research Training Program

Scholarship which enabled this research to take

place.

6 References

Bayley, L., & Eldredge, J. (2003). The structured

abstract: an essential tool for researchers.

Hypothesis, 17(1), 11-13.

Bayley, L., Wallace, A., & Brice, A. (2002). Evidence

based librarianship implementation committee.

research results, dissemination task force

recommendations. Hypothesis, 16(1), 6-8.

Boudin, F., Nie, J.-Y., Bartlett, J. C., Grad, R., Pluye,

P., & Dawes, M. (2010). Combining classifiers for

robust PICO element detection. BMC Medical

Informatics Decision Making, 10(1), 29.

Budgen, D., Kitchenham, B. A., Charters, S. M.,

Turner, M., Brereton, P., & Linkman, S. G. (2008).

Presenting software engineering results using

structured abstracts: a randomised experiment.

Empirical Software Engineering, 13(4), 435-468.

Chung, G. Y. (2009). Sentence retrieval for abstracts of

randomized controlled trials. BMC Medical

Informatics Decision Making, 9(1), 10.

Cleveland, A. D., & Cleveland, D. B. (2013).

Introduction to indexing and abstracting. Santa

Barbara, California: ABC-CLIO.

Collison, R. L. (1971). Abstracts and abstracting

services. Santa Barbara, California: ABC-CLIO.

Davis-Desmond, P., & Mollá, D. (2012). Detection of

evidence in clinical research papers. Paper

presented at the Proceedings of the Fifth

Australasian Workshop on Health Informatics and

Knowledge Management-Volume 129.

Dernoncourt, F., & Lee, J. Y. (2017). Pubmed 200k rct:

a dataset for sequential sentence classification in

medical abstracts. arXiv preprint arXiv:.06071.

Dernoncourt, F., Lee, J. Y., & Szolovits, P. (2016).

Neural networks for joint sentence classification in

medical paper abstracts. arXiv preprint

arXiv:.05251.

Eldredge, J. (2006). Evidence-based librarianship: the

EBL process. Library hi tech, 24(3), 341-354.

Emerald Group Publishing Limited. (2005). Emerald

structured abstracts have arrived! Journal of

Managerial Psychology, 20(1).

Emerald Group Publishing Limited. (2019). Emerald |

Product Information | Journals. Retrieved from

https://www.emeraldgrouppublishing.com/product

s/journals/index.htm

Gonçalves, S., Cortez, P., & Moro, S. (2018). A Deep

Learning Approach for Sentence Classification of

Scientific Abstracts. Paper presented at the

International Conference on Artificial Neural

Networks.

Guimarães, C. A. (2006). Structured abstracts:

narrative review. Acta cirurgica brasileira, 21(4),

263-268.

Hara, K., & Matsumoto, Y. (2007). Extracting clinical

trial design information from MEDLINE abstracts.

New Generation Computing, 25(3), 263-275.

Hartley, J. (1997). Is it appropriate to use structured

abstracts in social science journals? Learned

Publishing, 10(4), 313-317.

Hassanzadeh, H., Groza, T., & Hunter, J. (2014).

Identifying scientific artefacts in biomedical

literature: The Evidence Based Medicine use case.

Journal of Biomedical Informatics, 49, 159-170.

Haynes, R. B., Mulrow, C. D., Huth, E. J., Altman, D.

G., & Gardner, M. J. (1990). More informative

abstracts revisited. Annals of internal medicine,

113(1), 69-76.

Hirohata, K., Okazaki, N., Ananiadou, S., & Ishizuka,

M. (2008). Identifying sections in scientific

abstracts using conditional random fields. Paper

presented at the Proceedings of the Third

International Joint Conference on Natural Language

Processing: Volume-I.

Huang, K.-C., Chiang, I.-J., Xiao, F., Liao, C.-C., Liu,

C. C.-H., & Wong, J.-M. (2013). PICO element

detection in medical text without metadata: Are first

sentences enough? Journal of Biomedical

Informatics, 46(5), 940-946.

Huang, K.-C., Liu, C. C.-H., Yang, S.-S., Xiao, F.,

Wong, J.-M., Liao, C.-C., & Chiang, I.-J. (2011).

Classification of PICO elements by text features

systematically extracted from PubMed abstracts.

Paper presented at the 2011 IEEE International

Conference on Granular Computing.

Ito, T., Shimbo, M., Yamasaki, T., & Matsumoto, Y.

(2004). Semi-supervised sentence classification for

medline documents. Methods, 138, 141-146.

Jin, D., & Szolovits, P. (2018). Hierarchical Neural

Networks for Sequential Sentence Classification in

Medical Scientific Abstracts. arXiv preprint

arXiv:.06161.

Kim, S. N., Martinez, D., Cavedon, L., & Yencken, L.

(2011). Automatic classification of sentences to

support evidence based medicine. Paper presented

at the BMC bioinformatics.

160

Kitchenham, B. A., Brereton, O. P., Owen, S., Butcher,

J., & Jefferies, C. (2008). Length and readability of

structured software engineering abstracts. IET

software, 2(1), 37-45.

Lin, J., Karakos, D., Demner-Fushman, D., &

Khudanpur, S. (2006). Generative content models

for structural analysis of medical abstracts. Paper

presented at the Proceedings of the hlt-naacl bionlp

workshop on linking natural language and biology.

Liu, Y., Wu, F., Liu, M., & Liu, B. (2013). Abstract

sentence classification for scientific papers based on

transductive SVM. Computer Information Science,

6(4), 125.

Lui, M. (2012). Feature stacking for sentence

classification in evidence-based medicine. Paper

presented at the Proceedings of the Australasian

Language Technology Association Workshop 2012.

McKnight, L., & Srinivasan, P. (2003). Categorization

of sentence types in medical abstracts. Paper

presented at the AMIA Annual Symposium

Proceedings.

Mosteller, F., Nave, B., & Miech, E. J. (2004). Why we

need a structured abstract in education research.

Educational Researcher, 33(1), 29-34.

Mulrow, C. D. (1987). The medical review article:

state of the science. Annals of internal medicine,

106(3), 485-488.

Nam, S., Kim, S.-K., Kim, H.-G., Ngo, V., & Zong, N.

(2016). Structuralizing biomedical abstracts with

discriminative linguistic features. Computers in

Biology Medicine, 79, 276-285.

Robinson, K. A., Saldanha, I. J., & Mckoy, N. A.

(2011). Development of a framework to identify

research gaps from systematic reviews. Journal of

Clinical Epidemiology, 64(12), 1325-1330.

Rowley, J. E. (1982). Abstracting and indexing.

London: Clive Bingley.

Ruch, P., Boyer, C., Chichester, C., Tbahriti, I.,

Geissbühler, A., Fabry, P., . . . Lovis, C. (2007).

Using argumentation to extract key sentences from

biomedical abstracts. International Journal of

Medical Informatics, 76(2-3), 195-200.

Sharma, S., & Harrison, J. E. (2006). Structured

abstracts: do they improve the quality of

information in abstracts? American journal of

orthodontics dentofacial orthopedics, 130(4), 523-

530.

Shimbo, M., Yamasaki, T., & Matsumoto, Y. (2003).

Using sectioning information for text retrieval: a

case study with the medline abstracts. Paper

presented at the Proceedings of Second

International Workshop on Active Mining (AM'03).

Taddio, A., Pain, T., Fassos, F. F., Boon, H., Ilersich, A.

L., & Einarson, T. R. (1994). Quality of

nonstructured and structured abstracts of original

research articles in the British Medical Journal, the

Canadian Medical Association Journal and the

Journal of the American Medical Association.

CMAJ: Canadian Medical Association Journal,

150(10), 1611.

Teufel, S., & Moens, M. (1998). Sentence extraction

and rhetorical classification for flexible abstracts.

Paper presented at the AAAI Spring Symposium on

Intelligent Text summarization.

Verbeke, M., Van Asch, V., Morante, R., Frasconi, P.,

Daelemans, W., & De Raedt, L. (2012). A statistical

relational learning approach to identifying evidence

based medicine categories. Paper presented at the

Proceedings of the 2012 Joint Conference on

Empirical Methods in Natural Language Processing

and Computational Natural Language Learning.

Wu, J.-C., Chang, Y.-C., Liou, H.-C., & Chang, J. S.

(2006). Computational analysis of move structures

in academic abstracts. Paper presented at the

Proceedings of the COLING/ACL on Interactive

presentation sessions.

Xu, R., Supekar, K., Huang, Y., Das, A., & Garber, A.

(2006). Combining text classification and hidden

markov modeling techniques for structuring

randomized clinical trial abstracts. Paper presented

at the AMIA Annual Symposium Proceedings.

Yamamoto, Y., & Takagi, T. (2005). A sentence

classification system for multi biomedical literature

summarization. Paper presented at the 21st

International Conference on Data Engineering

Workshops (ICDEW'05).

Zhao, J., Bysani, P., & Kan, M.-Y. (2012). Exploiting

classification correlations for the extraction of

evidence-based practice information. Paper

presented at the AMIA Annual Symposium

Proceedings.

161

FindHer: a Filter to Find Women Experts

Gabriela Ferraro
CSIRO Data61, Canberra, Australia

Australian National University, Australia
gabriela.ferraro@data61.csiro.au

Zoe Piper
CSIRO, Canberra, Australia
zoe.piper@csiro.au

Rebecca Hinton
CSIRO, Canberra, Australia

rebecca.hinton@csiro.au

Abstract

Women are underrepresented in many spheres
of our societies, including research. A com-
mon excuse for exclusively male line-ups is
that suitable women could not be found. One
way of promoting visibility of women in in-
dustry and academia is to explicitly provide
solutions to find them. Expert Connect is a
publicly searchable database of Australia’s re-
searchers that now includes FindHer, a filter to
find women experts in any field of research. In
this industry paper, we evaluate Natural Lan-
guage Processing and Computer Vision tech-
nologies for gender determination within the
aim of automating gender profile tagging for
FindHer. We found current off-the-shelf tools
are highly effective in detecting gender from
names and photos. Nevertheless, a human-
in-the-loop approach should be preferred to
a fully automatic one, since ethical concerns
might arise.

1 Introduction

Women representation remains critically low in a
range of fields, including the research sector (Lar-
ivire et al., 2013; West et al., 2013; Mihaljevic-
Brandt et al., 2016; Bonham and Stefan, 2017).
A common excuse for exclusively male line-ups
is that suitable women could not be found. This
has led to a proliferation of initiatives encourag-
ing women to list their details in various skills and
expertise related directories. These directories are
then promoted to conference organisers, company
boards, investor groups, the media and beyond.

These directories do promote women and im-
prove their chance of discovery; they also put the
onus on women to create and update their pro-
files across multiple platforms. This can be time-
consuming and repetitive. What is more, it may
or may not result in extra opportunities since of-
ten the only people looking at these directories are

people who already know they want to engage a
woman. We can be smarter about how we man-
age the public data that already exists. We want
to meet the challenge of someone saying that “a
suitable woman could not be found”. In short,
we need to put gender-based information in places
where people are already looking.

Expert Connect1 is a publicly searchable
database of Australian research expertise designed
to boost industry-researcher collaboration. Since
International Women’s Day in 2019, Expert Con-
nect can now be filtered to find women experts in
any field of research using FindHer.2 Currently,
only 15 percent of the Expert Connect data is in-
cluded in the filter (with over 4,500 women pro-
filed). It’s not a perfect process, but we are contin-
ually working on improvements with the number
of women profiled continuing to grow.

Work like this raises ethical considerations. In
Section 3.1, we discuss some of the issues we
considered in the process of submitting our ethics
approval for this work. We present experiments
on automatic gender determination using off-the-
shelf Natural Language Processing (NLP) and
Computer Vision (CV) technologies. Our aim is
to assess the feasibility of off-the-shelf technolo-
gies to support the classification of expert profiles
according to gender. Our study shows that cur-
rent technologies achieved high precision in gen-
der classification using peoples names and pro-
file’s photos. However, automatically assigning
the correct gender to people’s profiles is far from
perfect.

The rest of the paper is organised as follows:
Section 2 includes a description of the methods
we evaluate for gender determination. Section 3 is
about the experiments carried-out and the results

1https://expertconnect.global/
2https://expertfindher.global/

162

found. In Section 4 we conclude this paper and
present some ideas for future work.

2 Gender Determination Methods

2.1 Title lookup

Title lookup is a simple and effective deterministic
method. Titles are usually one or more words pre-
fixing peoples names such as Miss, Dr., President,
among many others. Titles might signify gender,
an official position, or a professional or academic
qualification. It is not uncommon that people use
titles in their public profiles, for example, in the
Expert Connect platform. This is the most reliable
source of gender since people assign themselves
titles to with which they identified. The women ti-
tles we use are the following: Mrs., Ms., Miss, and
Sister.

Note that other titles commonly found in ex-
pert profiles such as Dr., Professor President, are
gender neutral and not useful for gender determi-
nation. This method works as follows: given a
user profile, if the profile contained a title, then
the gender associated with that title is assigned as
the user’s gender.

2.2 Name lookup

Name lookup is a widely used deterministic
method that relies on directories or databases of
female and male names. In our experiments, we
use two lists of Australian scientist female names:
500 women scientists and Women in science Aus-
tralia, which contained 150 female names. Since
Australia is a multicultural society the lists include
diverse names, for example, Shaghik, Jessica, and
Samia, just to mention a few. This method works
as follows: given a user profile, the user name
string is looked up in the names list, and if found,
the gender associated with the name is assigned as
the user’s gender.

2.3 Genderize

Genderize is an existing third-party webservice for
infering the gender of a first name. The service
can be accessed through a free API and has a limit
of 1000 queries per day. Genderize utilised big
datasets of information from user profiles across
major social networks across 79 countries and 89
languages. The response includes a confidence
value and a count, which represents the number
of data entries used to calculate the response. This
method works as follows: given a user profile, the

user name string (not including the surname) is
sent to the API3, and returns the probability es-
timate of its gender. The API also accept two
optional parameters, location-id and language-id,
which not used in our experiments.

2.4 Chicksexer

Chicksexer is a Python package designed to per-
form gender classification. It is based on a
machine learning classifier that uses a character
level multilayer LSTM network (Hochreiter and
Schmidhuber, 1997). The model is trained using
names with gender annotation from Dbpedia Per-
son Data,4 Popular baby names in the US,5 and
names datasets curated by Milos Bejda.6 The out-
put prediction includes the probability assigned to
each gender class. This method works as follows:
given a user profile, the user name string (not in-
cluding the surname) is sent to the predict-gender
function, which returns a probability estimate of
its gender.

2.5 Facifier

Facifier is an emotion and gender detector devel-
oped in Python and OpenCV,7 It is a machine
learning based classifier that uses HaarCascade
(Viola and Jones, 2001) to detect human faces in
photos and a gender classifier. The gender classi-
fier is trained with the KDEF8 dataset consisting
of 4900 images, and 2000 images from the IMDB
dataset.9

2.6 CNN-Gender

CNN-Gender (Levi and Hassner, 2015) uses Con-
volutional Neuronal Networks for gender determi-
nation using images. We used a TensorFlow re-
implementation.10 The model is trained with the
Adience dataset,11 which contains 26,580 images.

163

Female Males
Names 568 263
Images 3934 3147

Table 1: Evaluation data for names and images

Title lookup %
Ms. 1 0.03
Mrs. 8 0.25
Miss 0 0
Sister 0 0
Total females 9 0.28
Mr. 19 0.60
Dr. 322 10
Prof. 66 2

Name lookup %
Females 64 11

Table 2: Title and Name lookup and experiment re-
sults. Title percentage is calculated over the total num-
ber of users in Expert Connect: 3157. Name percent-
age is calculated over the total number of females in the
Names dataset: 568.

3 Experiments and Results

We use two datasets to evaluate the methods de-
scribed in Section 2, Names and Images, respec-
tively. Details about the datasets are shown in
Table 1. The Names dataset was compiled by
querying the Expert Connect database. Duplicate
names and second names were removed, thus the
dataset consists of single-term names. The Im-
ages dataset was compiled by querying the Expert
Connect database and manually classifying user
profile photos as female or male. Note that the
datasets were only used for testing and never for
training the methods.

Results for lookup methods are shown in Ta-
ble 2. As expected, lookup methods have a poor
coverage. Only 0.28 percent of the users indicate

3https://pypi.org/project/Genderize/
4https://wiki.dbpedia.org/

downloads-2016-10
5https://www.ssa.gov/oact/babynames/
6https://mbejda.github.io/
7https://opencv.org/
8http://kdef.se/
9https://data.vision.ee.ethz.ch/cvl/

rrothe/imdb-wiki/
10https://github.com/dpressel/

rude-carnie
11http://www.openu.ac.il/home/hassner/

Adience/data.html

Precision Recall F1
Chicksexer 0.982 0.876 0.925
Genderize 0.925 0.901 0.912
Facifier 0.421 0.738 0.534
CNN gender 0.933 0.861 0.895

Table 3: Off-the-shelve methods for gender determina-
tion experiment results

their gender using female titles. This is not sur-
prising since female titles like Miss, Mrs. and Ms.
indicate marital status and might be considered ob-
solete in modern societies.

For anecdotal purposes we also investigated the
use of other titles. We found that only 0.6 percent
of the users chose to set their title as Mr. (male ti-
tle). Academic titles such as Dr. and Prof. seem to
be preferred when choosing a title for professional
profiles, showing that 10 percent of the users are
identified as Drs. Nevertheless, only a small per-
centage of the profiles in Expert Connect include
a title.

The Names lookup approach covers 11 per-
cent of the total number of females in the Names
dataset, demonstrating that catalogues are usually
incomplete, and therefore, an unreliable source for
finding female researchers.

Results for off-the-shelf methods are presented
in Table 3. Both named-based methods achieved
high precision and recall. Chicksexer performs
slightly better than Genderize. Another advantage
of Chicksexer is that is it trainable, and its source
code is available under an open source license. To
understand why named-based methods can make
incorrect predictions, we investigated some false
negative instances given by Chicksexer. We ran-
domly chose 25 names, and found half of them
are non-western, e.g., Vikneswary, Fincina Anu-
mitra, Ya-juan, among others. Some names are
unisex, e.g., Sasha, Ali; and some users used short
versions of their names, which made them gender
neutral or unisex, e.g., Cat, Steph, Nicky, Char-
lie, and Billie. Some false negatives are likely to
be reduced by including culturally diverse exam-
ples for training. However, predictions for gender
neutral names are likely to remain confused when
using only names for gender determination, either
for humans or machines.

The image-based methods show a considerable
difference in performance between them. Facifier
achieved modest results when applied to the im-

164

ages from the Expert Connect database, with 0.421
Precision, 0.738 Recall, and an F1-score of 0.534.
An error analysis on its output indicate that Faci-
fier sometimes struggles to capture the face in im-
ages, and therefore is not able to predict the gender
class. Note also that the datasets used to train Faci-
fier are considerably smaller than the ones used
in CNN-gender, hence a fair comparison between
Facifier and CNN-gender is not possible. CNN-
gender achieved high Precision: 0.933, high Re-
call: 0.861, and an F1-score of 0.895.

To better understand CNN-gender errors, we
examined some false positive and false negative
instances. We randomly select 25 false positive in-
stances, and could not find a clear pattern among
them. In 4 images males have long hair, in 4
images they are using glasses, and in 3 images
the person appears small at a corner of the im-
age. Similarly, we randomly select 25 false neg-
ative instances. This time we found clear patterns
between them. In 20 images females are using
glasses. In in all of them females have short hair or
a pony tail, which make them look as if they have
short hair. Although these traits are not strictly
male ones, the datasets are probably biased, as
there are many training instances of females with
long hair, and males with short hair. For human
judges it was very easy to determine the gender
of the false positive and false negative instances,
however the automatic classifier struggled to cor-
rectly predict them.

3.1 Ethical Concerns and Limitations

The study presented in this paper and the Find-
Her filter has ethical approval. The ExpertConnect
Platform clearly let people know that they have
a profile irrespective to gender. To ensure trans-
parency, how the FindHer filter works is available
to the public.

The authors are aware that names and images
cannot be used to unambiguously determine the
gender of a user, and that a user might not iden-
tify with the prototypical gender they look like,
nor with their given name. All the methods studied
in this paper see gender in a binary way: a name or
an image can be either female or male. This poses
a clear limitation since in modern societies gender
is seen as a spectrum, rather than in a binary way.

As shown in this study, automatic gender binary
determination methods are far from perfect and it
is still in beta. Ethical considerations might arise if

the wrong gender is assigned to a user. Therefore,
the FindHer team use automatic methods for clas-
sifying profiles according to their gender and con-
fidence scores, which are later manually assessed
before updating the gender of users’ profiles.

4 Conclusion and Future Work

Gender inequality persist around the world. Con-
siderable effort and resources are currently in-
vested to mitigate this issue and to promote gender
equality. FindHer is an example of such efforts,
as it allows anyone to explicitly find woman ex-
perts in Australia via a Web platform. In order to
automate gender determination of expert profiles,
we have studied the performance of off-the-shelf
language and computer vision technologies, which
use given names and profile photos, respectively.
Our experiments show the assessed methods are
successful, and performance is likely to be higher
if name-based and image-based methods are com-
bined. There are many other sources of names
such as name repositories, administration records
and country specific birth list. Performance can
also be improved by re-training name-based meth-
ods using culturally diverse sets of names, so that
the tools will reflect the cultural diversity of Aus-
tralian society.

5 Acknowledgements

The authors would like to thank the ALTW re-
viewers for their thoughtful feedback. Special
thanks to Stephen Wan for providing helpful feed-
back and for proofreading this paper; and to
Trevor Fairhurst for his valuable contributions at
the early stages of this project.

References
Kevin Bonham and Melanie I. Stefan. 2017. Women

are underrepresented in computational biology: An
analysis of the scholarly literature in biology, com-
puter science and computational biology. PLOS
Computational Biology, 13:e1005134.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Vincent Larivire, Chaoqun Ni, Yves Gingras, Blaise
Cronin, and Cassidy Sugimoto. 2013. Bibliomet-
rics: Global gender disparities in science. Nature,
504:211–3.

Gil Levi and Tal Hassner. 2015. Age and gender classi-
fication using convolutional neural networks. 2015

165

IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 34–42.

Helena Mihaljevic-Brandt, Lucia Santamaria, and
Marco Tullney. 2016. The effect of gender in the
publication patterns in mathematics. PLOS ONE,
11:e0165367.

Paul Viola and Michael Jones. 2001. Rapid object de-
tection using a boosted cascade of simple features.
volume 1, pages I–511.

Jevin West, Jennifer Jacquet, Molly King, Shelley Cor-
rell, and Carl Bergstrom. 2013. The role of gender
in scholarly authorship. PloS one, 8:e66212.

166

Difficulty-aware Distractor Generation for Gap-Fill Items

Chak Yan Yeung, John Lee, Benjamin Tsou
Department of Linguistics and Translation

City University of Hong Kong
cyyeung91@gmail.com, {jsylee,rlbtsou}@cityu.edu.hk

Abstract

Many computer-assisted language learning
(CALL) systems offer gap-fill items, often
with multiple choices in order to facilitate im-
mediate feedback. Automatic distractor gener-
ation can therefore be helpful in providing the
multiple choices. While existing algorithms
focus on proposing the most plausible distrac-
tors, many realistic scenarios make use of dis-
tractors at a variety of difficulty levels. This
paper evaluates the use of a neural language
model to rank distractors in terms of difficulty.
Experiments show that BERT outperforms se-
mantic similarity measures, in terms of both
correlation to human judgment and classifica-
tion accuracy of distractor plausibility.

1 Introduction

Many computer-assisted language learning
(CALL) systems offer gap-fill items, also known
as cloze or fill-in-the-blank items. A gap-fill item
consists of a carrier sentence in which one word
— called the key, or target word — is blanked
out. Table 1 shows an example carrier sentence
whose target word is ‘served’.

To enable automatic feedback, multiple choices
are sometimes provided for filling the gap. As
shown in Table 1, these choices include the tar-
get word itself and several distractors. Judicious
selection of distractors is important for generating
effective items. A distractor should produce a sen-
tence that seems plausible, yet unacceptable. Lan-
guage pedagogy literature generally recommends
that the target word and distractors belong to the
same word class (Heaton, 1989), and be semanti-
cally related, ideally “false synonyms” (Goodrich,
1977). An empirical study confirmed that distrac-
tors indeed tend to be syntactically and semanti-
cally homogenous (Pho et al., 2014).

To reduce the manual effort and time needed for
selecting distractors, there has been much interest

He as class representative for two years.

(a) served [target word]
(b) acted [distractor]
(c) brought [distractor]

Table 1: A multiple-choice gap-fill item consists of a
carrier sentence with a blank, and choices for filling the
blank. In this example, the choices include two distrac-
tors and the target word (correct answer).

in developing algorithms for automatic distractor
generation. Existing algorithms typically take a
two-step approach (Jiang and Lee, 2017; Susanti
et al., 2018). The first step generates distractor
candidates, typically in a list ranked according to
measures of semantic similarity and collocation
strength. The second step removes candidates that
are acceptable answers, using n-gram and colloca-
tion frequency or other criteria.

Evaluations on distractor generation tend to
be limited to the highest-ranked distractors, for
example the top-ranked or top three candidates
only (Jiang and Lee, 2017; Susanti et al., 2018).
Many practical scenarios, however, require not
only the most challenging distractors, but distrac-
tors across the spectrum of plausibility. When au-
thoring test items, for example, it can be useful to
generate items at various difficulty levels for com-
prehensive assessment. In a CALL system, it can
be effective to personalize distractor difficulty ac-
cording to the user’s language proficiency.

It is informative, then, to evaluate distractor al-
gorithms on their ability to generate distractors at
different levels of plausibility. We therefore pro-
pose to investigate the correlation between the es-
timated ranking of distractors and human judg-
ment on plausibility. This research direction has
indeed been taken up in item generation in the nat-

167

ural sciences (Liang et al., 2018; Gao et al., 2019).
However, to the best of our knowledge, it has not
yet been attempted for gap-fill items for language
learning.

Language models provide a natural framework
for this task by predicting how likely a word ap-
pears in a gap within the sentence. This pa-
per is the first attempt to apply BERT (Devlin
et al., 2019), a state-of-the-art model trained on
the masked language modeling objective, on the
task of distractor ranking. Experimental results
show that BERT outperforms semantic similarity
measures, in terms of both correlation to human
judgment and classification accuracy of distractor
plausibility.

The rest of the paper is organized as follows.
In Section 2, we review related research areas. In
Section 3, we outline our approach for distractor
generation. In Section 4, we report experimental
results on ranking distractors for gap-fill items for
learning Chinese as a foreign language. Finally,
we conclude in Section 5.

2 Previous work

For the target word in a carrier sentence, a distrac-
tor generation algorithm aims to optimize two ob-
jectives: the distractor should look plausible for
filling in the gap; but it should also not produce
an acceptable sentence. Reflecting the twin goals,
most existing algorithms perform two tasks (Jiang
and Lee, 2017; Susanti et al., 2018). The first,
Candidate Generation, identifies all possible dis-
tractor candidates. The second, Candidate Filter-
ing, seeks to remove those candidates that are also
acceptable answers, leaving only the distractors
that are “reliable”, i.e., those that yield an incor-
rect sentence.

Section 2.1 reviews existing approaches for the
Candidate Generation task, which is the research
focus of this paper. Section 2.2 then surveys re-
lated tasks in computer-assisted learning that have
adopted evaluation on candidate ranking.

2.1 Candidate Generation

In most approaches, a distractor needs to have the
same part-of-speech (POS) as the target word (Co-
niam, 1997). In addition, a number of features
have been explored for ranking the candidates:

Word co-occurrence. Since a distractor should
collocate strongly with a word in the carrier sen-
tence (Hoshino, 2013), candidates are evaluated

according to their co-occurrence frequencies with
other words in the sentence. Various definitions
of co-occurrence have been used, including bi-
gram counts (Susanti et al., 2018) and, more gen-
erally, n-grams in a context window centered on
the distractor (Liu et al., 2005); dependency re-
lations (Sakaguchi et al., 2013); grammatical rela-
tions in a Word Sketch (Smith et al., 2010); as well
as pointwise mutual information (PMI) (Jiang and
Lee, 2017).

Learner error. Typical or frequent learner mis-
takes can be effective as distractors. When gen-
erating gap-fill items for prepositions, distractors
based on learner errors were indeed found to be
more challenging than those selected according
to word co-occurrence (Lee et al., 2016). Dis-
tractor candidates have been mined from learner
corpora and further selected with a discriminative
model (Sakaguchi et al., 2013).

Semantic similarity. The distractor should be
semantically close to the target word. Similarity
can be quantified by semantic distance in Word-
Net (Pino et al., 2008; Chen et al., 2015), the-
sauri (Sumita et al., 2005; Smith et al., 2010),
ontologies (Karamanis et al., 2006), hand-crafted
rules (Chen et al., 2006), and word embed-
dings (Jiang and Lee, 2017; Susanti et al., 2018).
Other approaches have also explored synonym of
synonyms (Knoop and Wilske, 2013); and words
that are semantically similar to the target word in
some sense, but not in the particular sense in the
carrier sentence (Zesch and Melamud, 2014).

A study on gap-fill items for learning Chinese
as a foreign language compared the quality of
distractors generated by a number of criteria, in-
cluding spelling, word co-occurrence and seman-
tic similarity (Jiang and Lee, 2017). Experimen-
tal results show that a semantic similarity mea-
sure, based on the word2vec model (Mikolov
et al., 2013), yields distractors that are signif-
icantly more plausible than those generated by
spelling similarity, and by word co-occurrence
strength as estimated by PMI.

2.2 Evaluation on candidate ranking

Although the output of most distractor generation
algorithms is a ranked list, most previous studies
on distractor quality in gap-fill items have limited
their attention to the top-ranked distractors. To the
best of our knowledge, quantitative evaluations on
ranking quality have been reported for item gen-

168

eration in the natural sciences, but not yet for lan-
guage learning; furthermore, the focus has been
on question-answering items, rather than gap-fill
items.

Given a dataset of distractors and non-
distractors, Liang et al. (2018) trained ranking
models to rank the distractors higher. Experi-
mental results suggested that random forest and
Lambda MART performed best. However, the
evaluation was restricted to pairwise prediction of
distractor difficulty.

Gao et al. (2019) addressed the task of gener-
ating questions from a paragraph. Using bidirec-
tional LSTMs, their system classified questions as
either “easy” or “difficult”. While their evalua-
tion methodology was similar to the one advocated
by this paper, it is applied to question generation
rather than distractor generation.

3 Approach

Following most previous approaches, we adopt a
two-step process for distractor generation: the first
step generates distractor candidates, and the sec-
ond step filters out candidates that constitute ac-
ceptable answers. Our research focus is on the first
step, to which we introduce a re-ranking process
with a neural language model.

3.1 Baseline

Our baseline uses semantic similarity measures,
which have been reported in previous research to
yield the best performance in identifying plausible
distractor candidates (Section 2.1).

Word embeddings have been shown to be effec-
tive in measuring word similarity and relatedness
in a large range of NLP tasks, including distrac-
tor generation (Jiang and Lee, 2017). We used
word embeddings trained by Skipgram with neg-
ative sampling on Baidu Encyclopedia (Li et al.,
2018). Specifically, we calculated cosine similar-
ity between the word embeddings of the distractor
candidate and the target word, and obtained candi-
dates with the highest scores.

3.2 Re-ranking

The appropriateness of a distractor may depend
not only on the target word but also on the con-
text of the carrier sentence. Consider the word
served as the target word. In the context of food
being served at a restaurant, the word brought may
be a plausible distractor since it is semantically

close to the target word. However, in the con-
text of serving in a position, the word acted would
be a more plausible distractor, for example for the
carrier sentences in Table 1. Hence, we propose
to re-rank the distractors in the baseline list (Sec-
tion 3.1) with a language model.

BERT (Devlin et al., 2019) is a state-of-the-art
neural language model based on the Transformer
architecture (Vaswani et al., 2017). The model is
bi-directional, i.e., trained to predict the identity
of a masked word based on both the words that
precede and follow it. It has been shown to be ef-
fective in a variety of natural language processing
tasks. This paper is the first to apply it to distractor
generation.

Using its PyTorch implementation1, we masked
the target word in each carrier sentence and har-
vested the words most highly ranked by BERT for
the masked position. We then re-ranked the candi-
dates in the baseline list according to their relative
ranking in BERT.

An alternative to re-ranking would be to directly
use the ranked list from BERT. We did not adopt
this approach because the list can include distrac-
tor candidates that are not semantically similar to
the target word.

4 Experiments

We first present our dataset (Section 4.1), and then
analyze experimental results (Section 4.2).

4.1 Data

We derived our evaluation data from the dataset
compiled by Jiang and Lee (2017), which consists
of 37 carrier sentences taken from a number of
textbooks for Chinese as a foreign language. The
target words include 37 distinct nouns and verbs.

To construct a pool of distractor candidates for
the target word in each sentence, we intersected
these two sets: the 20 words that are most similar
to the target word according to the baseline algo-
rithm (Section 3.1); and the 50 most likely words
for the masked position according to BERT (Sec-
tion 3.2).

Out of this pool, we randomly selected a total
of 172 distractor candidates for human annotation.
Five human raters, all native speakers of Chinese,
independently annotated each candidate accord-
ing to the scheme used in Jiang and Lee (2017).

1https://pypi.org/project/pytorch-pretrained-bert/

169

Method Correlation Classification
Pearson’s r Spearman’s rho accuracy

Baseline -0.233 -0.263 42.52%
Re-ranking -0.455 -0.487 60.63%

Table 2: Evaluation of the baseline (Section 3.1) and re-ranking (Section 3.2) methods on correlation to human
judgment on plausibility (left); and on classification of distractor plausibility (right).

Figure 1: Correlation between human scores on the
plausibility of the distractor candidates, and their rank-
ing in BERT (Section 3.2).

Figure 2: Correlation between human scores on the
plausibility of the distractor candidates, and their se-
mantic similarity ranking (Section 3.1).

Each distractor candidate can be rated as “Obvi-
ously wrong”, “Somewhat plausible”, “Plausible”,
or “Correct” (and hence unacceptable as a distrac-
tor). The pairwise Kappa for the five human raters
was 0.420, which is considered a “Moderate” level
of agreement (Landis and Koch, 1977).

4.2 Results

Correlation with human judgment. Table 2
shows the level of correlation between the auto-
matically produced distractor ranking and the av-
erage human rating.2 A larger negative coefficient

2We assigned score 1 to the “Obviously wrong” candi-
dates, score 2 to “Somewhat plausible”, score 3 to “Plausi-
ble” and score 4 to “Correct” distractors.

indicates a higher degree of correlation, since dis-
tractors with higher plausibility scores should have
a smaller rank number. BERT achieved a Pear-
son correlation coefficient of -0.455; visualized in
Figure 1, the correlation is statistically significant
(p = 0.002). In contrast, the coefficient for the se-
mantic similarity baseline was only -0.233; visual-
ized in Figure 2, the correlation is not statistically
significant (p = 0.123). The trend was similar
with Spearman’s rho, for which BERT achieved
a coefficient of -0.487, which is statistically sig-
nificant (p = 0.0007). The baseline obtained a
coefficient of -0.263, which is not statistically sig-
nificant (p = 0.081).

Generation accuracy. We generated distrac-
tors by setting thresholds in the re-ranked list for
different plausibility levels. We tuned the thresh-
olds by leave-one-out cross-validation to optimize
accuracy in classifying a candidate as “Correct”,
“Plausible”3, or “Less Plausible”. The gold la-
bel is the majority label out of the five raters. As
shown in Table 2, BERT achieved 60.63% clas-
sification accuracy, outperforming the similarity
baseline, which achieved 42.52% by always pre-
dicting the majority label “Less plausible”. For
our dataset, the optimized thresholds for BERT
were to classify candidates ranked 1 to 10 as “Cor-
rect”; those ranked 11 to 39 as “Plausible”; and the
rest as “Less Plausible”.

5 Conclusions

To support automatic generation of gap-fill items
with distractors at a variety of plausibility lev-
els, we have introduced distractor ranking as a
new evaluation framework for distractor genera-
tion. This study is the first to apply BERT to the
task of distractor ranking. Experimental results
show that it outperforms semantic similarity mea-
sures in terms of both correlation to human judg-
ment on distractor plausibility, and classification
accuracy of distractor plausibility.

3The “Plausible” and “Somewhat Plausible” labels in the
human annotation were collapsed into the “Plausible” label.

170

Acknowledgment

This work was supported by the Innovation and
Technology Fund (Ref: ITS/389/17) of the In-
novation and Technology Commission, the Gov-
ernment of the Hong Kong Special Administra-
tive Region. We thank Ka Po Chow for his as-
sistance. The first author completed this research
at City University of Hong Kong and now works
at Google.

References
Chia-Yin Chen, Hsien-Chin Liou, and Jason S. Chang.

2006. FAST: An Automatic Generation System for
Grammar Tests. In Proc. COLING/ACL Interactive
Presentation Sessions.

Tao Chen, Naijia Zheng, Yue Zhao, Muthu Kumar
Chandrasekaran, and Min-Yen Kan. 2015. Interac-
tive Second Language Learning from News Web-
sites. In Proc. 2nd Workshop on Natural Lan-
guage Processing Techniques for Educational Appli-
cations.

David Coniam. 1997. A Preliminary Inquiry into Us-
ing Corpus Word Frequency Data in the Automatic
Generation of English Language Cloze Tests. CAL-
ICO Journal, 14(2-4):15–33.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pretraining of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proc. NAACL-HLT.

Yifan Gao, Lidong Bing, Wang Chen, Michael R. Lyu,
and Irwin King. 2019. Difficulty Controllable Gen-
eration of Reading Comprehension Questions. In
Proc. 28th International Joint Conference on Arti-
ficial Intelligence (IJCAI).

Hubbard C. Goodrich. 1977. Distractor Efficiency
in Foreign Language Testing. TESOL Quarterly,
11(1):69–78.

J. B. Heaton. 1989. Writing English Language Tests.
Longman.

Yuko Hoshino. 2013. Relationship between Types of
Distractor and Difficulty of Multiple-Choice Vocab-
ulary Tests in Sentential Context. Language Testing
in Asia, 3(16).

Shu Jiang and John Lee. 2017. Distractor Generation
for Chinese Fill-in-the-blank Items. In Proc. 12th
Workshop on Innovative Use of NLP for Building
Educational Applications, page 143–148.

Nikiforos Karamanis, Le An Ha, and Ruslan Mitkov.
2006. Generating Multiple-Choice Test Items from
Medical Text: A Pilot Study. In Proc. 4th Interna-
tional Natural Language Generation Conference.

Susanne Knoop and Sabrina Wilske. 2013. WordGap:
Automatic Generation of Gap-Filling Vocabulary
Exercises for Mobile Learning. In Proc. Second
Workshop on NLP for Computer-assisted Language
Learning, NODALIDA.

J. Richard Landis and Gary G. Koch. 1977. The Mea-
surement of Observer Agreement for Categorical
Data. Biometrics, 33:159–174.

John Lee, Donald Sturgeon, and Mengqi Luo. 2016. A
CALL System for Learning Preposition Usage. In
Proc. ACL.

Shen Li, Zhe Zhao, Renfen Hu, Wensi Li, Tao Liu, and
Xiaoyang Du. 2018. Analogical Reasoning on Chi-
nese Morphological and Semantic Relations. arXiv
preprint arXiv:1805.06504.

Chen Liang, Xiao Yang, Neisarg Dave, Drew Wham,
Bart Pursel, and C. Lee Giles. 2018. Distractor Gen-
eration for Multiple Choice Questions using Learn-
ing to Rank. In Proc. 13th Workshop on Innovative
Use of NLP for Building Educational Applications,
pages 284–290.

Chao-Lin Liu, Chun-Hung Wang, Zhao-Ming Gao,
and Shang-Ming Huang. 2005. Applications of
Lexical Information for Algorithmically Composing
Multiple-Choice Cloze Items. In Proc. 2nd Work-
shop on Building Educational Applications Using
NLP, pages 1–8.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient Estimation of Word Repre-
sentations in Vector Space. In Proc. International
Conference on Learning Representations (ICLR).

Van-Minh Pho, Thibault André, Anne-Laure Ligozat,
B. Grau, G. Illouz, and Thomas François. 2014.
Multiple Choice Question Corpus Analysis for Dis-
tractor Characterization. In Proc. LREC.

Juan Pino, M. Heilman, and Maxine Eskenazi. 2008.
A Selection Strategy to Improve Cloze Question
Quality. In Proc. Workshop on Intelligent Tutoring
Systems for Ill-Defined Domains, 9th International
Conference on Intelligent Tutoring Systems.

Keisuke Sakaguchi, Yuki Arase, and Mamoru Ko-
machi. 2013. Discriminative Approach to Fill-in-
the-Blank Quiz Generation for Language Learners.
In Proc. ACL.

Simon Smith, P. V. S. Avinesh, and Adam Kilgar-
riff. 2010. Gap-fill Tests for Language Learners:
Corpus-Driven Item Generation. In Proc. 8th Inter-
national Conference on Natural Language Process-
ing (ICON).

Eiichiro Sumita, Fumiaki Sugaya, and Seiichi Ya-
mamoto. 2005. Measuring Non-native Speak-
ers’ Proficiency of English by Using a Test with
Automatically-Generated Fill-in-the-Blank Ques-
tions. In Proc. 2nd Workshop on Building Educa-
tional Applications using NLP.

171

Yuni Susanti, Takenobu Tokunaga, Hitoshi Nishikawa,
and Hiroyuki Obari. 2018. Automatic Distractor
Generation for Multiple-choice English Vocabulary
Questions. Research and Practice in Technology
Enhanced Learning, 13(15).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
You Need. Advances in Neural Information Pro-
cessing Systems, pages 6000–6010.

Torsten Zesch and Oren Melamud. 2014. Auto-
matic Generation of Challenging Distractors Using
Context-Sensitive Inference Rules. In Proc. Work-
shop on Innovative Use of NLP for Building Educa-
tional Applications (BEA).

172

Investigating the Effect of Lexical Segmentation in Transformer-based
Models on Medical Datasets

Vincent Nguyen
Australian National University

CSIRO Data61
vincent.nguyen@anu.edu.au

Sarvnaz Karimi
CSIRO Data61

Sydney, Australia
sarvnaz.karimi@csiro.au

Zhenchang Xing
Australian National University

Canberra, Australia
zhenchang.xing@anu.edu.au

Abstract

Transformer-based models have been popu-
lar recently and have improved performance
for many Natural Language Processing (NLP)
Tasks, including those in the biomedical field.
Previous research suggests that, when us-
ing these models, an in-domain vocabulary
is more suitable than using an open-domain
vocabulary. We investigate the effects of a
specialised in-domain vocabulary trained from
scratch on a biomedical corpus. Our research
suggests that, although the in-domain vocabu-
lary is useful, it is usually constrained by the
corpora size because these models needs to be
trained from scratch. Instead, it is more useful
to have more data, perform additional pretrain-
ing steps with a corpus-specific vocabulary.1

1 Introduction

In the natural language processing domain, there is
a requirement for a fixed-sized vocabulary during
training which could lead to Out-Of-Vocabulary
(OOV) problem (Luong et al., 2015). This prob-
lem is when the fixed vocabulary model encoun-
ters an unseen word during inference, and the
model is unable to handle it appropriately. Word-
Piece tokenisation, initially used in machine trans-
lation systems (Wu et al., 2016), has been widely
successful in addressing the OOV problem by seg-
menting unseen words into word pieces as a rep-
resentation for the unknown word. Previous re-
search has either replaced unseen words with a
special token (Luong et al., 2015), used charac-
ter word embeddings (Labeau and Allauzen, 2017)
as a fall-back, or ignored these words completely.
These techniques have shortcomings as they do
not attempt to represent the unseen word or re-
quire additional processing and memory as with
character embeddings. WordPiece tokenisation is

1Our code is publicly available at Lexical-Segmentation-
Transformer.

WordPiece: arthralgias→ art-hra-al-gia-s
Ideal: arthralgias→ arthr-algias
arthr- means joints, -algias means pain

Figure 1: Word segmentation in WordPiece and the
ideal segmentation using medical morphemes.

a trade-off, where there is no need for special han-
dling of out-of-vocabulary, as unseen words are
segmented into sub-word units. It allows a limited
vocabulary to represent an infinitely sized vocabu-
lary space.

Models that successfully use WordPiece tokeni-
sation include the transformer-based architectures:
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), and XLNet (Yang et al., 2019). BERT
uses WordPieces as morphemes to aid the contex-
tual representation of words. BERT performs at
a state-of-the-art level on the GLUE tasks (Wang
et al., 2019) due to its ability to fine-tune specif-
ically to each task. Given this success, the
model has also been applied to the biomedical
domain through models such as BioBERT (Lee
et al., 2019), which applies additional pretrain-
ing on the MEDLINE and PubMed corpora for
biomedical text representation. However, these
BioBERT models sometimes do not perform well
on biomedical tasks, and in some instances are
even worse than vanilla BERT (Zhu et al., 2019;
Peng et al., 2019; Nguyen et al., 2019).

We hypothesise that a reason for this fail-
ure could be due to the vocabulary limitation
of BioBERT, where the authors keep the open-
domain vocabulary of BERT. This is problem-
atic because the original BERT vocabulary is not
suited for the biomedical domain due to the lack
of medical suffixes and prefixes in its vocabulary
leading to incorrect segmentation of the words
(see the example in Figure 1). This is important
because the suffixes and prefixes (the morphemes)
in medical terminology carry distinct meanings,

173

and almost the entire medical vocabulary can
be constructed from prefix and suffix combina-
tions (Stanfield et al., 2008). Thus, we aim to
validate the importance of having the additional
biomedical vocabulary for downstream tasks.

2 Background

Most of biomedical natural language process-
ing is adapted from open-domain state-of-the-art
techniques, from word embeddings (Chiu et al.,
2016), to BiLSTM-CRF (Kalyan and Sangeetha,
2019). BERT is a deeply bidirectional encoder
that is based on the transformer architecture. It
uses self-attention as a mechanism of encoding
input contextually by attending to different as-
pects of the sentence using multi-headed self-
attention head, passed through layer normalisation
and a Multi-Layer Perceptrons (MLP). The BERT
model has been successful in the open-domain as
it scored State-of-the-Art (SOTA) performance on
the SQUAD (Rajpurkar et al., 2016) and GLUE
datasets because it addresses the polysemy prob-
lem (Molla and Gonzlez, 2007), through contex-
tual clues, for richer representations.

However, it was realised that directly apply-
ing the model to a closed domain can be prob-
lematic due to two factors: (1) The BERT model
is trained on Wikipedia and BookCorpus mean-
ing that the internal representations for specialised
words may not be properly learned for a spe-
cialised domain; and, (2) The internal vocabulary
that BERT has learned is suitable for tasks in the
open-domain and a separate or additional vocabu-
lary is needed (Beltagy et al., 2019).

To address the first problem, BioBERT takes
the original BERT model and performs additional
pretraining steps on academic biomedical litera-
ture, PubMed and MEDLINE, to improve down-
stream medical tasks. However, BioBERT does
not change the open-domain vocabulary to a
medically-focused one. Furthermore, the lan-
guage in academic corpora is different to clinical
text and patient language. These issues resulted in
lower than expected performance on biomedical
datasets, such the MEDIQA (Ben Abacha et al.,
2019; Nguyen et al., 2019) and in some cases
worse than the original BERT models (Zhu et al.,
2019) from which they were trained from.

Alleviating the dataset problem, Clinical
BERT (Alsentzer et al., 2019), performs further
pretraining steps for the BioBERT and BERT

models on domain-specific corpora showing
marked improvements on downstream clinical
tasks. However, they did not change the internal
vocabulary of the models as this would require
training the models from scratch which may limit
performance.

Addressing both the vocabulary and the dataset
problem, SciBERT was trained from scratch on
the Semantic Scholar corpus and a specialised
SentencePiece vocabulary trained on the corpus.

Our paper is a first look empirical study into
the effect of vocabulary and dataset in applying
BERT-based models to downstream tasks. Al-
though our study is limited in scope, it still ex-
plores an important problem and our research sug-
gests that some of previous studies may have
drawn incorrect conclusions.

2.1 Sub-word Models

The original WordPiece algorithm addresses the
OOV problem and handles arbitrary sequences
of characters found on the web. This algorithm
greedily maximises the likelihood of the vocabu-
lary over the training data. The algorithm is simi-
lar to the byte-pair encoding algorithm, which uses
frequency rather than likelihood to train the model.
By using word pieces, the tokenisation procedure
can break down OOV words into their word sub-
units. For instance, jumped can be broken down
into jump ##ed.

The SentencePiece algorithm (Kudo and
Richardson, 2018) is similar to WordPiece except
that it performs direct training from raw sen-
tences with language independence. It treats all
sentences as a sequence of Unicode characters
without a special reliance on spaces, allowing for
reliable multi-lingual de-tokenisation.

3 Methods

We propose vocabulary adaption to investigate the
segmentation problems for medical text in BERT
models and their variants. We propose two dif-
ferent methods to achieve this: (1) Adding ad-
ditional vocabulary from a common medical vo-
cabulary of suffixes and prefixes2 to the existing
BERT vocabulary and perform additional pretrain-
ing steps; and, (2) Training a separate Senten-
cePiece tokeniser and pretraining a BERT model
from scratch on the medical corpus. We compare

2GlobalRPh Common Medical Suffixes and Prefixes (Ac-
cessed Nov 2019)

174

NLI RQE QA

Model Dev Acc. Test Acc. Dev Acc. Test Acc. Dev Acc. Test Acc.

Medical vocab 10k steps 0.781 0.743 0.778 0.487 0.739 0.655
Medical Vocab (intermediate) 0.795 0.721 0.762 0.500 0.718 0.657
Medical Vocab (final) 0.791 0.751 0.748 0.500 0.731 0.634
Medical Vocab (final) - Medical Vocab 0.741 0.798 0.768 0.478 0.731 0.640

SentencePiece Vocab (intermediate) 0.769 0.684 0.745 0.491 0.782 0.665
SentencePiece Vocab (final) 0.666 0.684 0.431 0.500 0.641 0.513

BioBERT v1.0 PMC 0.809 0.768 0.775 0.487 0.778 0.721
BioBERT v1.0 PubMed+PMC 0.828 0.778 0.775 0.474 0.765 0.708
BioBERT v1.0 PubMed 0.815 0.775 0.791 0.465 0.744 0.704
BioBERT v1.1 PubMed 0.833 0.790 0.808 0.487 0.778 0.677

SciBERT + BaseVocab 0.799 0.773 0.745 0.487 0.735 0.697
SciBERT + SciVocab 0.817 0.783 0.785 0.483 0.761 0.713

BERT base 0.786 0.736 0.742 0.483 0.709 0.655

Table 1: Comparing accuracy of all models in three tasks using the MEDIQA datasets.

these methods against BERT, BioBERT and SciB-
ERT models on downstream medical tasks.

3.1 Datasets

We use PubMed Central (PMC)3 corpus for pre-
training our BERT Model. It consists of two mil-
lion articles, 300 million sentences and one billion
tokens at the time of writing. Note that we use the
full text of the articles, not just the abstracts, as
this was shown to be effective in SciBERT (Belt-
agy et al., 2019).

For fine-tuning, we select the MEDIQA
datasets (Ben Abacha et al., 2019) which contains
three tasks: MEDical Natural Language Inference
(MEDNLI) (Johnson et al., 2016), Recognising
Question Entailment (RQE) (Abacha and Demner-
Fushman, 2016), and Question Answering (QA).

3.2 Preprocessing

In order to comply with BERT’s formatting for
pretraining, for tokenisation and sentence segmen-
tation, we use ScispaCy (Neumann et al., 2019),
with a biomedical model (en core sci sm) for its
speed and ability to parse biomedical data. We
then train a SentencePiece model with a fixed vo-
cabulary size of 32,000 on a subset of 20 million
PubMed text articles to extract a vocabulary that
maximises likelihood over the dataset. We then
adapt the SentencePiece vocabulary to be compat-
ible with BERT by pruning ‘ ’ characters, replac-
ing them with ‘##’ and removing start and end of
sequence tokens.

3PubMed Central Dump

3.3 Pretraining

Due to the large size of PMC and time and com-
puting resources limitation, we randomly select a
subset of 60 million sentences for pretraining. We
use the default settings for pretraining the BERT
model as described in the original paper. We also
use the same pretraining schedule as the origi-
nal BERT implementation where the model is first
trained on a sequence length of 128, which we call
the intermediate model, until convergence before
being trained on a sequence length of 512, the fi-
nal model. We set the learning rate of 1e-4 for
the SentencePiece model as this is being trained
from scratch and 2e-5 for the Medical Vocabulary
model.

3.4 Fine-tuning

After pretraining, we fine-tune our model to each
task in the dataset. We use a learning rate of 5e-
5 for five epochs. We also use a fixed seed of 42
for all libraries. We train our model on the official
training data and report our results on the develop-
ment and test sets of each task.

We fine-tune 12 models to three separate tasks
and evaluate on both the development and the
test sets due to distribution mismatch (the test
sets were made much later than the original train-
ing/development sets). We fine-tuned the BERT
base model plus medical vocabulary with the mod-
els pretrained for 10k, 90k (intermediate), 100k
(final) steps and a final model without the medi-
cal vocabulary. Similarly, we pretrain the BERT
model with a PubMed SentencePiece vocabulary
on models for 90k (intermediate) and 100k steps
(final). We fine-tune all the BioBERT models,

175

where all v1.0 models are trained on abstracts
of a specific corpus (e.g., Pubmed or PMC), and
the v1.1 model is trained on the full-text cor-
pus. We also fine-tune the SciBERT models with
BERT base vocabulary (BaseVocab) and Semantic
Scholar SentencePiece vocabulary (SciVocab). Fi-
nally, we fine-tune our baseline (BERT base). We
report our results in Table 1.

4 Results and Discussions

Overall, we found that fine-tuned models , with the
exception of our SentencePiece model and Medi-
cal Vocab model for QA, outperformed the BERT
base baseline.

For the NLI task, the SentencePiece models and
the Medical Vocab (final) model performed worse
on the development set, however the Medical Vo-
cab (final) - Medical Vocab model performed best
on the test set. All other models performed scored
higher than the BERT base model. The BioBERT
models, on average, performed best here as the
task involved inference from a medical sentence (a
clinical note) to a normalised sentence (summary).

On the RQE dataset, all models performed rea-
sonably on the development set, with the PubMED
models scoring the best, with the exception of the
final SentencePiece model as the task required in-
terpretation of patient language in addition to aca-
demic. However, all models performed poorly
on the test set, with no model scoring higher
than random guess due to a marginal distribution
mismatch between the training, development sets
against the test set.

On the QA dataset, the task involved interpret-
ing a patient’s naturally formed question to a med-
ical answer from medical articles. Here, BioBERT
performed the best on the test set.

In summary, all models performed similarly
with only mild discrepancies which we discuss in
the following section.

4.1 SciVocab versus BaseVocab

We find that the SciVocab model performed bet-
ter than the BaseVocab model (see Table 1, rows
11-12). BaseVocab is trained similarly to our
medical vocab model where BERT base was fine-
tuned with additional data before further tuned to a
downstream task. The reason the SciVocab model
performed better is that it had learned better repre-
sentations during the training phase while the Ba-
seVocab model learned noisier representations due

to a vocabulary mismatch between the Semantic
Scholar dataset and the BERT vocabulary. How-
ever, the SciVocab may not be as beneficial due
to the academic nature of the vocabulary as the
MEDIQA contains a mix of both academic medi-
cal terminology and natural patient questions.

4.2 BioBERT versus SciBERT SciVocab
The BioBERT and SciBERT models are both pre-
trained/tuned on academic biomedical literature.
However, there are two keys differences to note,
SciBERT is trained from scratch as it is not pos-
sible to completely alter the BERT vocabulary
while maintaining the original weights. We found
that, contrary to previous research (Zhu et al.,
2019), citing a development accuracy of 43%
(RQE) and 68% (NLI), the BioBERT models per-
formed better on the development and test sets of
the MEDIQA datasets. We attribute BioBERT’s
strength to the fact that it was fine-tuned rather
than trained from scratch, and thus incorporates
both open-domain and biomedical-domain knowl-
edge. Further evaluation with a purely biomedical
reasoning task such as clinical term extraction (Si
et al., 2019) may be suitable for further compari-
son.

We found that the BioBERT models performed
better than previously reported and that the size of
corpus matters in the performance of the model as
the full-text corpus model is generally better.

4.3 Medical versus SentencePiece Vocab
We found that, on two of the tasks, the medical
vocab model performed better due to the nature of
the task. The SentencePiece vocab is adapted only
for the PMC corpus, which is academically written
without misspellings or colloquialism, in contrast
with the datasets. That is, having a corpus specific
vocabulary might not be sufficient even within the
same domain due to the different nature of writ-
ing styles; academic and general audience. Fur-
thermore, we found that the SentencePiece vocab
do not contain all the punctuation tokens, which
further hurts performance when it comes to under-
standing questions as ‘?’ is replaced with ‘unk’.

Consistent with SciBERT and BaseVocab vo-
cabulary overlap, there was a 40% overlap in
vocabulary between BERT base vocabulary and
the PMC SentencePiece vocabulary, highlighting
the vocabulary mismatch between two corpora.
Also, there is a 4% overlap in the added medi-
cal suffix/prefix vocabulary and the SentencePiece

176

vocabulary suggesting that the PMC corpus was
likely not training the representations of the added
prefix and suffix tokens correctly because they do
not appear frequently enough. Finally, due to the
relatively smaller size of pretraining dataset com-
pared with all the other models, the Sentence-
Piece model most likely overfit as the performance
across all datasets worsened with more training
steps (see Table 1, rows 6-7).

However, the training with the PMC corpus al-
lowed for better adaption to the downstream tasks.
Our models did not perform as well as BioBERT
as they are trained on a smaller subset than the
original models. We also find that the intermediate
SentencePiece model performs better than the fi-
nal model, and this is because the downstream task
had only short sequences, introducing noise and
overfitting. The medical vocab model, rather than
the SentencePiece model, is more robust against
this noise as it is not trained from scratch.

4.4 BioBERT versus Medical Vocab
Although trained similarly, all the BioBERT mod-
els outperformed our pretrained models across all
datasets. For a direct comparison, we compare
BioBERT v1.1 PubMED as this shares the same
dataset and pretraining procedures. The only no-
table differences between the BioBERT model and
ours is that: 1) 3% of the Medical vocab model is
augmented with medical suffix/prefix and 2) We
trained only a subset of PubMED on the Medical
vocab model. We do a preliminary test by remov-
ing additional vocabulary (Table 1, row 4) in our
model for a comparison against dataset size. We
saw that the performance of the model increased
slightly on average, leading to the conclusion that
the extra vocabulary was hurting performance as
they were not well trained. Overall, we also find
that the accuracy is still lower than the BioBERT
model, suggesting that additional dataset size is
crucial to achieving a better performance.

4.5 Effect of Corpus and Vocabulary
In all the models, although vocabulary helps (e.g.,
SciVocab vs. BaseVocab), this effect is limited
to the pretraining phase when learning represen-
tations, but when applying to a downstream task,
it is more important to have additional corpus data
that is suited to the downstream task. This effect
is shown where SciBERT basevocab (fine-tuned
from the BERT base model) performed better than
the BERT base model. The additional corpus data

is useful in the case of BioBERT vs. SciVocab as
BioBERT is fine-tuned with additional data on top
of the BookCorpus and Wikipedia datasets of the
BERT model.

We hypothesise that the best way to maximise
all these effects is instead of fine-tuning from one
corpus to the other, to combine both the open-
domain and target domain corpora and pretrained
the model from scratch with a well-tuned vocabu-
lary. We leave this to future work.

5 Limitations and Future Work

There are several limitations to our study which
we leave as directions for future work: (1) we only
trained on a subset of the PMC dataset for pretrain-
ing the Medical Vocab and SentencePiece models
as it was computationally intensive to use the full
set; (2) we only trained and evaluated on BERT
base models. For a complete comparison we need
to pretrain all the BioBERT models, SciBERT
models, our models and also, for completeness,
clinical BERT using the BERT large model, and
then 3) we would need to train on datasets of vary-
ing sizes to see the effect of the corpus. Further-
more, investigation of character embeddings as a
segmentation strategy over the use of wordpieces,
avoiding the need for a vocabulary could be useful.
However, this would require factorisation of the
embedding space to reduce the computational cost
of increased sequence length (Lan et al., 2019).

Furthermore, empirically, we did not conduct
a significance test due to the use of a fixed seed
for all randomisation to emphasise reproducibil-
ity, however, in future, re-running each experiment
without a fixed seed multiple times to produce re-
liable statistics is desirable in future work.

6 Conclusions

Previous research suggests that using open-
domain vocabulary in BERT-based models affects
downstream tasks compatibility and leads to a loss
in effectiveness. However, our research suggests
that this is not the case. An open-domain vocabu-
lary is more useful than an in-domain vocabulary
trained on less data, if it is additionally trained on
an in-domain corpus.

Acknowledgements

This research is supported by the Australian Re-
search Training Program and the CSIRO Research
Office Postgraduate Scholarship.

177

References
Ben Abacha and Demner-Fushman. 2016. Recogniz-

ing Question Entailment for Medical Question An-
swering. American Medical Informatics Association
Annual Symposium Proceedings, 2016:310–318.

Emily Alsentzer, John Murphy, William Boag, Wei-
Hung Weng, Di Jindi, Tristan Naumann, and
Matthew McDermott. 2019. Publicly available clin-
ical BERT embeddings. In Proceedings of the 2nd
Clinical Natural Language Processing Workshop,
pages 72–78, Minneapolis, Minnesota, USA. Asso-
ciation for Computational Linguistics.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3606–
3611, Hong Kong, China. Association for Computa-
tional Linguistics.

Asma Ben Abacha, Chaitanya Shivade, and Dina
Demner-Fushman. 2019. Overview of the MEDIQA
2019 shared task on textual inference, question en-
tailment and question answering. In Proceedings of
the 18th BioNLP Workshop and Shared Task, pages
370–379, Florence, Italy.

Billy Chiu, Gamal Crichton, Anna Korhonen, and
Sampo Pyysalo. 2016. How to train good word em-
beddings for biomedical NLP. In Proceedings of
the 15th Workshop on Biomedical Natural Language
Processing, pages 166–174, Berlin, Germany.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Alistair Johnson, Tom Pollard, Lu Shen, Li-wei
Lehman, Mengling Feng, Mohammad Ghassemi,
Benjamin Moody, Peter Szolovits, Anthony Celi,
and Roger Mark. 2016. MIMIC-III, a freely accessi-
ble critical care database. Scientific Data, 3:160035.

K.S Kalyan and S. Sangeetha. 2019. SECNLP:
A survey of embeddings in clinical natural lan-
guage processing. Computing Research Repository,
abs/1903.01039.

Taku Kudo and John Richardson. 2018. Sentence-
Piece: A simple and language independent subword
tokenizer and detokenizer for neural text processing.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Matthieu Labeau and Alexandre Allauzen. 2017. Char-
acter and subword-based word representation for
neural language modeling prediction. In Proceed-
ings of the First Workshop on Subword and Charac-
ter Level Models in NLP, pages 1–13, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations. Computing
Research Repository, arXiv:1909.11942.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So,
and Jaewoo Kang. 2019. BioBERT: a pre-trained
biomedical language representation model for
biomedical text mining. Bioinformatics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretrain-
ing approach. Computing Research Repository,
abs/1907.11692.

Thang Luong, Ilya Sutskever, Quoc Le, Oriol Vinyals,
and Wojciech Zaremba. 2015. Addressing the rare
word problem in neural machine translation. In Pro-
ceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 11–19,
Beijing, China. Association for Computational Lin-
guistics.

Diego Molla and Jos Gonzlez. 2007. Question answer-
ing in restricted domains: An overview. Computa-
tional Linguistics, 33:41–61.

Mark Neumann, Daniel King, Iz Beltagy, and Waleed
Ammar. 2019. ScispaCy: Fast and robust models
for biomedical natural language processing. In Pro-
ceedings of the 18th BioNLP Workshop and Shared
Task, pages 319–327, Florence, Italy.

Vincent Nguyen, Sarvnaz Karimi, and Zhenchang
Xing. 2019. ANU-CSIRO at MEDIQA 2019: Ques-
tion answering using deep contextual knowledge.
In Proceedings of the 18th BioNLP Workshop and
Shared Task, pages 478–487, Florence, Italy.

Yifan Peng, Shankai Yan, and Zhiyong Lu. 2019.
Transfer learning in biomedical natural language
processing: An evaluation of BERT and ELMo on
ten benchmarking datasets. In Proceedings of the
Workshop on Biomedical Natural Language Pro-
cessing, pages 58–65, Florence, Italy.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions
for machine comprehension of text. Computing Re-
search Repository, abs/1606.05250.

178

Yuqi Si, Jingqi Wang, Hua Xu, and Kirk Roberts. 2019.
Enhancing clinical concept extraction with contex-
tual embedding. Computing Research Repository,
abs/1902.08691.

P. Stanfield, Y.H. Hui, and N. Cross. 2008. Essential
Medical Terminology. Jones and Bartlett. Chapter
2.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In In the
Proceedings of International Conference on Learn-
ing Representations, pages 353–355, Brussels, Bel-
gium.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
Neural Machine Translation System: Bridging
the Gap between Human and Machine Trans-
lation. Computing Research Repository, page
arXiv:1609.08144.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le.
2019. XLNet: Generalized Autoregressive Pretrain-
ing for Language Understanding. Computing Re-
search Repository, page arXiv:1906.08237.

Wei Zhu, Xiaofeng Zhou, Keqiang Wang, Xun Luo,
Xiepeng Li, Yuan Ni, and Guotong Xie. 2019.
PANLP at MEDIQA 2019: Pre-trained language
models, transfer learning and knowledge distillation.
In Proceedings of the 18th BioNLP Workshop and
Shared Task, pages 380–388, Florence, Italy.

179

1

Abstract

We propose a modular rule-based system

for Text Simplification and show that it out-

performs the state-of-the-art neural-based

simplification system in terms of simplic-

ity. We compare the output of both systems

to highlight the differences between the

two approaches. Further, we present an ad-

aptation of our system to handle domain-

specific tasks, where we employ a hybrid

approach of our rule-based system and

phrase-based machine translation to sim-

plify medical discharge summaries in a

low-resource situation. We compile a small

medical simplification dataset to evaluate

our proposed solution.

1 Introduction

Text Simplification is loosely defined as reducing

the linguistic complexity of text, without changing

its meaning, to suit a wider range of audience such

as: non-native speakers, children, or people with

language impairments. It is usually achieved by ap-

plying rewrite rules to perform two types of opera-

tions: (1) lexical simplification, where difficult

words are substituted with more common alterna-

tives; and (2) syntactic simplification, where com-

plex sentence structures are split, reordered, or de-

leted to produce simpler more readable structure.

To implement those rewrite rules, researchers em-

ploy various methods broadly categorized into two

categories: rule-based methods and data-driven

methods (Siddharthan, 2014).

In rule-based methods, the rules are hand-crafted a

priori then applied to new text at simplification

time. Examples of such rules include dictionary-

based lookups for lexical simplification (Kuro-

hashi & Sakai, 1999) or rules aiming at sentence

restructuring into more readable formats. (A. Sid-

dharthan, 2002; Vickrey & Koller, 2008). In con-

trast, data-driven methods frame the simplification

process as a monolingual Machine Translation

problem where the rewrite rules are learned from a

parallel corpus of complex-simple sentences. This

enables researchers to leverage the advances in

Machine Translation to address the simplification

task.

Considering the breakthrough achieved by Neu-

ral Machine Translation, we ask the questions:

Could similar success be achieved in Text Simpli-

fication by employing neural architectures? Would

rule-based methods be more effective since simpli-

fication is a fundamentally different task than

translation?

To answer these questions, first, we propose a

non-neural general-purpose rule-based simplifica-

tion system. We, then, show how it can be adapted

to address domain-specific simplification tasks by

leveraging a small parallel dataset from the target

domain. Subsequently, we compare the output of

our system with that of a recently proposed neural-

based simplification system (Zhang & Lapata,

2017). In our study, we focus on two simplification

domains: (1) general-purpose English, for which

we run our tests using Wikipedia-based datasets;

and (2) medical English, for which we compile a

small medical parallel corpus of complex-simple

pairs and use it to test our systems. We show that

our rule-based system outperforms the neural sys-

tem, in terms of simplicity, both qualitatively and

quantitatively. Finally, we reflect on the output of

both systems to pinpoint the shortcomings of each

approach and encourage researchers to address

them in future research.

2 Rule-Based Simplification System

In this section, we describe our proposed rule-

based simplification system. It comprises two

modules corresponding to the two major opera-

tions of text simplification: lexical and syntactic

simplification.

Neural Versus Non-Neural Text Simplification: A Case Study

Islam Nassar†* Michelle Ananda-Rajah†‡* Gholamreza Haffari†*

†Faculty of Information Technology, Monash University, VIC, Australia.

‡ Department of Infectious Diseases, The Alfred Hospital and Central Clinical School.

*{firstname.lastname}@monash.edu

180

2

2.1 Lexical Simplification

The lexical module operates in two phases: simpler

synonyms extraction, and lexical substitution. In

the first phase, the system builds a synonyms dic-

tionary for all the words appearing in the input text

and apply a simplicity criterion to only keep syno-

nyms which are simpler than the original words. In

the second phase, the system decides which words

should be substituted with which synonyms based

on the context of the original words in their sen-

tences.

Simpler Synonyms Extraction Given an input

sentence, this phase starts with tokenization and

part-of-speech (PoS) tagging.1 Subsequently, for

each (word, PoS) pair, if the PoS tag corresponds

to a verb, adjective or noun (except proper nouns),

the word is looked up in four lexical databases to

find all possible synonyms. We use WordNet, The-

saurus, paraphrase.org, and domain-specific data-

bases2 to ensure a comprehensive coverage. We use

the PoS tag while looking up synonyms to avoid

issues arising due to polysemy, words with same

spelling but different meanings (consider the dif-

ference in meaning between “lead” as a verb –

guide, versus “lead” as a noun – metallic element).

To preserve grammaticality, the system, then,

applies morphological changes to the obtained syn-

onyms so that the synonyms match the PoS of the

original word. The changes applied include singu-

larization or pluralization for nouns, setting super-

lative or comparative forms for adjectives, and

tense conjugation for verbs3.

Finally, the system selects only the synonyms

which are indeed simpler than the original word.

For that we apply an intuitive simplicity criterion:

if the (Synonym, PoS) pair appears in a large cor-

pus of text4 more often than the (Word, PoS) pair,

we assume that the synonym is more common and

hence is a simpler alternative of the original word.

By repeating the above process on all the words ap-

pearing in the text, we obtain a simpler synonyms

dictionary with many possible synonyms for each

word.

Lexical Substitution In this phase, the system

uses the obtained synonyms dictionary in conjunc-

1 We use Stanford tokenizer and PoS-tagger in NLTK
Python library
2 An example of an automatically extracted medical
dictionary is presented in section 3 of this paper

tion with a language model to produce a set of can-

didate sentences and select the simplest among

them. This process happens in an iterative greedy

manner. First, the (word, Pos) pairs of the input

sentence are scanned sequentially and for each pair

with an entry in the synonyms dictionary, a corre-

sponding set of sentences are produced where each

sentence has the word replaced with one of the pos-

sible simpler synonyms. This set is then scored us-

ing a language model and the highest scoring sen-

tence, based on perplexity scores, is deemed to be

the simplest and hence replaces the original sen-

tence. This process is repeated till all (word, PoS)

pairs of the input sentences are scanned. The last

obtained sentence is the output of the lexical sim-

plification module.

The choice of the language model is extremely

important to ensure that the sentence with the high-

est score is indeed the simplest. To choose a suita-

ble language model, we ran experiments using a

validation set of 2000 sentences from WikiLarge

corpus. We found that the best performance with

respect to simplicity metrics, was obtained using

language models which had been trained on a sim-

ple English corpus. This tends to encourage output

sentences which are simpler and more common.

The best performance was achieved using a 5-gram

language model (Brown et al. 1992) trained on the

Simple Wikipedia corpus5.

2.2 Syntactic Simplification

For the syntactic simplification, we adopted an ex-

isting open source implementation - The Multilin-

gual Syntactic Simplification Tool (MUSST)

(Scarton et al., 2017) - whereby the syntactic sim-

plification is performed on a sentence level by ap-

plying a set of general-purpose simplification rules

on its dependency parse tree. Those rules imple-

ment four operations that are arguably the most

useful simplification operations.

• Splitting conjoint clauses

• Splitting relative clauses

• Splitting appositive phrases

• Changing passive-voice to active-voice

To apply the above rules, the sentence is first

parsed using the Stanford dependency parser

3 We use Pattern Python package for morphology
changes
4 We use News Crawl 2013 corpus in WMT16 Task
5 simple.wikipedia.org

181

3

(Chen & Manning, 2014) and then three main op-

erations are performed to achieve the final output:

Analysis: where the sentence is analyzed in search

for simplification clues such as discourse markers

for conjoint clauses (ex: “and” or “when”), or rela-

tive pronouns for relative clauses (ex: “who”,

“which”).

Transformation: where the core operations are

applied to transform the sentence into a simplified

form. It is applied in a recursive manner until the

sentence has no more simplification clues.

Generation: where the simplified sentences are re-

constructed ensuring proper grammatical structure.

3 Medical Domain Adaptation

With the above proposed system architecture, our

simplification system was able to efficiently handle

general-purpose English simplification such as

simplifying news articles or Wikipedia text. How-

ever, it struggled when trying to simplify domain-

specific text such as Medical text or Financial text.

This is due to the limited coverage of general-pur-

pose dictionaries (such as Wordnet and Thesaurus)

to such domains. In this section, we show how our

system can be adapted to address such domain-spe-

cific applications in a low-resource setting. We pre-

sent an adaptation of our system to the medical do-

main, where the objective is to simplify medical

discharge summary reports using a very small

training set of parallel complex-simple sentences

from the target domain.

Recalling our system architecture, the syntactic

simplification module would have no issue simpli-

fying domain-specific text as it operates on the sen-

tences dependency parse tree and hence is domain-

agnostic. This is not the case, however, for the lex-

ical module; since the lexical module uses diction-

aries to lookup simpler alternatives, it would fail to

address domain-specific jargon which is non-exist-

ent in general-purpose dictionaries. To counteract

this issue, we employed a data-driven approach to

enrich the lexical module dictionaries and extend

its coverage to domain specificities.

Medical Dataset First, we compiled a small par-

allel corpus of complex-simple medical text by

manually simplifying 500 sentences drawn from

“General Medicine” medical summary reports.

The 500 sentences were randomly selected from a

pool which included reports with the highest lexi-

cal diversity in the entire dataset. We calculate the

lexical diversity as the ratio of unique word count

in a report to the total length of vocabulary. This is

to ensure that the selected sentences dataset cap-

tures a diverse representation of the underlying

medical reports corpus. The simplification was

conducted by a medical expert and was targeted to

address audience of Grade 6 level on the Flesch-

Kincaid scale (Kincaid et al. 1975).

Extracting Synonyms After compiling the med-

ical dataset, we used Moses toolkit (Koehn et al.

2007) to train a phrase-based machine translation

model using 450 parallel sentences (the remaining

50 sentences were held out to test the system). One

of the outputs of the trained model is the PBMT

phrase table, which depicts potential mappings be-

tween source (i.e. complex) and destination (i.e.

simple) phrases accompanied with maximum like-

lihood alignment scores for each phrase mapping.

We used the phrase table to extract a phrase-syno-

nyms dictionary of medical jargon, by scanning

through each source phrase and selecting the desti-

nation phrase with the highest PBMT alignment

score as its synonym phrase. Finally, we used the

extracted phrase mappings dictionary to comple-

ment the general-purpose dictionaries in the lexical

module, proposed in section 2.1. This yielded a

great improvement of 11 points on the simplicity

scale, as will be shown in more details in section 6.

4 Neural Simplification Overview

Before we proceed with the systems comparison,

we, first, briefly describe the neural-based ap-

proach for text simplification as proposed by

(Zhang & Lapata, 2017) dubbed as DRESS (Deep

REinforcement Sentence Simplification).

 In their method, they treat text simplification as

a sequence-to-sequence modelling task. They draw

inspiration from Neural Machine Translation,

where they train an encoder-decoder model on a

monolingual parallel corpus of complex-simple

English. To further encourage a simpler output,

they train their model in a reinforcement learning

framework where the reward function is a

weighted combination of the output sentence rele-

vance, simplicity, and fluency. As a proxy for rele-

vance, they use an LSTM-based sequence auto-en-

coder to obtain a vector representation for both the

source and output sentences, the relevance reward

is then defined as the cosine similarity between

those two vectors. As for the fluency reward, they

use an LSTM language model trained on simple

sentences to obtain a normalized perplexity score

182

4

for the output sentence. For the simplicity reward,

they use the SARI metric (Xu et al. 2016) which

measures the n-gram overlaps between source, out-

put and reference sentences. SARI will be further

elaborated in section 5. Finally, to encourage lexi-

cal simplification, they use a separate pre-trained

encoder-decoder model, trained in a non-rein-

forced setting on a parallel corpus of complex-sim-

ple sentences, to obtain lexical substitution proba-

bilities based on a given source sentence. Using the

latter model favors lexical simplification opera-

tions but does not take into account the fluency of

the overall output. Therefore, the output of their

system is determined by linearly combining the

two encoder-decoder models.

5 Experimental Setup

In their study, (Zhang & Lapata, 2017) have con-

ducted an extensive comparison between multiple

competitive simplification systems. We hence use

a similar experimental setup to be able to directly

use their results in our comparison.

Baseline Our baseline is simply an echo system

where the input complex sentence is not simplified

but rather passed through as the output. This allows

a first-glance evaluation of whether a comparison

system has indeed yielded a simplified output.

Datasets We perform two types of testing:

 (1) General-purpose Simplification: on WikiSmall

(Zhu et al. 2010) and WikiLarge (Zhang & Lapata,

2017) datasets, where the latter is a superset of the

former and both are collated by automatically

aligning complex and simple sentences from the

ordinary and simple English Wikipedia articles.

We use the same test splits used in the mentioned

study (100 sentences for WikiSmall and 354 sen-

tences for WikiLarge not containing duplicates).

This enables us to use their system output directly.

We don’t use Newsela dataset (Xu et al 2015),

which was used in their study, as it is not publicly

available.

(2) Medical Simplification: We use the held-out

test set (50 sentences) from the medical dataset

mentioned in section 3 to test our system. We

couldn’t test the DRESS system on our medical da-

taset due to its extremely limited size leading to

non-sensible results when used to train a neural-

based architecture such as DRESS. We, therefore,

only compare our results with the baseline in case

of medical data.

Evaluation Metrics We use two commonly used

metrics, in the simplification literature, to evaluate

the systems: (1) Flesch Kincaid Grade Level

(FKGL; (Kincaid et al. 1975) which is measured

on a corpus level to indicate the readability of the

text as a function of number of words, sentences

and syllables (lower values signifies more readable

text); and (2) SARI (Xu et al. 2016) which indi-

cates the goodness of a simplification by measur-

ing the n-gram overlap of the System output

Against References and against the Input sentence.

More specifically, SARI measures the average n-

gram precision and recall of addition, deletion and

copying operations. It, hence, rewards deletion op-

erations when it occurs in both the output and ref-

erence sentences. Similarly, it rewards addi-

tion/substitution where words in the output appears

in the reference but not the input. This implies that

producing longer output sentences doesn’t neces-

sarily lead to higher SARI scores.

6 Results

Examining the results obtained in table 1, we can

see that both systems do indeed produce simpler

and more readable output as opposed to the origi-

nal sentences. We also see that while our non-neu-

ral system outperforms the neural system in terms

of simplicity, it lags in terms of readability. This in-

dicates that the output of our proposed system cor-

relates better with the reference simplifications, yet

it is lengthier and hence harder to read. The latter

observation is attributed to the fact that our system

doesn’t perform deletion operations. Instead, it in-

troduces more words during splitting and hence

creates longer sentences leading to higher FKGL

values (i.e. worse readability). We designed our

system this way considering the task of “Medical

Text Simplification”. In a medical context, it is not

desired to delete words but rather to elaborate on

abstract terminologies and hence deletion opera-

tions were not encouraged. Incorporating further

deletion rules into our syntactic module shall lead

to improved readability scores.

Qualitative examination of the output of the two

systems (table 2, upper) shows that the non-neural

system is doing a better job in terms of both lexical

and syntactic simplification. The rule-based sys-

tem successfully substitutes difficult words with

what seems to be reasonable and easier alterna-

tives. It also splits composite structures into sim-

pler form. For example, the appositive phrase in

example 1 (the trickster character) and the conjoint

183

5

clause (where it encloses) in example 2 were right-

fully split into separate sentences. On the other

hand, the neural system seems to favor deletion op-

erations, even when it affects the meaning. In all

three examples, a chunk of the sentence was de-

leted despite changing the meaning.

As for the medical simplification results, our

proposed system has achieved an improvement of

11 points on SARI simplicity scale and 5 grade lev-

els on FKGL scale, when compared to the original

input sentences. (two example simplifications are

shown in table 2, lower). Looking at the average

words per sentence, it is evident that our system

tends to produce longer simplified sentences. Once

again, that is due to the nature of the medical sim-

plification task which requires elaboration rather

than deletion.

7 Conclusion

We developed a non-neural approach for text sim-

plification which implements rules for lexical and

syntactic simplification. We used two common test

sets to compare our system output with that of a

recently proposed neural simplification approach.

We showed that our system produces simpler and

more meaningful output and scores higher in terms

of simplicity metrics. We presented a comparison

between both systems output to capture where the

neural approach fails. Finally, we presented a hy-

brid method to enable our system to perform do-

main-specific text simplification, with high perfor-

mance, in low-resource situations.

Acknowledgements

The authors are grateful to the reviewers for their

insightful comments and feedback. This work is

partly supported by the ARC Future Fellowship

FT190100039 to G. H. and an MRFF TRIP Fel-

lowship to MAR.

 WikiLarge WikiSmall Medical

FKGL SARI

Avg.

words/sent
FKGL SARI

Avg

words/sent
FKGL SARI

Avg

words/sent

No Simplification 9.2 7.2 22.61 12.1 4.5 27.8 20.13 15.7 8.4

DRESS 6.58 37.08 16.39 7.48 27.48 16.7 N/A N/A N/A

Rule-Based 8.37 40.42 20.83 9.25 28.42 26.29 15.26 26.79 10.2

Input The tarantula, the trickster character, spun a black cord and, attaching it to the ball, crawled away fast to the east,

pulling on the cord with all his strength

Reference The tricky tarantula spun a black web and attached it to the ball. Afterwards, it crawled away and pulled the web

with him

DRESS The tarantula, the trickster character, spun a black cord and, holding it to the ball

Rule-Based The Tarantula turn a black string. And the Tarantula connecting it to the ball, crawled away soon to the East, pulling

on the string with all his strength. The Tarantula is the trickster character.

Input They are culturally akin to the coastal peoples of Papua New Guinea

Reference They are similar to the coastal peoples of Papua New Guinea

DRESS They are culturally referring to the coastal peoples of Papua New Guinea

Rule-Based They are culturally similar to the coastal peoples of Papua New Guinea

Input It is situated at the coast of the Baltic Sea, where it encloses the city of Stralsund

Reference It is located at the coast of the Baltic Sea where it surrounds the city of Stralsund

DRESS It is situated at the coast of the Baltic Sea

Rule-Based It is located at the coast of the Baltic Sea. It contains the city of Stralsund

Input AKI secondary to heart failure medication

Reference Kidney injury from related heart failure medication

Output Kidney damage because of heart failure medication

Input 82F from LLC with worsening SOB and lethargy

Reference 82 female were admitted to hospital from low-level care facility with worsening short of breath and tiredness

Output 82 female from low-level care facility with worsening breathlessness and tiredness

Table 2: System output comparison from WikiLarge (upper), examples of medical reports simplifications (lower)

Table 1: Evaluation results on the three datasets

184

6

References

Brown, P. F., deSouza, P. V., Mercer, R. L., Pietra,

V. J. D., & Lai, J. C. (1992). Class-based N-gram

Models of Natural Language. Comput. Linguist.,

18(4), 467–479.

Chen, D., & Manning, C. (2014). A Fast and Accu-

rate Dependency Parser using Neural Networks.

Proceedings of the 2014 Conference on Empiri-

cal Methods in Natural Language Processing

(EMNLP), 740–750.

Kincaid, J., Fishburne, R., Rogers, R., & Chissom,

B. (1975). Derivation Of New Readability Formu-

las (Automated Readability Index, Fog Count

And Flesch Reading Ease Formula) For Navy En-

listed Personnel. Institute for Simulation and

Training.

Koehn, P., Hoang, H., Birch, A., Callison-Burch,

C., Federico, M., Bertoldi, N., … Herbst, E.

(2007). Moses: Open Source Toolkit for Statisti-

cal Machine Translation. Proceedings of the 45th

Annual Meeting of the ACL on Interactive Poster

and Demonstration Sessions, 177–180.

Kurohashi, S., & Sakai, Y. (1999). Semantic Anal-

ysis of Japanese Noun Phrases: A New Approach

to Dictionary-based Understanding. Proceedings

of the 37th Annual Meeting of the Association

for Computational Linguistics on Computational

Linguistics, 481–488.

Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J.

(2002). BLEU: A Method for Automatic Evalua-

tion of Machine Translation. Proceedings of the

40th Annual Meeting on Association for Compu-

tational Linguistics, 311–318.

Scarton, C., Palmero Aprosio, A., Tonelli, S., Mar-

tín Wanton, T., & Specia, L. (2017). MUSST: A

Multilingual Syntactic Simplification Tool. Pro-

ceedings of the IJCNLP 2017, System Demonstra-

tions, 25–28.

Siddharthan, A. (2002). An architecture for a

text simplification system. Language Engineer-

ing Conference, 2002. 64–71.

Siddharthan, Advaith. (2014). A survey of re-

search on text simplification.

Sulem, E., Abend, O., & Rappoport, A. (2018).

BLEU is Not Suitable for the Evaluation of Text

Simplification.

Vickrey, D., & Koller, D. (2008). Sentence Simpli-

fication for Semantic Role Labeling. Proceedings

of ACL-08: HLT, 344–352.

Xu, W., Callison-Burch, C., & Napoles, C. (2015).

Problems in Current Text Simplification Re-

search: New Data Can Help. Transactions of the

Association for Computational Linguistics, 3,

283–297.

Xu, W., Napoles, C., Pavlick, E., Chen, Q., & Calli-

son-Burch, C. (2016). Optimizing Statistical Ma-

chine Translation for Text Simplification. Trans-

actions of the Association for Computational Lin-

guistics, 4(0), 401–415.

Zhang, X., & Lapata, M. (2017). Sentence Simpli-

fication with Deep Reinforcement Learning.

ArXiv:1703.10931 [Cs].

Zhu, Z., Bernhard, D., & Gurevych, I. (2010). A

Monolingual Tree-based Translation Model for

Sentence Simplification. Proceedings of the 23rd

International Conference on Computational Lin-

guistics, 1353–1361.

185

A string-to-graph constructive alignment algorithm for discrete and
probabilistic language modeling

Andrei Shcherbakov Ekaterina Vylomova
The University of Melbourne

Parkville, Victoria 3010, Australia
andreas@softwareengineer.pro evylomova@gmail.com

Abstract

We propose a novel algorithm of graph-to-
string alignment that constructs automata from
a sample of string sequences. While being a
variant of global edit distance, the algorithm
also employs graph construction operations in
order to form an optimal alignment. It al-
lows dynamic insertion of edges and nodes
driven by optimization of the best string-to-
graph alignment score. The algorithm may be
used both to derive discrete non-deterministic
acceptor (or a regular expression) and to build
a probabilistic generative model of an input
language. An outstanding ability to produce
accurate approximate models from extremely
sparse training sets constitutes the main advan-
tage of the technique.

1 Introduction

Tasks such as text generation or language mod-
elling might require approximate string matching.
Often the models are trained on a set of match-
ing samples (sometimes augmented with mis-
matching, or negative, samples). In most cases,
they rely on extrinsic metrics (n-gram similarity
(Kondrak, 2005), perplexity (Jelinek et al., 1977),
Kolmogorov (Li and Vitányi, 2013) or cognitive
(Rogers et al., 2013) complexities, Levenshtein
distance (Levenshtein, 1966)). An objective func-
tion may not directly correspond to any formally
proven or intuitively observable reasonable goal.
In current paper, we attempt to combine struc-
ture awareness of graph-based models with sim-
plicity of similarity-based approaches. We train
a graph-based model that minimizes modified re-
current edit distance1 between each training sam-
ple and the path in the graph closest to it. As a
graph-based model we propose to use a weighted
non-deterministic finite state acceptor (WFSA) to

1Here “recurrent” means that a path may contain loops.

enable a compact representation of learned se-
quences as well as to allow alternations and rep-
etitions of substrings. The approach we consider
in the paper is essentially based on the hypoth-
esis that sequences that are likely to appear in
a language normally form dense clusters around
some basic patterns. In other words, the sequences
are characterized by relatively low edit distance
to some cluster centroid. The proposed tech-
nique handles both branching and looping of sub-
sequences in a consistent way. As a result, pattern
generalization may be carried out without any ex-
tra pre- or post-processing.2

2 Architecture

We first provide a set of positive (and, option-
ally, negative) string samples in order to build
a weighted acceptor (WFSA). The training pro-
cedure runs as follows. Initially, the acceptor
only contains unconnected start and finish (accept-
ing) nodes. At each training iteration we com-
pute the best possible alignments between the ac-
ceptor and a given sample string using Smith–
Waterman (Smith et al., 1981) alignment search
procedure with the following major differences.
First, it allows virtually any automaton edge (even
non-existent ones) to be considered for alignment
paths.3 In such a way, it enables new candidate
edges that should be built in order to improve fit to
a given sample. Second, it speculates on prospec-
tive new states of acceptor, one per sample string
character. Each string sample y is processed in the
following two phases during training.
Phase 1 - counting alignment scores and build-
ing a temporary transducer. We construct a ma-

2 The code is available at http://regexus.com/jumpalign ,
https://github.com/andreas-softwareengineer-pro/jumpalign

3Contrary to it, Smith–Waterman algorithm effectively
considers both string operands as unmodifiable linear-shaped
automata

186

compositional
WFST edge a b c c

WFST projection states for

prospective automaton
state (+bonus!)

existing
automaton state

Teleportation
(fixed cost)

the automaton
built up to now

prospective
automaton state

e:2,
a:3

c:1 c:6

b:2 c:1

b:1, c:1

a:1,
d:1

$:7

$

Figure 1: A single acceptor-to-string alignment step.

trix of best partial alignment scores Si,j , where n
is number of existing WFSA states, i ∈ {0..n +
|y|} is existing or prospective state of accep-
tor, and j ∈ {1..|y|} is sample string position.
For each j we consider all n existing automaton
states augmented with one new (prospective) state
“number” n + j. In order to assign candidate
scores for Si,j cell, we transfer scores from S∗,j−1
cells in two ways: (1) using existing WFSA edges
that match the yj character,4 applying respective
edge weights as increments; or (2) using virtual
“teleport” edges that might be added between any
pair of states, with a fixed teleport penalty T :5

Si,j = max

{ max
k

Sk,j−1 − T
max

k:∃k
yj−→i

(Sk,j−1 + w(k
yj−→ i))

(1)
where yj is the jth character of the sample string
y; k

yj−→ i is WFSA edge from state k to state i la-
belled with yj character; w(k

yj−→ i) is its weight.
Indeed, we build a transient weighted finite-

state transducer (WFST) which translates the ac-
ceptor into the sample string. Each transducer
state si,j maps into the respective Si,j score. In
order to reduce complexity, we upper bound the
number of incoming edges to each WFST state
by a constant hyperparameter K, only creating
WFST edges that yield best candidate scores to a
given Si,j according to Eq. 1. Other potential in-

4We track a modifiable character 7→ weight map for
every edge

5Technically, for the sake of efficiency, one may handle
the matrix as a sparse one, assuming the default score of any
missing (i, j) element to be maxk Sk,j−1 − T .

coming edges are ignored, if any. In Fig. 1, WFST
edges that would be built at infinitely great K but
rejected at K = 2 as not yielding competitive
scores, are given in dashed line.

For each j we create a new candidate transducer
state sn+j,j that is only “accessible” from s∗,j−1
by teleportation and apply a fixed bonus B to its
score: Sn+j,j = maxk Sk,j−1 + B. Such a state
(shown in yellow color in Fig. 1) may further be
either mapped to a newly created state of the ac-
ceptor or deleted if it fails to improve the result-
ing alignment score. The bonus encourages initial
endorsement of newly hypothesized states, which
otherwise wouldn’t have competitive scores.
Phase 2 - endorsement. After calculation of
all Si,j scores, we trace paths of alignment from
Saccepting,|y| back to Sstart,0. We endorse all
WFSA edges laying at WFST-to-WFSA projec-
tions of those optimal and near-optimal paths. En-
dorsement here means increasing weight of an ex-
isting or prospective WFSA edge k

yj−→ i by an
amount of φ(k

yj−→ i), which is endorsement flow
trough the WFST edge sk,j 7→ si,j−1 that maps

back to k
yj−→ i at some j. If multiple WFST

edges map to a single k
yj−→ i (in a case of looped

path), the latter receives multiple endorsements.
If an edge ought to be endorsed doesn’t yet ex-
ist (which happens in case of teleportation) then
we create it just in time; such a procedure lets the
WFSA grow. Endorsement flow φ is calculated
by summing outgoing edge flows at each WFST
state and then distributing through the incoming
edges. The final (accepting) state is assumed to
receive constant endorsement flow R from outside

187

which is then distributed to all states using a dy-
namic programming procedure. R plays part of
learning rate. Choosing a reasonably low value
for it (0.1B) helps one to alleviate bias caused by
a particular order of sample learning.

The distribution of flow over incoming edges of
a given state s is determined by the softmax:6

φ(e) =
exp (−L(e))∑

v∈Vs

exp (−L(v))
∑

u∈Us

φ(u) (2)

where {Vs} and {Us} are sets of incoming and
outgoing edges, respectively, for some state s;
e ∈ Vs; L(e) is edge loss which is calculated as
difference between the respective Si,j score for s
and a candidate score brought to it by e edge.

For negative training samples, we apply a
similar procedure (disendorsement) with negative
amounts of flow. The endorsement/disendorse-
ment procedure described above keeps the sum
of incoming edge weights and the sum of outgo-
ing edge weights equal for any given WFSA state.
Besides other benefits, that fact enables simple re-
alization of unbiased sampling procedure, just as
easy as random weighed selection of an edge to
proceed with.

3 Experiments

3.1 Learning a WFSA from positive samples

The approach demonstrates ability to recognize
basic branching and recurrent patterns in string
sample sets that can be used to construct regular
expressions. Fig. 2(a) illustrates an acceptor for
the following set:

12345 , 1232345 , 123232345 ,
abfg , abcdefg , abcdecdecdefg ,
123456, 123232323232323456

3.2 Contrastive learning of WFSA

We experimented with training acceptors on both
positive and negative examples. At every epoch,
for each sample, we applied a respective positive
or negative endorsement to the edges. Although
we started with a symmetrical approach by en-
dorsing proportionally to the score differences, it
made any graph prone to any reshaping neces-
sary for better fitting to a training set. Therefore,

6Minor terms below a threshold are ignored in the imple-
mentation in order to avoid excessive growth of the WFSA
and performance loss.

we found asymmetrical approach to be signifi-
cantly more efficient. For false positive matches
we randomly set a negative score to some of edges
constituting the best path of acceptor-to-sample
alignment. This leads to a permanent denial of
those edges, and alternative edges will be con-
sidered in further learning process to achieve a
high enough score for positive samples. Our ex-
periments showed that the acceptor easily learns
combinatorial rules like one that requires it to ac-
cept “aaabbb, aaaccc, dddccc” but to reject
dddbbb”. For most cases, it achieves a 100% ac-
curacy in less than 20 epochs.

3.3 Probabilistic language modeling

We created WFSAs on the basis of small samples
of vocabularies of the English (Germanic, IE) and
the Kukatja (Pama-Nyungan, Australian Aborigi-
nal) languages.7 For the latter, we reused the lin-
guistic resources introduced in Shcherbakov et al.
(2016). We generated “novel” possible words us-
ing the acceptors and measured precision of the
outputs, i.e. percentage of predicted strings that
were observed in the corresponding language dic-
tionaries. To generate a word, we traversed a path
in the weighted acceptor from its accepting state
back to the initial state, choosing an incoming
edge and a character to generate at each state. In
our experiments, the likelihood of test vocabulary
word production was comparable with the one ob-
tained in modified Kneser-Ney approach (Heafield
et al., 2013) if the training corpus size is large
enough. However, for very low-resource settings
(10 . . . 500 training words) the alignment-based
approach outperforms n-gram approaches (at the
best fixed n) in ∼ 1.2+ times. Fig. 2(b) shows
a graph trained for a random 300 words sampled
from Kukatja dictionary. Although the automaton
is quite simple, as many as 10% of its output words
hit the remaining known Kukatja vocabulary that
contains ∼ 9, 000 words.8 A larger automaton
may be built if we increase L hyperparameter, but
this choice does not lead to precision increase. In-
terestingly, a model trained on the English poem
“Humpty Dumpty” (only 18 words!) predicts real
English words with a precision above 18% which
is 1.5x greater than the best result achieved by

7Kukatja is an Australian Aboriginal language spoken by
about 300 people in Western Desert, Australia.

8Since the real vocabulary size of Kukatja is not known,
we may reasonably expect that the real precision is greater,
even exceeding one measured for English.

188

start

0

1:20

7

a:12

1

2:56 3:36

2

3:20

3

4:20

4

5:20

6:8

5

$:32

8

b:12

9

f:12

11

c:16

g:12 12

d:16

e:16

(a) Example in Subsection 3.1

start

0

k:12,m:28,p:20,r:4,w:28

7

n:44

9

t:40

10

p:20,y:16

j:8,k:16,m:12,p:20

1

a:332,i:204,y:12

p:16

k:40,l:88,m:20,n:8,p:20,r:20,t:20,w:44,y:4

l:12,n:8

2

r:172 n:76

l:8,p:4 63

$:200

l:8,r:76

i:20,n:20,u:24

t:12

13

r:12

g:56,p:12,t:16,y:16

g:8,p:12

j:24

j:16

u:112

14

$:12

(b) 90 words of Kukatja (paths with low weight edges were pruned)

Figure 2: Examples of the learned WFSA.

the modified Kneser-Ney model. Finally, since
finite state machines are well-known in the do-
main of morphology modeling, we additionally
explored this direction. We used short (100..1000
words) samples of CELEX English morphology
database (Baayen et al., 1995) to train an accep-
tor. We observed that common prefixed and suf-
fixes got aligned and represented compactly in a
resulting automaton structure. However, overfit-
ting to stems significantly affects its overall gen-
eralization potential that results is perplexity val-
ues comparable to ones achieved by n-gram mod-
els (Table 1).

Resource Test set Train set
(language) K=1 K=2 2gr. K=1 2gr.

Kukatja 1.79 1.77 1.66 1.9 1.63
English 2.54 2.46 2.32 2.4 2.13
CELEX 2.69 2.66 2.55 2.28 2.18

Table 1: Per-character perplexity (natural logarithms)
for acceptors trained on 300-word random subsamples
at different settings of K hyperparameter. Figures for a
bi-gram model (“2gr.”) are given for comparison.

3.4 Learning software control flow graphs

Reverse engineering of a software control flow
graph (CFG) based on samples of execution traces
is another area where the proposed constructive
alignment algorithm performs well. Experiments
with sample programs demonstrated its ability to
produce accurate estimations of CFG suitable for
analysis and verification purposes.

Consider a simple abstract program example
given in Figure 3. Suppose that each abstract ac-
tion writes a respective character to a log upon
execution. In such a way, every program run
produces an execution trace string. For instance,
given num = 1, c1 = c2 = c3 = false it will
produce a bcfefq trace. An automaton learnt
from a collection of traces obtained at different in-
puts is shown in Fig. 3. The result correctly back
engineers the program control flow graph. It may
be noted that procedure call context was properly
preserved. Indeed, two different edges labelled ‘f’
were produced for procedure f calls originating
from different points of code.

Speaking more generally, it may concern dis-

189

procedure f():
action f

procedure main(n, c1..3):
for k ∈ 1..n do

if c1 then
action a

else
action b

end
action c
f()
if c2 then

action d
else

action e
end
f()
if c3 then

action z
end
action q

end

start

0

a:4,b:8

1

c:20

2

f:20

3

d:4,e:16

4

f:20

z:12

5

q:20

b:8

6

$:12

Figure 3: A control flow graph inferred from a code
sample execution traces.

covering latent states of transition graph for vari-
ous natural and artificial processes (process min-
ing).

4 Discussion

The constructive alignment algorithm demon-
strated its ability to efficiently solve various kinds
of tasks when training sets are too small to employ
other options. This fact supports the hypothesis
that most of the acceptable sequences are likely to
congest within low edit distances from a relatively
sparse variety of alterable common patterns.

The method also demonstrated its advantages
over n-gram language modeling for “dense” train-
ing resources, still its higher complexity may chal-
lenge the advantages as a kind of “light” learn-
ing algorithms. The approach seem to be promis-
ing for regular expression construction since it ad-
dresses repetitions and branching in an intuitive,
uniform way of alignment alternative trade-off.

5 Related work

Tomita (1982) made an early successful attempt
to address automaton construction from sets of

positive and negative samples. Their approach
employs a global optimization over edge muta-
tions. Dupont (1994) proposed a further adap-
tation of genetic algorithms to the task of au-
tomata creation. Formalization of a regular gram-
matical inference task was also a major contri-
bution. Brauer et al. (2011) employed a feature-
based approach which constructed a query answer
that had the shortest possible description length.
Bui and Zeng-Treitler (2014) applied the Smith–
Waterman algorithm (Smith et al., 1981) over se-
quences of keys to align input positive samples.
A dedicated “primary” sample string was aligned
to all other strings and then a branching graph
was produced. The authors proposed to use a ma-
chine learning classifier to derive optimally per-
forming sequences of keys from given samples.
Recently Shcherbakov (2016) proposed to build
a regular expression acceptor by incrementally
aligning input samples to a topologically sorted
representation of the automaton. It essentially did
fuzzy alignment of characters dynamically reduc-
ing character sets to character classes at corre-
sponding score penalties.

Finally, Fernau (2009) used a simplified block-
wise alignment procedure and a dedicated gener-
alization for the loop creation. The construction
process combines generating prospective patterns
with inferring them from input samples.

6 Conclusion

We proposed an approach to language modeling
that constructs an acceptor driven by optimization
of minimum edit distance between a learning sam-
ple and a path in the automaton. We carried out
a series of preliminary experiments demonstrating
its effectiveness in four major areas of the algo-
rithm’s potential application, particularly, for low-
resource task settings.

References
R Harald Baayen, Richard Piepenbrock, and Leon Gu-

likers. 1995. The celex lexical database (release 2).
Distributed by the Linguistic Data Consortium, Uni-
versity of Pennsylvania.

Falk Brauer, Robert Rieger, Adrian Mocan, and Wo-
jciech M Barczynski. 2011. Enabling information
extraction by inference of regular expressions from
sample entities. In Proceedings of the 20th ACM
international conference on Information and knowl-
edge management, pages 1285–1294. ACM.

190

Duy Duc An Bui and Qing Zeng-Treitler. 2014. Learn-
ing regular expressions for clinical text classifica-
tion. Journal of the American Medical Informatics
Association, 21(5):850–857.

Pierre Dupont. 1994. Regular grammatical infer-
ence from positive and negative samples by genetic
search: the gig method. In International Collo-
quium on Grammatical Inference, pages 236–245.
Springer.

Henning Fernau. 2009. Algorithms for learning regu-
lar expressions from positive data. Information and
Computation, 207(4):521–541.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H
Clark, and Philipp Koehn. 2013. Scalable modified
kneser-ney language model estimation. In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), volume 2, pages 690–696.

Fred Jelinek, Robert L Mercer, Lalit R Bahl, and
James K Baker. 1977. Perplexitya measure of the
difficulty of speech recognition tasks. The Journal
of the Acoustical Society of America, 62(S1):S63–
S63.

Grzegorz Kondrak. 2005. N-gram similarity and dis-
tance. In International symposium on string pro-
cessing and information retrieval, pages 115–126.
Springer.

Vladimir I Levenshtein. 1966. Binary codes capable
of correcting deletions, insertions, and reversals. In
Soviet physics doklady, volume 10, pages 707–710.

Ming Li and Paul Vitányi. 2013. An introduc-
tion to Kolmogorov complexity and its applications.
Springer Science & Business Media.

James Rogers, Jeffrey Heinz, Margaret Fero, Jeremy
Hurst, Dakotah Lambert, and Sean Wibel. 2013.
Cognitive and sub-regular complexity. In Formal
grammar, pages 90–108. Springer.

Andrei Shcherbakov. 2016. A branching alignment-
based synthesis of regular expressions. In AIST
(Supplement), pages 315–328.

Andrei Shcherbakov, Ekaterina Vylomova, and Nick
Thieberger. 2016. Phonotactic modeling of ex-
tremely low resource languages. In Proceedings of
the Australasian Language Technology Association
Workshop 2016, pages 84–93.

Temple F Smith, Michael S Waterman, et al. 1981.
Identification of common molecular subsequences.
Journal of molecular biology, 147(1):195–197.

Masaru Tomita. 1982. Learning of construction of fi-
nite automata from examples using hill-climbing. rr:
Regular set recognizer. Technical report, Carnegie-
Mellon University Pittsburgh, PA, Dept of Computer
Science.

191

Overview of the 2019 ALTA Shared Task: Sarcasm Target Identification

Diego Mollá
Department of Computing

Macquarie University
diego.molla-aliod@mq.edu.au

Aditya Joshi
CSIRO Data61

aditya.joshi@csiro.au

Abstract

We present an overview of the 2019 ALTA
shared task. This is the 10th of the series of
shared tasks organised by ALTA since 2010.
The task was to detect the target of sarcastic
comments posted on social media. We intro-
duce the task, describe the data and present
the results of baselines and participants. This
year’s shared task was particularly challenging
and no participating systems improved the re-
sults of our baseline.

1 Introduction

Sarcasm is a form of verbal irony that is intended
to express contempt or ridicule. Sarcastic text has
been understood to be a challenge to sentiment
analysis because a sarcastic text may appear to be
positive on the surface but is intended to be neg-
ative. Empirical results also show that sarcastic
text is detrimental to sentiment analysis (Maynard
and Greenwood, 2014). Applications where senti-
ment understanding is important are also impacted
by sarcastic text. These applications include di-
alogue systems where the correct prediction of
sentiment is important to generate appropriate re-
sponses. Towards this, computational sarcasm has
gained interest in the research community.

Sentiment in a text can be understood to be
composed of valence (positive/negative) and the
target (Liu, 2012). The connection between sar-
casm detection and sentiment analysis is the tar-
get. Sarcastic text bears a target of ridicule. It is
this target that receives negative sentiment in the
sarcastic sentence.

The goal of the 2019 ALTA Shared Task is the
automatic detection of sarcasm targets. Section 2
describes the general aims of the ALTA shared
tasks, and the specific aim of the 2019 shared task.
Section 3 briefly presents related work. Section 4
describes the data. Section 5 shows the evaluation

results. Section 6 presents the results, and Sec-
tion 7 concludes this paper.

2 The 2019 ALTA Shared Task

The 2019 ALTA Shared Task is the 10th of the
shared tasks organised by the Australasian Lan-
guage Technology Association (ALTA). Like the
previous shared tasks, it targets university students
with programming experience, but it is also open
to graduates and professionals. The general objec-
tive of these shared tasks is to introduce interested
people to the sort of problems that are the subject
of active research in a field of natural language
processing. Depending on the availability of data,
the tasks have ranged from classic but challenging
tasks to tasks linked to very hot topics of research.

There are no limitations on the size of the teams
or the means that they may use to solve the prob-
lem. We provide training data but participants are
free to use additional data and resources. The only
constraint in the approach is that the processing
must be fully automatic — there should be no hu-
man intervention.

As in past ALTA shared tasks, there are two cat-
egories: a student category and an open category.

• All the members of teams from the student
category must be university students. The
teams cannot have members that are full-time
employed or that have completed a PhD.

• Any other teams fall into the open category.

The prize is awarded to the team that performs
best on the private test set — a subset of the eval-
uation data for which participant scores are only
revealed at the end of the evaluation period (see
Section 5). The organisers reserve the right not to
award the prize if no teams obtain better results
than those of the published baselines.

192

Given a sarcastic text, the task of the 2019
ALTA shared task is to identify the set of words
which are the target of sarcasm. The words are to
be returned as a list with all words in lowercase,
where all duplicates have been removed. If such
set of words is not found, the system should return
a fall-back label ”OUTSIDE”. Table 1 shows ex-
amples of sarcastic comments and the annotated
targets. The assumption in each of the samples
used in the shared task is that they are sarcastic.

3 Related Work

Sarcasm has been understood as a challenge for
sentiment analysis (Pang et al., 2008). Over the
past years, automatic detection of sarcasm gained
interest. Several approaches have been reported
for automatic detection of sarcasm in text, span-
ning rule-based approaches to deep neural archi-
tectures (Joshi et al., 2017).

Since sarcasm is a peculiar form of sentiment
expression, the target of a sarcastic text bears im-
plications on attribution of the negative sentiment
to the appropriate target. For example, for an
aspect-based sentiment analysis system, the sar-
casm target will be the aspect towards which a
negative sentiment will be assigned. Two prior pa-
pers report approaches for sarcasm target identifi-
cation.

The problem of sarcasm target identification
was introduced in Joshi et al. (2018). They
present three kinds of methods: (a) rule-based
which use heuristics to determine sarcasm targets,
(b) learning-based which use a sequence labelling
algorithm trained on a dataset labelled with sar-
casm targets, and (c) a hybrid of the two where
output of the two systems is combined to make the
final predictions.

More recently, Patro et al. (2019) present a
deep learning-based architecture for sarcasm tar-
get identification. The semantic representation of
each word is captured in terms of its context win-
dow using a bidirectional LSTM. This semantic
representation is then concatenated with features
based on LIWC, NER, empathy and POS tags, to
learn a classifier. They show an improvement over
the prior work.

4 Data

The data used in the 2019 ALTA Shared Task con-
sists of 950 training samples and 544 test sam-
ples. A count of the words appearing in the tar-

gets of the training data (Figure 1) reveals that a
large percentage of the data is labelled as OUT-
SIDE, and many of the remaining words are per-
sonal and possessive pronouns, including first per-
son “I”, “we”, “my”. This observation led us de-
fine a baseline that focus on the presence of pro-
nouns — see Section 6 for details of the baseline.

5 Evaluation

As in previous ALTA shared tasks, the 2019
shared task was managed and evaluated using
Kaggle in Class, with the name “ALTA 2019 Chal-
lenge”.1 This allowed the participants to submit
runs prior to the submission baseline for immedi-
ate feedback and compare submissions in a public
leaderboard.

The test data was split into a public and a private
partition. Submissions by participants were eval-
uated on the entire test data but only the results
of the public partition were shown in the public
leaderboard. Only the shared task organisers had
access to the results of the private leaderboard, and
these results were used for the final ranking after
the submission deadline.

Each participating team was allowed to submit
up to two (2) runs per day. By limiting the number
of runs per day, and by not disclosing the results
of the private partition, the risks of overfitting to
the private test results were controlled.

The evaluation metric was the mean of the F1
score over the test samples (Formula 1),

F1 = 2p×r
p+r

p = tp
tp+fp

r = tp
tp+fn

(1)

where the true positives (tp) in a sample were the
set of target words correctly identified by the sys-
tem, the false positives (fp) were the set of words
incorrectly identified as target, and the false neg-
atives (fn) were the set of words from the target
that were not identified by the system.

The mean F-Score is equivalent to the mean of
the Sørensen-Dice coefficient (Formula 2),

D(A,B) = 2
|A ∩B|
|A|+ |B| (2)

where A represents the set of words of the target,
and B represents the set of words of the prediction.

1https://inclass.kaggle.com/c/
alta-2019-challenge

193

Comment Target

Your shirt reminds me of my 10-year-old your shirt
This is the best film ever! film
Oh, and I suppose the apple ate the cheese OUTSIDE

Table 1: Examples of sarcastic comments and their targets.

OUTSID
Eyo

u
the

a he the
y
yo

ur to of

pe
op

le thi
s it

tha
t
an

d i

yo
u’r

e in my we
his himthe

ir
with be ou

r

0

100

200

300

W
or

d
co

un
t

Figure 1: Most frequent words appearing in the targets of the training data.

194

Leaderboard
Name Category Public Private

OUTSIDE Baseline 0.36764 0.34926
Powers Student 0.38624 0.33311
Orangutan Student 0.37150 0.29218
Pronouns Baseline 0.20933 0.22539

Table 2: Public and private leaderboards based on runs
selected for the final ranking (by default these were the
runs with highest score in the public leaderboard). The
figures indicate the mean F1 score.

6 Results

Two baselines were made available to the partic-
ipants as a Kaggle notebook.2 The first baseline
simply returned the word OUTSIDE, meaning that
in all cases the target was predicted as not explic-
itly mentioned in the text. This baseline proved
particularly hard to beat, as discussed below.

The second baseline is based on the observation
that many of the target words are pronouns (Fig-
ure 1). Thus, the baseline returns all personal and
possessive pronouns, and if no such pronouns are
found, it returns OUTSIDE.

In total 16 teams registered for the competition
— 14 in the student category and 2 in the open
category. Of these, only 5 teams submitted runs,
and only 2 submitted valid runs with results dif-
ferent from the baselines. Table 2 shows the re-
sults of the public and private leaderboard for the
baselines and the 2 teams.

As Table 2 shows, no teams outperformed the
OUTSIDE baseline in the private partition. A
team was allowed to submit up to two runs per day,
and the team received immediate feedback of the
score of the public leaderboard. By default, the fi-
nal submission was the one with the highest score
in the public leaderboard, and the team had the op-
tion to override the default and select a different
run. We observed that, even though none of the
selected runs outperformed the baseline in the pri-
vate leaderboard, some runs with lower scores in
the public leaderboard did outperform the baseline
in the private leaderboard. Table 3 shows the re-
sults of the best runs in the private leaderboard and
their scores in the public leaderboard. The runs of
Table 2, however, were not considered for the final
ranking.

2https://inclass.
kaggle.com/dmollaaliod/
baselines-for-sarcasm-target-identification

Leaderboard
Name Category Public Private

OUTSIDE Baseline 0.36764 0.34926
Powers Student 0.34731 0.34490
Orangutan Student 0.33242 0.37802
Pronouns Baseline 0.20933 0.22539

Table 3: Public and private leaderboards based on runs
with best scores in private leaderboard. The figures in-
dicate the mean F1 score.

It is possible that the existence of the OUTSIDE
label made the task particularly challenging. We
therefore also conducted an alternative evaluation
(not used for the final ranking) where we removed
all samples labelled as OUTSIDE by either the an-
notators or the system (Table 4). The data set for
this evaluation was the entire test data set combin-
ing the public and private partitions.3 The table
also includes the results of the pronoun baseline
evaluated on the same data. None of the systems
beat the pronoun baseline on the same test data.

The results of Table 4 use different data for each
system and therefore they cannot be used for com-
paring the systems. Also we should note that the
systems were designed assuming that some of the
data would be labelled as OUTSIDE, so the re-
sults are probably not indicative of the quality of
the systems.

7 Conclusions

The aim of the 2019 ALTA shared task was to de-
tect the target of sarcastic comments. As in previ-
ous years, the task was managed as a Kaggle-in-
Class competition. This year the task proved par-
ticularly challenging and none of the selected runs
obtained better results than the baselines in the
private leaderboard and therefore no prizes were
given. The challenge will remain open in Kaggle
in Class and new submissions are welcome.

Acknowledgments

The authors would like to thank Pranav Goel, Uni-
versity of Maryland, for his assistance with obtain-
ing the dataset.

3The reason behind using the combine public and private
partitions was that the information about what samples be-
longed to each partition was not available in the Kaggle in
Class platform.

195

Name Category Mean F1 Mean F1 of Pronoun Baseline Test Size

Powers Student 0.37931 0.38152 170
Orangutan Student 0.35469 0.31534 105

Table 4: Evaluation on the test data after removing entries labelled as OUTSIDE by annotators and systems. The
figures indicate the highest mean F1 score of each of the participant’s submissions, which could be a different
submission from the systems of Tables 2 and 3.

References
Aditya Joshi, Pushpak Bhattacharyya, and Mark J. Car-

man. 2017. Automatic sarcasm detection: A survey.
ACM Computing Surveys, 50(5):73:1–73:22.

Aditya Joshi, Pranav Goel, Pushpak Bhattacharyya,
and Mark J. Carman. 2018. Sarcasm target identi-
fication: Dataset and an introductory approach. In
Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan. European Language Re-
sources Association (ELRA).

Bing Liu. 2012. Sentiment analysis and opinion min-
ing. Synthesis lectures on human language tech-
nologies, 5(1):1–167.

DG Maynard and Mark A Greenwood. 2014. Who
cares about sarcastic tweets? investigating the im-
pact of sarcasm on sentiment analysis. In LREC
2014 Proceedings. ELRA.

Bo Pang, Lillian Lee, et al. 2008. Opinion mining and
sentiment analysis. Foundations and Trends R© in In-
formation Retrieval, 2(1–2):1–135.

Jasabanta Patro, Srijan Bansal, and Animesh Mukher-
jee. 2019. A deep-learning framework to detect sar-
casm targets. In Conference on Empirical Meth-
ods in Natural Language Processing, Hong Kong,
China. Association for Computational Linguistics.

196

Detecting Target of Sarcasm using Ensemble Methods

Pradeesh Parameswaran, Andrew Trotman, Veronica Liesaputra, David Eyers
Department of Computer Science

University of Otago
New Zealand

[pradeesh,andrew,veronica,dme]@cs.otago.ac.nz

Abstract
We describe our methods in trying to detect the
target of sarcasm as part of ALTA 2019 shared
task. We use combination of ensemble of clas-
sifiers and a rule-based system. Our team ob-
tained a Dice-Sorensen Coefficient score of
0.37150, which placed 2nd in the public leader-
board. Despite no team beating the baseline
score for the private dataset, we present our
findings and also some of the challenges and
future improvements which can be used in or-
der to tackle the problem.

1 Introduction

We humans are complex creatures that use lan-
guage as a communication tool in order to express
our thoughts to one another (Sabbagh, 1999). One
of the ways that we communicate with another
person is through use of verbal irony. Verbal irony
is defined as where the words that are being used
to communicate differ from the supposed mean-
ing (Sperber, 1984). An example of this would
be from Austen (1813) Pride & Prejudice, when
Darcy said to his future beloved wife, that she is
“tolerable but not handsome enough to tempt me”.

Sarcasm is a kind of verbal irony that expresses
a cynical attitude towards a person or circumstance
(Gibbs, 2000). In our daily lives, sarcasm is often
conveyed using the tone of our voice, and/or our
facial expression, to give the signal to the other
person that the person is being sarcastic (Cheang
and Pell, 2008). Recently, with the growth of so-
cial media many researchers have embarked on
various ways of detecting sarcasm automatically.
Most of their work were focused on detecting sar-
casm on Twitter and on online reviews (Bamman
and Smith, 2015; Rajadesingan et al., 2015; Amir
et al., 2016).

Prior works treated this problem as a binary text
classification problem. To the best of our knowl-
edge, there is little work that has been done in

the realm of identifying the target of sarcasm in
sarcastic text. The earliest work in this domain
was (Joshi et al., 2019). Identifying the target
would help in certain Natural Language Process-
ing (NLP) tasks such as in the realm of improving
cyberbully detection by helping to identify the tar-
get of ridicule (Raisi and Huang, 2016). It has also
sparked the organisers at the Australasian Lan-
guage Technology Association (ALTA) to organ-
ise a shared challenge task to tackle the problem.

We employed a 2-phase approach to attempt to
solve this task. In our first phase, we employed an
ensemble of classifiers along with a meta-classifier
to classify sarcasm targets which are marked as
“OUTSIDE”. First, we built a Support Vector Ma-
chine (SVM) using word embedding to classify
the text, followed by the use of a Logistic Clas-
sifier. Finally, we used a Linear Classifier to com-
bine the results of the two classifiers. In the sec-
ond phase of our system, we used a rule-based ap-
proach to extract the target sarcasm words from
text that are marked as “NOT OUTSIDE”. With
this proposed system, we achieved 2nd place in the
public leader board of the ALTA competition. We
describe our method in details in the methodology
section. Next, we present our results along with
some of the challenges and recommendations in
improving the task. We end our paper with our
plans for future work.

2 Dataset

The dataset1 provided by the organizers of the
ALTA 2019 shared task consists a of collection of
sarcastic texts. There are 950 sarcastic texts for
training and 544 for testing. The training dataset
comes with the sarcastic text (text), along with the
set of words which are the target of sarcasm (tar-

1https://www.kaggle.com/c/
alta-2019-challenge/data

197

Features Values
Number of Outsides 332
Number of Inside 618
Average Sentence Length 25.3
Average Sarcasm Target Length 3.1
Number of Subreddits 123

Table 1: Distribution and Pattern of Training Data

Classified
Text

Run	Rule	Based
System	to

Extract	Target
Words

Mark	Them
as

"OUTSIDE"

Phase 2

Sarcasm
Text

Word
Embeddings

SVM
Classification

Contextual
Features

Logistic
Classification

Linear
Classification

using
Ensemble

Cosine
Similarity

Phase 1

YES

NO

Marked
As

"NOT
OUTSIDE"

RESULTS

SMOTE

Genetic
Algorithm

Figure 1: System Architecture

get). If the target of sarcasm is not in the text, it
is marked as “OUTSIDE”. Our task was to predict
the target of the sarcasm.

We decided to analyse the training data further
to understand the distribution and the pattern of
the dataset. Table 1 describes the pattern. We
observed that several instances of (“NOT OUT-
SIDE”) have 14–19 sarcasm targets (which is half
of the sentences) and other times they only have
one sarcasm target. We found there to be no corre-
lation between the sentence length and the number
of sarcasm targets.

3 Methodology

We employed a 2-phase approach to tackle this
problem. In the first phase, we used a series of
classifiers, followed by a rule-based system in the
second phase. In this section, we describe our
method in detail, along with the steps that we
performed. The complete system architecture is
shown in Figure 1. We have also made our sys-
tem’s source code publicly available on GitHub.2

2https://github.com/prasys/
sarcasm-detection

3.1 Class Imbalance

We observed that the ratio of “OUTSIDE” to
“NOT OUTSIDE” in our training data set is not
balanced. In order to improve our classifier’s per-
formance, we used SMOTE (Dal Pozzolo et al.,
2002) to balance our dataset. SMOTE achieves
this by artificially over-sampling the dataset. This
has been demonstrated to improve the perfor-
mance of classifiers when the dataset is small (Lu-
engo et al., 2011).

3.2 Word Embedding

We used pre-trained model of Universal Sentence
Encoding (USE) (Cer et al., 2018) to convert the
text into a high-dimensional vector representation.
USE is known to work well on noisy social me-
dia data. We experimented with stemming in our
data to increase its accuracy, however it negatively
impacted our results.

3.3 Contextual Features

We observed that our dataset was obtained from
Khodak et al. (2019)’s Reddit3 Corpus where
there were both sarcastic and non-sarcastic texts
present, but there was no information about the
target of sarcasm. We were inspired by Wallace
et al. (2014)’s work that humans require context
when it comes to understanding sarcasm. In their
work, when annotators were asked to classify sar-
castic comments, on average 30% of the com-
ments required annotators to ask for additional
context such as the previous comment before they
were able to decide. We hypothesized that we can
improve our classifier’s performance by adding
additional context extracted from Khodak et al.
(2019)’s corpus to our original dataset.

We converted each Subreddit label found in
Khodak et al. (2019)’s dataset into categorical data
values using one-hot encoding. For categories that
were not present in both training and testing data,
we grouped them together into a category known
as “Others”. We have also extracted the number
of likes and dislikes on each post. They are con-
tinuous features, we used Z-Score normalization
to improve our classifier’s performance (Jayalak-
shmi and Santhakumaran, 2011)

x′ =
x1 − µ1
σ1

(1)

3Reddit http://www.reddit.com is a social news
aggregation and discussion website

198

Figure 2: Recall Score against Threshold for SVM
Classifier

where x1 is the value of the feature, µ1 is the mean
value of the feature in training data and σ1 is the
standard deviation for the feature in the training
data.

3.4 Phase 1

In our first phase, we used a Support Vector Ma-
chine (SVM) with word embedding from USE as
its input for our SVM Classifier. SVM has been
known to perform very well on high dimensional
input vectors (Goudjil et al., 2018). We experi-
mented with other classifiers such as Logistic Re-
gression and Random Forest but it did not yield
good results. For our SVM Classifier, we set the
classification’s threshold value to be 0.425 and
above in order for the text to be classified as “OUT-
SIDE”. This was done to minimize the false pos-
itives. Figure 2 shows the various thresholds and
the accuracy score regarding true positive (TP) and
false positives (FP).

The additional data features that we have ex-
tracted from Khodak et al. (2019)’s corpus are
used as input vectors for our logistic classifier. Just
like our SVM Classifier, we fine-tuned our logis-
tic classifier’s threshold value to be 0.40 and above
for a text to be classified as “OUTSIDE”. Figure 3
shows the performance of the classifier. The val-
ues for both of the classifiers were obtained by per-
forming 3-fold cross-validation.

We introduced cosine similarity to further
strengthen the meta-classifier’s performance. It is
calculated by using the word embedding we ob-
tained earlier. If we obtain a similarity score of
0.70 or higher, we assign a score of 1 otherwise a

Figure 3: Recall Score against Threshold for Logistic
Classifier

Rules Rule No
R1 Pronouns & pronominal adjectives
R2 Named entities
R3 Object of a positive sentiment verb
R4 Phrase on negative side of verb
R5 Gerund & infinitive verb phrases
R6 Nouns after positive sentiment adjective
R7 Subject of interrogative sentences
R8 Subjects of comparisons (similes)
R9 Demonstrative adjective-noun pairs

Table 2: Definition of the Rules for the Rule-based
Component within the Proposed System

score of 0.
Finally for our meta classifier, we used a Linear

Classification (Džeroski and Ženko, 2004).
We used the probability scores from both of the

classifiers and cosine similarity as input vectors
into the classifier. We did not fine-tune the lin-
ear classifier and used the default value of 0.5 and
above to classify text as “OUTSIDE”.

3.5 Phase 2

In our second phase, we used the rule-based sys-
tem to extract the target of sarcasm from the texts.
The rules that we used are described in Table 2,
and adopted from (Joshi et al., 2019). We imple-
mented the rules using NLTK Toolkit.4

We applied some minor adjustments to R1 and
R2 that increased the performance 4.49% and
39.68% respectively, over the original rules, as de-
scribed below.

For R1, we included the subject of each pro-
noun. For example in the training set one of the

4https://www.nltk.org/

199

Rules DSC Score
R1 (Without Subject) 0.2696
R1 (With Subject) 0.2817
R2 (Without Truecase) 0.0814
R2 (With Truecase) 0.1137
R3 0.0266
R4 0.0800
R5 0.1094
R6 0.0598
R7 0.0766
R8 0.0105
R9 0.0196

Table 3: Performance of Rules Score

target of sarcasm was identified as “you,op”.5 The
original rule set would only identify “you”.

As for R2, in order to get the Named Entities
(NE) recognized, we used Truecasing (Lita et al.,
2003). This helped to correct the case of our
noisy data which further improved NE recogni-
tion. Lowering all the cases does not work as it
presents a problem in distinguishing named enti-
ties from nouns. For example, the word “apple”
may be interpreted as the fruit and not the com-
pany. However due to time constrains, we did not
take a look at other rules in-depth but intend to do
so as future work.

In order to determine how effective each rule
was, we ran the rules one by one over the train-
ing data after excluding all the text which were
marked as “OUTSIDE”. We used Dice-Sorensen
Coefficient (DSC) in order to measure the perfor-
mance.

D(A,B) = 2× A ∩B
|A|+ |B| (2)

where A are predicted words and B are actual
words.

Table 3 shows the individual performance for
each rule. In order to determine which rules were
likely to give us the high scores, we implemented
a genetic algorithm to obtain weights for each of
the rules. We ran our genetic algorithm across
500 generations with 80% probability of mutation.
Figure 4 shows the performance of our genetic al-
gorithm. The algorithm assigned a good weighting
scores for R1, R2, R3, and R5 respectively. For the
other rules, negative weighting scores were given.

4 Results

We investigated the results and the behavior of the
system by submitting our runs to the competition.

5OP is an abbreviation for Original Poster

System Public Private
Score Score

Baseline (OUTSIDE) 0.36764 0.34926
Baseline (Pronoun) 0.20933 0.22539
SVM (Stemming) + Rules 0.30203 0.26553
SVM + Rules 0.35983 0.30777
Logistic + Rules 0.11397 0.12867
Ensemble + Rules 0.36889 0.30027
Ensemble + Tuned Rules 0.37150 0.29134

Table 4: System Evaluation

Kaggle is used as the platform for submission of
runs. In Kaggle, the training data provided to us by
ALTA organizers is split into public (public leader-
board) and private (private leaderboard). The pri-
vate portion serves as a validation portion in order
for the organizers to determine the effectiveness
of the system. The scores are evaluated by us-
ing DSC Score (Equation 2). We summarise and
present our results in Table 4.

4.1 Discussion

The objective set by the organizers at ALTA was
to beat the two baselines provided by them. The
first baseline always predicted “OUTSIDE”. The
second one always predicted the pronouns from
the text as the target for the “NOT OUTSIDE”
text. Our system beat both baselines for the pub-
lic leaderboard, but we did not manage to beat the
baseline for private score. In fact, no teams beat
the scores in the private baseline. Prior to propos-
ing our final system, we have built and evaluated
various different systems which included just us-
ing one classifier which is either SVM or Logistic
Regression and the rule-based system. Then we
used the ensemble of classifiers. We believe that
our ensemble classifiers performed poorly on the

Figure 4: Performance of genetic algorithm across 500
generations

200

Predicted Words DSC Score
we die out 0.5454
Entire Sentence 0.4705
sun gonna destroy us we die 0.2828
sun die 0.2000

Table 5: DSC Scores

private score as it might have been biased to the
public data. On the other hand, just using the ad-
ditional features alone to classify yielded poor re-
sults as our system could not identify “OUTSIDE”
accurately.

This prompted us to look deeper into the prob-
lem and offering several ways on how it can be
addressed. We discuss this in subsection 4.2 and
4.3.

4.2 Evaluation Metric

Based on equation 2, we can deduce that the score
for predicting “OUTSIDE” would be easier to ob-
tain compared to predicting the target of sarcasm
words correctly which may be trickier. In order to
demonstrate our point, let us look at the following
two examples which we took from training data.
The target of sarcasm given by the judges are high-
lighted in bold

“Oh man and while we are at it we can
make it so when the boss dies you can
hand pick the piece of gear you want!.”
(“OUTSIDE”)

“The sun is gonna destroy us in a few
billion years anyways, so why does it
matter if we die out in the next few cen-
turies?.”

In the first example the target of sarcasm is out-
side. DSC score would yield a perfect score of 1 if
it predicted properly. In the second example, it is
very hard to get a perfect DSC of 1. In Table 5, we
show how the score varies depending on the num-
ber of words predicted correctly, and length of the
predicted words. We can clearly see that it is very
challenging to get a very high score even when we
can predict all of the relevant targets.

One way of addressing the performance of the
system is to use accuracy score as an additional
metric to determine the effectiveness of the sys-
tem. This would also help to gauge the capacity
of the systems identifying true positives (TP) and
true negatives (TN).

4.3 Human Perspective & Relevance
Judgement

In their works, (Joshi et al., 2016) have high-
lighted some of the difficulties that annotators face
in identifying sarcasm and irony. From our failure-
analysis, we have determined that humans’ anno-
tations can be inconsistent. We show two of the
examples from the training dataset, with the target
of sarcasm annotated by the judges in bold.

“OP is just some white knight who al-
ways comes to the aid of the female, if
you knew her you’d know how much of
a whore she is..”

“$10 OP wants to do something crazy
with trading cards and is just trying to
get you all to sell them to him on the
cheap”

In the first example, we can clearly make the as-
sociation that “you” from the first example refers
to “OP” but only “OP” is identified as the tar-
get of sarcasm. However, in the second example,
both the words “OP,him” are identified as the tar-
get of sarcasm by the judges. This shows to us that
even in sentences which are constructed in a sim-
ilar manner, the way judges identify the target of
sarcasm differs from one person to another.

In order to address this gap, we propose that ad-
ditional assessments should be conducted. For ex-
ample, in the Text Retrieval Conference (TREC),
participants submit their assessments and let the
human annotators decide if the documents re-
trieved by the search engines were relevant to the
given queries (Hawking et al., 1999). We believe
that adopting this approach for this task instead
of the current approach would help to address the
shortcomings of relying entirely on human anno-
tators.

5 Conclusion and Future Work

We presented an approach to identify the target of
sarcasm. We competed in the ALTA 2019 Com-
petition under the team name of “orangutan”. Our
best-performing system used an ensemble of clas-
sifiers. Despite achieving a score of 0.37150 and
beating the baselines in the public portion within
Kaggle, we did not manage to beat the baseline in
the private dataset.

We believe that there is still much work to be
done in this domain. As part of future work we are

201

planning to tackle this problem in several ways,
including:

• Improving our classifier;

• Further improving the rule-based system; and

• Experimenting with deep learning models.

Acknowledgments

Many thanks to Kat Lilly, Dr.Diego Moll-Aliod
for their time in proofreading this paper. We would
also like to thank the ALTA organizers for their
support.

References
Silvio Amir, Byron C. Wallace, Hao Lyu, Paula Car-

valho, and Mario J. Silva. 2016. Modelling Con-
text with User Embeddings for Sarcasm Detection in
Social Media. In Proceedings of the 20th SIGNLL
Conference on Computational Natural Language
Learning (CoNLL), pages 167–177.

Jane Austen. 1813. Pride and Prejudice. Rout-
ledge/Thoemmes, London.

David Bamman and Noah A. Smith. 2015. Contextu-
alized sarcasm detection on twitter. Proceedings of
the 9th International Conference on Web and Social
Media, ICWSM 2015, pages 574–577.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil.
2018. Universal Sentence Encoder. Empirical
Methods in Natural Language Processing.

Henry S. Cheang and Marc D. Pell. 2008. The sound of
sarcasm. Speech Communication, 50(5):366–381.

A. Dal Pozzolo, O. Caelen, and G. Bontempi. 2002.
Comparison of balancing techniques for unbalanced
datasets. Journal of Artificial Intelligence Research
16, 16(1):732–735.

Saso Džeroski and Bernard Ženko. 2004. Is combining
classifiers with stacking better than selecting the best
one? Machine Learning, 54(3):255–273.

Raymond W Gibbs. 2000. Metaphor and Symbol
Irony in Talk Among Friends Irony in Talk Among
Friends. Metaphor and Symbol, 15(2):1–2.

Mohamed Goudjil, Mouloud Koudil, Mouldi Bedda,
and Noureddine Ghoggali. 2018. A Novel Active
Learning Method Using SVM for Text Classifica-
tion. International Journal of Automation and Com-
puting, 15(3):290–298.

David Hawking, Nick Craswell, and Paul Thistlewaite.
1999. Overview of TREC-7 Very Large Collection
Track. In NIST Special Publication 500-242: The
Seventh Text REtrieval Conference (TREC 7), pages
1–13.

T. Jayalakshmi and A. Santhakumaran. 2011. Statisti-
cal Normalization and Back Propagationfor Classi-
fication. International Journal of Computer Theory
and Engineering, 3(1):89–93.

Aditya Joshi, Pranav Goel, Pushpak Bhattacharyya,
and Mark J. Carman. 2019. Sarcasm target iden-
tification: Dataset and an introductory approach.
LREC 2018 - 11th International Conference on
Language Resources and Evaluation, (2008):2676–
2683.

Aditya Joshi, Vaibhav Tripathi, Pushpak Bhat-
tacharyya, Mark Carman, Meghna Singh, Jaya
Saraswati, and Rajita Shukla. 2016. How Challeng-
ing is Sarcasm versus Irony Classification?: A Study
With a Dataset from {E}nglish Literature. In Pro-
ceedings of the Australasian Language Technology
Association Workshop 2016, pages 123–127.

Mikhail Khodak, Nikunj Saunshi, and Kiran Vodra-
halli. 2019. A large self-annotated corpus for sar-
casm. LREC 2018 - 11th International Conference
on Language Resources and Evaluation, pages 641–
646.

Lucian Vlad Lita, I B M T J Watson, and I B M T J
Watson. 2003. tRuEcasIng. In Proceedings of the
41st Annual Meeting on Association for Computa-
tional Linguistics - Volume 1, pages 152–159.

Julián Luengo, Alberto Fernández, Salvador Garcı́a,
and Francisco Herrera. 2011. Addressing data
complexity for imbalanced data sets: Analysis of
SMOTE-based oversampling and evolutionary un-
dersampling. Soft Computing, 15(10):1909–1936.

Elaheh Raisi and Bert Huang. 2016. Cyberbullying
Identification Using Participant-Vocabulary Consis-
tency. In ICML Workshop on #Data4Good: Ma-
chine Learning in Social Good Applications, pages
46–50, New York.

Ashwin Rajadesingan, Reza Zafarani, and Huan Liu.
2015. Sarcasm Detection on Twitter. In WSDM
’15: Proceedings of the Eight ACM International
Conference on Web Search and Data Mining, pages
97–106.

Mark A. Sabbagh. 1999. Communicative intentions
and language: Evidence from right-hemisphere
damage and autism. Brain and Language, 70(1):29–
69.

Dan Sperber. 1984. Verbal irony: Pretense or echoic
mention? Journal of Experimental Psychology:
General, 113(1):130–136.

202

Byron C. Wallace, Do Kook Choe, Laura Kertz, and
Eugene Charniak. 2014. Humans require context to
infer ironic intent (so computers probably do, too).
In 52nd Annual Meeting of the Association for Com-
putational Linguistics, ACL 2014 - Proceedings of
the Conference, volume 2, pages 512–516.

203

	Proceedings of the 17th Workshop of the Australasian Language Technology Association
	ISBN
	Preface
	Programme Committee
	Invited talks
	Table of Contents
	Towards A Robust Morphological Analyzer for Kunwinjku
	From Shakespeare to Li-Bai: Adapting a Sonnet Model to Chinese Poetry
	Readability of Twitter Tweets for Second Language Learners
	Red-faced ROUGE: Examining the Suitability of ROUGE for Opinion Summary Evaluation
	Improved Document Modelling with a Neural Discourse Parser
	Does an LSTM forget more than a CNN? An empirical study of catastrophic forgetting in NLP
	Detecting Chemical Reactions in Patents
	Identifying Patients with Pain in Emergency Departments using Conventional Machine Learning and Deep Learning
	A neural joint model for Vietnamese word segmentation, POS tagging and dependency parsing
	Modelling Tibetan Verbal Morphology
	A multi-constraint structured hinge loss for named-entity recognition
	Feature-guided Neural Model Training for Supervised Document Representation Learning
	Modeling Political Framing Across Policy Issues and Contexts
	Domain Adaptation for Low-Resource Neural Semantic Parsing
	A Pointer Network Architecture for Context-Dependent Semantic Parsing
	CNL-ER: A Controlled Natural Language for Specifying and Verbalising Entity Relationship Models
	Measuring English Readability for Vietnamese Speakers
	Does Multi-Task Learning Always Help?: An Evaluation on Health Informatics
	An Improved Coarse-to-Fine Method for Solving Generation Tasks
	Emerald 110k: A Multidisciplinary Dataset for Abstract Sentence Classification
	FindHer: a Filter to Find Women Experts
	Difficulty-aware Distractor Generation for Gap-Fill Items
	Investigating the Effect of Lexical Segmentation in Transformer-based Models on Medical Datasets
	Neural Versus Non-Neural Text Simplification: A Case Study
	A string-to-graph constructive alignment algorithm for discrete and probabilistic language modeling
	Overview of the 2019 ALTA Shared Task: Sarcasm Target Identification
	Detecting Target of Sarcasm using Ensemble Methods

