
ASM Kernel: Graph Kernel using Approximate Subgraph Matching for
Relation Extraction

Nagesh C. Panyam, Karin Verspoor, Trevor Cohn and Kotagiri Ramamohanarao
Department of Computing and Information Systems,

The University of Melbourne, Australia
npanyam@student.unimelb.edu.au

{karin.verspoor, t.cohn, kotagiri}@unimelb.edu.au

Abstract

Kernel methods have been widely stud-
ied in several natural language process-
ing tasks such as relation extraction and
sentence classification. In this work, we
present a new graph kernel that is de-
rived from a distance measure described
in prior work as Approximate Subgraph
Matching (ASM). The classical ASM dis-
tance, shown to be effective for event ex-
traction, is not a valid kernel and was pri-
marily designed to work with rule based
systems. We modify this distance suitably
to render it a valid kernel (ASM kernel)
and enable its use in powerful learning al-
gorithms such as Support Vector Machine
(SVM).

We compare the ASM kernel with SVMs
to the classical ASM with a rule based ap-
proach, for two relation extraction tasks
and show an improved performance with
the kernel based approach. Compared to
other kernels such as the Subset tree ker-
nel and the Partial tree kernel, ASM ker-
nel outperforms in relation extraction tasks
and is of comparable performance in a
general sentence classification task. We
describe the advantages of the ASM ker-
nel such as its flexibility and ease of modi-
fication, which offers further directions for
improvement.

1 Introduction

Many natural language processing tasks such
as relation extraction or question classifica-
tion are cast as supervised classification prob-
lems (Bunescu and Mooney, 2005), with the ob-
ject to classify being an entity pair or a sentence.
Traditional approaches have typically focussed on
transforming the input into a feature vector which

is then classified using learning algorithms such
as decision trees or SVM. A primary limitation of
this approach has been the manual effort required
to construct a rich set of features that can yield
a high performance classification. This effort is
evident for the construction of features from the
syntactic parse of the text, which is often repre-
sented as an ordered structure such as a tree or a
graph. Linearizing a highly expressive structure
such as a graph, by transforming it into a flat array
of features is inherently harder. This problem of
constructing explicit feature sets for complex ob-
jects is generally overcome by kernel methods for
classification. Kernel methods allow for an im-
plicit exploration of a vast high dimensional fea-
ture space and shift the focus from feature engi-
neering to similarity score design. Importantly,
such a kernel must be shown to be symmetric and
positive semi-definite (Burges, 1998), to be valid
for use with kernelized learning algorithms such
as SVM. Deep learning based approches (Zeng et
al., 2014; Xu et al., 2015) are other alternatives to
eliminate the manual feature engineering efforts.
However, in this work we are primarily focussed
on kernel methods.

In NLP, kernel methods have been effectively
used for relation extraction and sentence classifi-
cation. Subset tree kernels (SSTK) and partial tree
kernels (PTK) were developed to work with con-
stituency parse trees and basic dependency parse
trees. However, these kernels are not suitable for
arbitrary graph structures such as the enhanced
dependency parses (Manning et al., 2014). Sec-
ondly, tree kernels can only handle node labels
and not edge labels. As a work around, these ker-
nels require that the original dependency graphs
be heuristically altered to translate edge labels into
special nodes to create different syntactic repre-
sentations such as the grammatical relation cen-
tered tree (Croce et al., 2011). These limitations
were overcome with the Approximate Subgraph

Nagesh C Panyam, Karin Verspoor, Trevor Cohn and Rao Kotagiri. 2016. ASM Kernel: Graph Kernel using Approximate
Subgraph Matching for Relation Extraction. In Proceedings of Australasian Language Technology Association Workshop,
pages 65−73.

Matching (ASM) (Liu et al., 2013), that was de-
signed to be a flexible distance measure to handle
arbitrary graphs with edge labels and edge direc-
tions. However, the classic ASM is not a valid
kernel and therefore cannot be used with power-
ful learning algorithms like SVM. It was therefore
used in a rule-based setting, where it was shown to
be effective for event extraction (Kim et al., 2011).

1.1 Contributions
In this work, our primary contribution is a new
graph kernel (ASM kernel), derived from the clas-
sical approximate subgraph matching distance,
that:

• is flexible, working directly with graphs with
cycles and edge labels.
• is a valid kernel for use with powerful learn-

ing algorithms like SVM.
• outperforms classical ASM distance with rule

based method for relation extraction.
• outperforms tree kernels for relation extrac-

tion and is of comparable performance for a
sentence classification task.

2 Methods

In this section, we first describe the classical ASM
distance measure that was originally proposed in
(Liu et al., 2013). We then discuss the modifica-
tions we introduce to transform this distance mea-
sure into a symmetric, L2 norm in a valid feature
space. This step allows us to enumerate the under-
lying feature space and to elucidate the mapping
from a graph to a vector in a high dimensional fea-
ture space. We then define the ASM kernel as a
dot product in this high dimensional space of well
defined features. Besides establishing the validity
of the kernel, the feature map clarifies the seman-
tics of the kernel and helps design of interpretable
models.

2.1 Classic ASM distance
We describe the classic ASM distance in the con-
text of a binary relation extraction task. Consider
two sample sentences drawn from the training set
and test set of such a task corpus, as illustrated
in Figure 1. Entity annotations are given for the
whole corpus, which are character spans referring
to two entities in a sentence. In the illustrated ex-
ample, the entities are chemicals (metoclopramide
and pentobarbital) and diseases (dyskinesia and
amnesia). The training data also contains relation

annotations, which are related entity pairs (meto-
clopramide, dyskinesia). We assume that the rela-
tion (causation) is implied by the training sentence
and then to try to infer a similar relation or its ab-
sence in the test sentence.

Preprocessing The first step in the ASM event
extraction system is to transform each sentence
to a graph, whose nodes represent tokens in the
sentence. Node labels are derived from the cor-
responding tokens properties, such as the word
lemma or part of speech (POS) tag or a combi-
nation of both. The node labels for entities are
usually designated as Entity1 and Entity2. This
process is referred to as entity blinding and is
known to improve generalization (Thomas et al.,
2011). Labelled edges are given by a dependency
parser (Manning et al., 2014). A graph from a test
sentence is referred to as a main graph. Given a
training sentence and its corresponding graph, we
extract the subgraph within it, that consists of only
those nodes that represent the entities or belong to
the shortest path1 between the two entities. This is
referred to as a rule subgraph (see Figure 1a).

Approximate Subgraph Isomorphism The
main idea in ASM is that a test sentence is
considered to be of same type or express the
same relation as that of a training sentence, if
we can find a subgraph isomorphism of rule
graph (training sentence) in the main graph
(test sentence). Exact subgraph isomorphism
(boolean) is considered too strict and is expected
to hurt generalization. Instead, ASM tries to
compute a measure (a real number) of subgraph
isomorphism. This measure is referred to as the
Approximate Subgraph Matching distance. If the
ASM distance between a rule graph and main
graph is within a predefined threshold, then the
test sentence is considered positive, or of the same
relation type as the rule graph.

ASM distance We first compute an injective
mapping M from rule graph to main graph. An
injective matching scheme essentially maps each
node of the subgraph to a node in the main graph,
with identical labels. If no matching scheme can
be found, then the ASM distance is set to a very
large quantity (∞) . Following the node matching,
we do not demand a matching of edges between

1Throughout this paper, shortest path refers to the path
with least number of edges in the undirected version of the
graph.

66

A case of tardive dyskinesia caused by metoclopramide
(Entity1) (Entity2)

det

case

amod

nmod:of

acl case

nmod:by

(a) Graph from a training sentence. The rule subgraph within is shown with a surrounding box.

Learning of rats under amnesia caused by pentobarbital
(Entity1) (Entity2)

case

nmod:of

case

nmod:under

acl case

nmod:by

(b) Main graph from a test sentence.

Figure 1: Sample dependency graphs from two sentences expressing a relation of type “causation” be-
tween two entities.

the two graphs, like in a typical exact isomorphism
search. Instead, we compute the difference be-
tween these edges to get an approximate subgraph
matching (ASM) distance. The ASM distance is
a weighted summation of 3 components, namely
structural distance, label distance and direction-
ality distance. These are described below, with
the aid of notations described in Table 1. Note
that edge directions are interpreted as special di-
rectional labels of type “forward” or “backward”.

The structural distance (SD), label distance
(LD) and the directionality distance (DD) for a
path P r

x,y is defined as:

SD(P r
x,y, P

m
x′,y′) = |Len(P r

x,y)− Len(Pm
x′,y′)|

LD(P r
x,y, P

m
x′,y′) = #EL(P r

x,y)4EL(Pm
x′,y′)

DD(P r
x,y, P

m
x′,y′) = #DL(P r

x,y)4DL(Pm
x′,y′)

(1)

Essentially, these distances reflect the differ-
ences in the structure of the two graphs, focussed
at one vertex pair at a time. Notice that the above
distances are defined for a given shortest path be-
tween two vertices. However, there could be mul-
tiple shortest paths of equal length between two
vertices in a graph. The distances for a given ver-
tex pair is taken to be the minimum distance over
all possible choices for a shortest path.

If SP (x, y) and SP (x′, y′) denote the set of
shortest paths for x, y in the rule graph and x′, y′ in
the main graph respectively, the distance measures
for the vertex pair x, y are defined as:

Symbol Meaning
Gm =< V m, Em > Main graph
Gr =< V r, Er > Rule graph
M = {(x, x′), . . .} ,
∀x ∈ V r s.t ,
label(x) = label(x′)
and x′ ∈ V m.

M is the injective
mapping scheme, i.e
M(x) = x′

P g
x,y

Shortest path in graph
g between the vertices
x, y.

Len(P)
The length of the path
P .

EL(P)
The multiset of edge
labels on the path P .

DL(P)
The multiset of
directional labels on
the path P .

S14S2
The set symmetric
difference of sets S1
and S2 .

|r1 − r2|
The absolute
difference of real
numbers r1 and r2

#S
The cardinality of set
S.

Table 1: Notations used in this paper

67

SD(x, y) = min
∀P∈SP (x,y),P ′∈SP (x′,y′)

SD(P, P ′)

LD(x, y) = min
∀P∈SP (x,y),P ′∈SP (x′,y′)

LD(P, P ′)

DD(x, y) = min
∀P∈SP (x,y),P ′∈SP (x′,y′)

DD(P, P ′)

(2)

The (unnormalized) distance measure between
two graphs Gr and Gm is obtained from the dis-
tances between all possible vertex pairs:

SD(Gr, Gm) =
∑

∀x,y∈V r

SD(x, y)

LD(Gr, Gm) =
∑

∀x,y∈V r

LD(x, y)

DD(Gr, Gm) =
∑

∀x,y∈V r

DD(x, y)

(3)

The final classical ASM distance in its unnor-
malized form is a weighted summation of the
above 3 components:

ASM(Gr, Gm) =w1 × SD(Gr, Gm)

+w2 × LD(Gr, Gm)

+w3 × DD(Gr, Gm)

(4)

The classic ASM distance includes a normaliza-
tion process that we have not described, as it is not
central to our discussion. Notice that this distance
does not meet the conditions of a positive semi-
definite kernel. Trivially, it is an asymmetric dis-
tance and undefined when an injective matching
is unavailable. In the next section, we describe a
modified form of ASM that is shown to be a ||L2||
norm in a valid feature space.

2.2 Modified ASM distance

Classical ASM distance measure evaluates dis-
tances between two pairs of vertices x, y ∈ Gr and
x′, y′ ∈ Gm where x′ = M(x) and y′ = M(y)
and M is the injective matching scheme. Re-
call that the simplest injective matching scheme
maps vertices with identical labels. We assume
that node labels in a graph are all distinct. Fur-
ther, for all missing labels in a graph G, we (vir-
tually) insert a single disconnected dummy node
with that label. These steps ensure that all la-
bels in the label vocabulary are represented in the
graph G and map to unique vertices. We can

Symbol Meaning

P g
x,y

The representative
shortest path in graph
g between the vertices
x, y.

EL(P)
The bag of words
representation of edge
labels on the path P .

DL(P)

The bag of words
representation of
directional labels on
the path P .

||V1 − V2||2
The ||L2|| norm of the
vector difference
V1 − V2

L = {a, an, the, . . .} The vocabulary of all
node labels (lemmas)

Table 2: Additional notations for the modified
ASM

now define the modified ASM distance over la-
bel pairs, instead of vertex pairs. Next, in the
modified ASM distance, we consider only a single
shortest path between a label pair x, y. For exam-
ple, in Figure 1a the shortest path P“caused”,“by” =
(“caused”, “Entity2”, “by”). When more than one
such shortest path is available (due to cycles), we
simply choose the first of such paths as the rep-
resentative shortest path. Finally, we transform
the set of edge labels in each path into a vector
representation (i.e, a bag of words representation).
For example, EL(P“caused”,“by”) = (“nmod:by” :
1, “case” : 1). We use the euclidean distance
between these vectors, instead of the cardinality
of set symmetric difference used in the classical
ASM label distance. Directionality distance is
modified similarly.

The modified distances, namely structural dis-
tance (SD), label distance (LD) and directionality
distance (DD) are defined below, following a few
additional notations in Table 2:

68

SD(Gr, Gm) =∑
∀l1,l2∈L×L

(Len(P r
x,y)− Len(Pm

x′,y′))
2

LD(Gr, Gm) =∑
∀l1,l2∈L×L

‖EL(P r
x,y)− EL(Pm

x′,y′)‖2

DD(Gr, Gm) =∑
∀l1,l2∈L×L

‖DL(P r
x,y)− DL(Pm

x′,y′)‖2

where label(x) = label(x′) = l1

and label(y) = label(y′) = l2

(5)

The final modified ASM distance in its un-
normalized form is a weighted summation of the
above 3 components:

ASM(Gr, Gm) =w1 × SD(Gr, Gm)

+w2 × LD(Gr, Gm)

+w3 × DD(Gr, Gm)

(6)

2.3 ASM Kernel: Validity and Semantics
A valid kernel function is required to be symmet-
ric and positive semidefinite (Burges, 1998). Also,
from Mercer’s condition (Burges, 1998), we note
that such a kernel is essentially equivalent to a
dot product (K(x, y) =

∑
i φ(x)iφ(y)i) in a eu-

clidean (or a general RKHS) “feature” space and a
valid mapping function(φ) exists, that transforms
the input object to the feature space. Kernel valid-
ity can be directly established by deriving the un-
derlying feature map (φ), and computing the ker-
nel directly as a dot product of the mapped vec-
tors (〈φ(x), φ(y)〉). Also, this feature map directly
relates to the semantics of the kernel and helps
to interpret the resulting model. We follow this
approach, to first derive the feature space φ un-
derlying the modified ASM distance and show it
to be equivalent to the ||L2|| norm in this feature
space. That is, modified ASM distance(x, y) =∑

i(φ(x)i − φ(y)i)
2. The ASM kernel can then

be obtained by replacing the sum of squared dif-
ferences with sum of products. That is, the ASM
kernel(x, y) =

∑
i φ(x)iφ(y)i.

The feature space of structural distance can be
indexed by the set {L × L} where L is the vo-
cabulary of node labels. Each feature value is just
the length of the shortest path between a label pair
corresponding to the feature index. Similarly, the

directionality distance corresponds to two sets of
features indexed by {L× L}. The first feature set
counts the number of “forward” edges and the sec-
ond set counts the number of “backward” edges in
the shortest path corresponding to the feature in-
dex. Finally, the label distance can be seen as an
extension of directionality distance, obtained by
extending the set of edge labels from a limited set
of two symbols {“forward”, “backward”} to the fi-
nite set of all possible dependency edge labels.

Consider the example illustrated in Figure 1a.
The ASM kernel transforms the rule graph in
the above example, to an explicit set of features
as described below. The set of node labels for
this example is L′ = {“Entity1”, “caused”,
“by”, “Entity2”}. The set of edge labels for
this example is EL′ = {“acl”, “nmod:by”,
“case”}. The features corresponding to this
example can be indexed by the set L′ × {EL′ ∪
{“distance”, “forward”, “backward”}}. Tu-
ples such as (“Entity1”, “caused”, “distance”)
and (“Entity1”, “by”, “distance”) represent
structural distance features. The values
for these are 1 and 3 respectively. Tuples
such as (“Entity1”, “caused”, “forward”) and
(“Entity1”, “by”, “forward”) denote the forward
directionality features. The values for these
are 1 and 2 respectively. Similarly, features
for label distance are generated by consider-
ing the elements of EL′. For example, the
edge label “acl” is associated with the tu-
ples such as (“Entity1”, “caused”, “acl”) and
(“Entity1”, “by”, “acl”). The values for these
features are 1 and 1 respectively. This is because,
there is exactly one instance of the edge label
“acl” in the shortest path from “Entity1” to
“caused” and from “Entity1” to “by”.

To summarize, we note that the modified ASM
distance is a sum of squared differences of feature
counts (real numbers) and the corresponding fea-
ture space is a finite and enumerable set as shown
above. By replacing the sum of squares with sum
of products of the feature counts, we obtain the
dot product in the same valid feature space, which
forms the ASM kernel.

2.4 Running times

The classical ASM distance has an exponential
time complexity, typically brought about by the
search for subgraph isomorphism. Still, it was
shown to be practical, as text with very long sen-

69

tences and therefore large dependency graphs are
quite rare. However, the current ASM kernel eval-
uation is polynomial in runtime as there is no re-
quirement for an isomorphism test.

Consider two graphs with m and n vertices and
m ≤ n without loss of generality. We first iden-
tify the vertices with common labels across the
graph, via a sort merge of label lists. This step
takes O(n · log(m)). Next, note that there are
at most m2 label pairs that are common to two
graphs. Each label pair corresponds to a path in
the graph with at most n nodes. Enumerating the
features of this graph involves a single traversal of
each such path, which translates to a complexity
bound of O(n ·m2) or simply O(n3) (a looser up-
per bound). Finding the shortest paths across all
node pairs can be done in O(n3) time using stan-
dard graph algorithms (Seidel, 1995).

2.5 Implementation details

We used the Java based Kelp framework (Filice et
al., 2015) for implementing and testing the ASM
kernel with SVM. For this paper, the weights as-
sociated with the ASM method (w1, w2, w3) are
all set to 1. The feature set for each graph can be
computed in parallel and cached. In practice, we
found that SVM train-test cycle with ASM kernel
took about a day for some of the largest datasets
described in this paper. For classic ASM distance,
we used the implementation2 made freely avail-
able by the authors.

3 Evaluation

We described the classic ASM distance in the con-
text of a binary relation extraction task in Sec-
tion 2.1. In this section, we report the perfor-
mance of this approach over two relation extrac-
tion tasks, namely the Chemical-induced-Disease
(CID) task (Wei et al., 2015) and the Seedev-
Binary relation extraction task (Chaix et al., 2016).
Note that it is a rule based with a single parame-
ter being the distance threshold. We determine the
optimal threshold value with a grid search over the
validation set. We compare this rule based system
with a supervised classification approach for rela-
tion extraction. The dependency graph of a sen-
tence is made entity aware, by setting the labels
of the two nodes corresponding to entities as “En-
tity1” and “Entity2”. Relation extraction is cast as
the task of graph labelling using a multiclass SVM

2http://asmalgorithm.sourceforge.net

Kernel P R F1
Classical ASM system 35.1 81.1 49.0
PTK with LCT 43.3 77.3 55.5
SSTK with CP 42.6 72.8 53.7
ASM Kernel with DP 46.4 77.7 58.1

Table 3: Results on CID test data for sentence
level relations. Key: LCT= Location Centered
Tree, CP = Constituency Parse, DP = Dependency
Parse

with ASM kernel. We extend the comparison to
two well known tree kernels, namely Subset Tree
Kernel (SSTK) and the Partial Tree Kernel (PTK)
that have been shown to be effective for relation
extraction (Zelenko et al., 2002; Moschitti, 2006;
Chowdhury et al., 2011). Note that unlike con-
stituency parse trees, dependency trees have edge
labels which cannot be handled by these tree ker-
nels. Therefore, the edge labels are converted into
node labels of specially inserted nodes in the orig-
inal dependency graph, to get a modified structure
referred to as the Location Centered Tree (LCT)
(Lan et al., 2009).

Finally, we compare the ASM kernel with tree
kernels in a sentence classification task. This is a
straightforward application of kernels in a graph
classification problem, over the unmodified de-
pendency graphs of the corpus.

3.1 Chemical induced Disease (CID) task

The goal of the CID shared task (Wei et al.,
2015) is to infer the “induces” relation between
Chemicals and Disease from biomedical publica-
tions. The shared task has provided a corpus of
1500 PubMed abstracts, divided equally into train-
ing, development and test datasets. The corpus
includes non-sentence relations, i.e. Chemical-
Disease pairs whose relationship cannot be in-
ferred by a single sentence and requires analyzing
the whole abstract. We omit such relations and fo-
cus on extracting sentence level relations only. We
compare ASM kernel against Subset tree kernels
(SSTK) and Partial tree kernels (PTK) and report
the results in Table 3.

3.2 Seedev Binary

The Seedev Binary task (Chaix et al., 2016) ad-
dresses the extraction of genetic and molecular
mechanisms that regulate plant seed development
from biomedical literature. The task organizers

70

Kernel P R F1
Classical ASM 8.8 41.7 14.5
PTK with DP 11.6 38.0 17.8
SSTK with DP 14.4 24.6 18.2
SSTK with CP 14.8 32.6 20.3
ASM Kernel 25.0 27.9 26.4

Table 4: Aggregate results over the development
dataset of the Seedev Binary task. Key:CP = Con-
stituency Parse, DP = Dependency Parse

provided paragraphs from manually selected full
text publications on seed development of Ara-
bidopsis thaliana annotated with mentions of bi-
ological entities like proteins and genes, and bi-
nary relations like Exists In Genotype and Oc-
curs In Genotype. The Seedev task involves ex-
traction of 22 different binary relations over 16 en-
tity types. The corpus provided consists of a total
of 7, 082 entities and 3, 575 binary relations, di-
vided into training, development and test datasets.
Entity mentions within a sentence and the events
between them are provided in the gold standard
annotations. We created 22 separate classifiers for
detecting each of these relation types. A special
feature of this task is that each relation type is as-
sociated with a type signature, that specifies which
entity types are allowed for the given relation, as
its two arguments. We use this type signature, to
filter the corpus to create 22 separate training and
test sets, for each of the 22 classifiers. In Table 4
aggregate results over the 22 event types are re-
ported for the development set (the annotations for
the test set are not available).

3.3 Question Classification

This task deals with classifying general questions
expressed in natural language, into one of 6 cate-
gories such as HUMAN and LOCATION, a first
step in a question answering system. For exam-
ple, “What is the width of a football field?” is to
be classified as a NUMBER. The corpus for this
task is the UIUC dataset (Li and Roth, 2002) that
consists of 5, 542 questions for training and 500
questions for test3.

Tree kernels were shown to offer state of the
art classification accuracy for this dataset. More
details about tree kernels for question classifica-
tion can be found in (Annesi et al., 2014). In
this work, we are concerned with exploiting lex-

3http://cogcomp.cs.illinois.edu/Data/QA/QC/

Kernel
Accuracy
(% age)

Bag of Words 86.2
Partial Tree Kernel with LCT 90.6
Subset Tree Kernel with GRCT 91.4
ASM Kernel 89.6

Table 5: Results on Question Classification
dataset.

ical and syntactic information only and there-
fore choose SSTK and PTKs for comparison with
ASM and exclude Semantic Partial Tree Kernel
(SPTK) that incorporates semantic word similarity
(via clustering or word2vec (Goldberg and Levy,
2014)). In Table 5, we report the accuracy of these
kernels for the question classification task.

4 Discussion

Evaluation over the two relation extraction tasks
reveals that the ASM kernel outperforms both the
tree kernels and the classical ASM rule based sys-
tem. For a more general sentence classification
task, we note that the ASM kernel performs com-
petitively to tree kernels but not better. A study of
the final scores attained also reveals that the rela-
tion extraction tasks are more difficult than gen-
eral sentence classification tasks. We infer that
the flexibility of the ASM kernel such as ability
to handle edge labels and directions, is more ad-
vantageous in a relation extraction task than a gen-
eral sentence classification task. This may be due
to the fact that relation extraction is primarily fo-
cussed on the interaction between two entities in a
sentence, which is best described by the edge la-
bels on the shortest dependency path. In contrast,
sentence classification is more general and consid-
ers the overall properties of a sentence.

Feature selection A closer study of the relation
extraction tasks revealed that a simple linear clas-
sifier with bag of words and few syntactic features
(the lemmas and POS tags of the neighbors of en-
tity nodes in the dependency graph) outperforms
any of the kernel methods discussed in this paper.
These results are presented in Table 6. This obser-
vation suggests that kernel methods are likely to
benefit by a simplification or pruning of their fea-
ture sets. The clearly defined feature space under-
lying the ASM kernel makes it amenable to intelli-
gent feature selection techniques such as principal

71

component analysis (PCA) that we plan to explore
in future.

Semantic matching ASM relies on comparing
properties of paths or graph walks, that are in-
dexed by label pairs. In the simplest case, node la-
bels are taken to be word lemmas instead of word
tokens, to improve generalization across minute
variations in word usage (such as “cured” and
“curing”). We hypothesize that the generalizabil-
ity of ASM can be further improved by choosing
node labels on word classes. Node labels may be
set to cluster ids, post word clustering. A seman-
tic matching of lemmas (such as “cured” and “im-
proved”), based on word semantics using distribu-
tional word similarities may allow for improved
generalization (Saleh et al., 2014).

Task Kernel P R F1
Seedev ASM Kernel 25.0 27.9 26.4

Seedev
Linear (hand
crafted
features)

30.0 34.9 32.3

CID ASM Kernel 46.4 77.7 58.1

CID
Linear(hand
crafted
features)

54.8 81.5 65.6

Table 6: Comparison of ASM kernel with a linear
classifier with hand crafted features.

5 Related Work

The closest work to ours is the classical ASM
distance (Liu et al., 2013) that has been succes-
fully used in several shared tasks (Kim et al.,
2011). Tree kernels in NLP have been studied
extensively in (Collins and Duffy, 2001). Rela-
tion extraction has been of particular importance
within biomedical domain and has been studied
in different contexts such as drug-drug interac-
tion (Bjorne et al., 2011) and protein-protein in-
teraction (Lan et al., 2009). Kernels that use con-
stituent parses or dependency structures are stud-
ied in (Chowdhury et al., 2011; Airola et al.,
2008) for the protein-protein interaction extrac-
tion. All path graph (APG) kernel (Airola et al.,
2008) over dependency graph is a related work,
that has different semantics as compared to ASM.
The APG kernel considers all paths between a ver-
tex pair and not just single shortest path as done
in the ASM kernel. The primary feature in the

APG kernel is the strength of connection between
a vertex pair, which is computed as the product of
edge weights along the path. Note that edge la-
bels and not edge weights are the natural proper-
ties of a dependency graph. APG proposes mod-
ifications to the dependency graph to accommo-
date edge labels and heuristically driven assign-
ment of edge weights to the dependency graph.
An other recent approach in kernel design (Saleh
et al., 2014), has been the efforts to include word
similarity such as distributional word similarity
given by word2vec (Goldberg and Levy, 2014).
Incorporating semantic word similarity in ASM is
likely to further improve its performance.

6 Summary and Conclusion

In this work, we defined a graph kernel from a pre-
viously studied Approximate Subgraph Matching
(ASM) distance measure. We demonstrate the ef-
fectiveness of this new kernel by experimenting
over standard datasets for question classification
and relation extraction. Results indicate that the
ASM kernel is of comparable performance to the
tree kernels for sentence classification, but outper-
forms tree kernels in relation extraction tasks. We
show the validity of the ASM kernel by deriving
its feature space and illuminating the semantics of
the kernel. Following on these steps, we identify
several improvements to the ASM kernel that are
likely to further boost its performance.

References
Antti Airola, Sampo Pyysalo, Jari Björne, Tapio

Pahikkala, Filip Ginter, and Tapio Salakoski. 2008.
A graph kernel for protein-protein interaction ex-
traction. In Proceedings of the workshop on current
trends in biomedical natural language processing,
pages 1–9. Association for Computational Linguis-
tics.

Paolo Annesi, Danilo Croce, and Roberto Basili. 2014.
Semantic compositionality in tree kernels. In Pro-
ceedings of the 23rd ACM International Conference
on Conference on Information and Knowledge Man-
agement, CIKM ’14, pages 1029–1038, New York,
NY, USA. ACM.

Jari Bjorne, Antti Airola, Tapio Pahikkala, and Tapio
Salakoski. 2011. Drug-drug interaction extraction
from biomedical texts with SVM and RLS classi-
fiers. CEUR Workshop Proceedings, 761:35–42.

Razvan C Bunescu and Raymond J Mooney. 2005.
A shortest path dependency kernel for relation ex-
traction. In Proceedings of the conference on Hu-
man Language Technology and Empirical Methods

72

in Natural Language Processing, pages 724–731.
Association for Computational Linguistics.

Christopher JC Burges. 1998. A tutorial on support
vector machines for pattern recognition. Data min-
ing and knowledge discovery, 2(2):121–167.

Estelle Chaix, Bertrand Dubreucq, Abdelhak Fatihi,
Dialekti Valsamou, Robert Bossy, Mouhamadou
Ba, Louise Delger, Pierre Zweigenbaum, Philippe
Bessires, Loc Lepiniec, and Claire Ndellec. 2016.
Overview of the regulatory network of plant seed
development (seedev) task at the bionlp shared task
2016. In Proceedings of the 4th BioNLP Shared
Task workshop, Berlin, Germany, August. Associ-
ation for Computational Linguistics.

Faisal Mahbub Chowdhury, Alberto Lavelli, and
Alessandro Moschitti. 2011. A study on de-
pendency tree kernels for automatic extraction of
protein-protein interaction. In Proceedings of
BioNLP 2011 Workshop, BioNLP ’11, pages 124–
133, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

Michael Collins and Nigel Duffy. 2001. Convolution
kernels for natural language. In Advances in neural
information processing systems, pages 625–632.

Danilo Croce, Alessandro Moschitti, and Roberto
Basili. 2011. Structured lexical similarity via con-
volution kernels on dependency trees. In Proceed-
ings of the Conference on Empirical Methods in Nat-
ural Language Processing, pages 1034–1046. Asso-
ciation for Computational Linguistics.

Simone Filice, Giuseppe Castellucci, Danilo Croce,
and Roberto Basili. 2015. Kelp: a kernel-
based learning platform for natural language pro-
cessing. In Proceedings of ACL-IJCNLP 2015 Sys-
tem Demonstrations, pages 19–24, Beijing, China,
July. Association for Computational Linguistics and
The Asian Federation of Natural Language Process-
ing.

Yoav Goldberg and Omer Levy. 2014. word2vec
explained: deriving mikolov et al.’s negative-
sampling word-embedding method. arXiv preprint
arXiv:1402.3722.

Jin-Dong Kim, Sampo Pyysalo, Tomoko Ohta, Robert
Bossy, Ngan Nguyen, and Junichi Tsujii. 2011.
Overview of bionlp shared task 2011. In Proceed-
ings of the BioNLP Shared Task 2011 Workshop,
pages 1–6. Association for Computational Linguis-
tics.

Man Lan, Chew Lim Tan, and Jian Su. 2009. Feature
generation and representations for protein-protein
interaction classification. Journal of Biomedical In-
formatics, 42:866–872.

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In Proceedings of the 19th international
conference on Computational linguistics-Volume 1,
pages 1–7. Association for Computational Linguis-
tics.

Haibin Liu, Lawrence Hunter, Vlado Kešelj, and Karin
Verspoor. 2013. Approximate subgraph matching-
based literature mining for biomedical events and re-
lations. PloS one, 8(4):e60954.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural lan-
guage processing toolkit. In Proceedings of 52nd
Annual Meeting of the Association for Computa-
tional Linguistics: System Demonstrations, pages
55–60.

Alessandro Moschitti. 2006. Efficient convolution
kernels for dependency and constituent syntactic
trees. In European Conference on Machine Learn-
ing, pages 318–329. Springer.

I Saleh, Alessandro Moschitti, Preslav Nakov,
L Màrquez, and S Joty. 2014. Semantic Kernels
for Semantic Parsing. Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 436–442.

Raimund Seidel. 1995. On the all-pairs-shortest-path
problem in unweighted undirected graphs. Journal
of computer and system sciences, 51(3):400–403.

Philippe Thomas, Mariana Neves, Illés Solt,
Domonkos Tikk, and Ulf Leser. 2011. Rela-
tion extraction for drug-drug interactions using
ensemble learning. Training, 4(2,402):21–425.

Chih-Hsuan Wei, Yifan Peng, Robert Leaman, Al-
lan Peter Davis, Carolyn J Mattingly, Jiao Li,
Thomas C Wiegers, and Zhiyong Lu. 2015.
Overview of the biocreative v chemical disease re-
lation (cdr) task. In Proceedings of the fifth BioCre-
ative challenge evaluation workshop, Sevilla, Spain.

Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng,
and Zhi Jin. 2015. Classifying relations via long
short term memory networks along shortest depen-
dency paths. In Proceedings of Conference on Em-
pirical Methods in Natural Language Processing (to
appear).

Dmitry Zelenko, Chinatsu Aone, and Anthony
Richardella. 2002. Kernel methods for relation ex-
traction. Journal of Machine Learning Research,
3:1083–1106.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,
Jun Zhao, et al. 2014. Relation classification via
convolutional deep neural network. In COLING,
pages 2335–2344.

73

