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Abstract

Public health surveillance is challenging
due to difficulties accessing medical data
in real-time. We present a novel, ef-
fective and computationally inexpensive
method for syndromic surveillance using
Twitter data. The proposed method uses
a regression model on a database previ-
ously built using named entity recognition
to identify mentions of symptoms, disor-
ders and pharmacological substances over
GNIP Decahose Twitter data. The result
of our method is compared to the reported
weekly flu and Lyme disease rates from
the US Center of Disease Control and Pre-
vention (CDC) website. Our method pre-
dicts the 2014 CDC reported flu preva-
lence with 94.9% Spearman correlation
using 2012 and 2013 CDC flu statistics
as training data, and the CDC Lyme dis-
ease rate for July to December 2014 with
89.6% Spearman correlation. It also pre-
dicts the prevalences for the same diseases
and time periods using the Twitter data
from the previous week with 93.31% and
86.9% Spearman correlations respectively.

1 Introduction

Real-time public health surveillance for tasks such
as syndromic surveillance is challenging due to
difficulties accessing medical data. Twitter is a
social media platform in which people share their
views, opinions and their lives. Data from Twit-
ter is accessible in real-time and it could poten-
tially be used for syndromic surveillance. Even
if only a small portion of the tweets contains po-
tentially information about the health of Twitter
users (Jimeno-Yepes et al., 2015a), there is still a
large volume of data that could be useful for public
health surveillance.

Several approaches to predict flu prevalences
from Twitter data already exist. These approaches
either rely on topic modelling (e.g. Latent Dirich-
let Allocation (LDA) (Blei et al., 2003)) (Paul and
Dredze, 2012; Paul and Dredze, 2011) or rely on
regression models on keyword frequency (Culotta,
2010a; Culotta, 2010b).

The topic modelling approach for flu preva-
lence prediction requires manually labelling a
large number of tweets (e.g. 5,128 tweets) that
are used to train a Support Vector Machine (SVM)
(Joachims, 1999) classifier applied on 11.7 mil-
lion messages. The predictions on the tweets
are applied on a LDA based topic model to over
millions of tweets (Paul and Dredze, 2012; Paul
and Dredze, 2011). Regression approaches (Cu-
lotta, 2010a; Culotta, 2010b) require prior knowl-
edge to develop a keyword list {flu,cough,sore
throat,headache} that could identify tweets rele-
vant to flu.

In this paper, we propose an effective and
computationally efficient alternative for disease
prevalence prediction based on an already exist-
ing database developed by (Jimeno-Yepes et al.,
2015b). Our approach to predict disease preva-
lence does not require manual labelling of Twit-
ter posts to determine whether the posts are re-
lated to a particular disease or not. Our train-
ing dataset uses aggregated weekly term frequen-
cies, so it is less computationally expensive to train
compared to other approaches trained on millions
of tweets. In addition, compared with regression
approaches (Culotta, 2010a; Culotta, 2010b), no
prior knowledge was used to manually develop a
list of keywords indicative of a disease. Over-
all, we used our method to effectively predict
the prevalence of flu and Lyme disease one week
ahead of reported CDC data.
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2 Modelling weekly syndromic rate

2.1 Dataset Introduction
The Twitter data for years 2012, 2013 and 2014
was obtained from the GNIP Decahose,1 which
provides a random 10% selection of available
tweets. From here, only English tweets were con-
sidered and retweets were removed.

Each tweet was annotated with three types of
medical named entities: disorders, symptoms and
pharmacological substances (PharmSub) (Jimeno-
Yepes et al., 2015b). These entity types are defined
using the UMLS (Unified Medical Language Sys-
tem) semantic types (Bodenreider, 2004). Recog-
nition of entities was performed using a trained
conditional random field annotator. Statistics on
the annotated entities by this classifier for the first
half year of 2014 is available from (Jimeno-Yepes
et al., 2015a). Annotation of pharmacological sub-
stances is complemented by using a dictionary
based annotator using terms from the UMLS.

Since just a small portion of tweets contain de-
clared location information, posts containing med-
ical entities were automatically geolocated using
the method presented in (Han et al., 2012). This
geolocation has been used to select tweets from
the USA, since our reference is US CDC.

Based on the annotated tweets in USA, Twit-
ter terms’ counts are aggregated into a weekly ba-
sis; then the terms’ counts are normalized by the
weekly total number of the tweets. For three years
data, the sample size of the dataset used for the
prevalence prediction is 156, because only about
52 weeks per year.

The weekly terms’ frequencies data set is then
mapped to the weekly CDC’s data. Three years’
data are available for the flu prevalence prediction.
While year 2013 and 2014’s CDC data is available
for Lyme Disease prevalence prediction, therefore,
the dataset for Lyme disease is with 104 sample
size.

2.2 Overall Architecture
The proposed methodology is a predictive model
which aims to achieve the following goals:

• Predict reported CDC flu and Lyme disease
trend using weekly term frequencies to pre-
dict syndromic weekly rates.

• Predict reported CDC flu and Lyme disease
trend one week in advance using weekly term

1http://support.gnip.com/apis/firehose/overview.html

frequencies to predict the following week
syndromic rates.

The overall architecture of the proposed
methodology is shown in Figure 1. The first step is
data preprocessing, followed by feature engineer-
ing and support vector machines (SVM) (Gunn
and others, 1998) regression modelling.This re-
gression model is trained to combine the engi-
neered features from our Twitter database to per-
form syndromic prediction.

A major challenge of the first step is map-
ping Twitter terms with similar meanings from our
database to a unique term. A mapping algorithm
is proposed to map synonyms into a unique term.

After the synonyms mapping, a series of feature
engineering methods are applied to engineer a fi-
nal set of the most important features. Finally, pre-
diction is made by using a trained SVM regression
model on the final set of features.

Twitter Term Concept Entity Type
adrenal disease adrenal disease Disease
adrenal disorder adrenal disease Disease

adrenal gland disease adrenal disease Disease
adrenal gland disorder adrenal disease Disease

acne treatment acne treatment PharmSub
treatment acne acne treatment PharmSub
abdomen pain abdominal pain Symptom

abdominal pain abdominal pain Symptom
abdominal pains abdominal pain Symptom

gut pain abdominal pain Symptom

Table 1: A sample of Concept Mapping

EntityType Found in UMLS Not Found in UMLS
Disease 9162 19454

PharmSub 15891 23556
Symptom 2604 53142

Table 2: Unique Twitter entities found in UMLS

2.3 Twitter entity synonyms mapping

Terms in medical entities from our Twitter dataset
may have the same meaning but different surface
form, e.g. vomit and throw up. Treating these syn-
onyms as different input features to a regression
model may result in a performance bias. Aggre-
gating weekly term counts for synonyms maxi-
mize the probability that each input feature is not
highly correlated to each other.

Therefore, we propose a synonym mapping al-
gorithm that uses the UMLS to map Twitter med-
ical entity synonyms to a unique term. Table 2
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Figure 1: Overall Architecture

shows the statistics of how many Twitter entities
could be found or not in UMLS. The unique term
is considered to be a concept term for synonyms.
In UMLS, medical terms with the same meanings
are associated with one concept ID. Twitter terms
are mapped to the UMLS medical terms in order
to find concept IDs for the Twitter synonyms. A C
sharp program is developed to automate this task.
Details of the algorithm is explained as below.

As already mentioned, Twitter terms are anno-
tated with three types of medical entities: symp-
toms, disorders and pharmacological substances.
So based on the medical entity associated with
each Twitter medical term, these terms are seg-
mented into three groups: Symptom Terms, Disor-
der Terms and Pharmacological Substance Terms.
In UMLS, each concept ID is associated to a TUI
(Type Unique Identifier), indicating the semantic
type of the concept ID. Three types of TUI are
used for the synonyms mapping: symptom, disor-
der and pharmacological substances. Each group
of the Twitter medical terms mentioned above are
mapped to three types of concept IDs in UMLS
respectively.

If a Twitter medical term can be found in the
UMLS dataset and it is mapped to only one UMLS
concept ID, the concept ID will be used as refer-
ence for the term. If the Twitter term cannot be
found in UMLS, the term will be the reference
concept for itself.

An advantage of mapping three types of Twitter
terms separately is that when a term is associated
with more than one UMLS concept ID, the med-
ical entity type associated to the term may help
to determine the most suitable UMLS concept ID
that is from the same type. For example, a con-
cept ID in UMLS is associated with two semantic
types: symptom and disorder; a Twitter term an-
notated with the disorder entity is mapped to this
concept ID. The medical entity type of the Twit-
ter term helps the algorithm to determine the most
suitable concept ID for the term is the UMLS con-
cept ID associated with the disorder semantic type.
But it could still be possible that a term is mapped

to more than one UMLS concept IDs. In this case,
each UMLS concept ID is related one or more than
one Twitter terms. The most appropriate concept
ID for the Twitter term is the UMLS concept ID
associated with a largest number of Twitter terms.

After determining the most suitable concept ID
for each term, the algorithm continues to identify
the best concept label for each concept ID. Using
concept label instead of the ID helps us have a bet-
ter understanding of the model outcomes.

A UMLS concept ID may be associated to more
than one Twitter medical terms. The best label
for a concept ID is a Twitter term that appears the
most in the Twitter database. Table 1 shows a sam-
ple of the concept mapping.

2.4 Feature Engineering

After mapping synonyms to unique terms, the
dataset contained 112,690 unique terms. A series
of feature engineering steps are conducted to im-
prove the computational efficiency and the predic-
tive performance of our methodology. With the
feature engineering, a set of the most important
features is selected and mathematically reduced
using Partial Least Square and Recursive Feature
Elimination with SVM. These engineered features
are the input features for the final regression model
that is trained to predict weekly disease rates.

The architecture of the feature engineering is
shown in Figure 2. We use a nested cross-
validation strategy. The outer division is two-fold
or three-fold, into a training dataset and a separate
validation set. We then apply 10-fold CV to the
training set of each outer fold.

Non frequent and irrelevant features are first
removed. Partial Least Square (PLS) regres-
sion (Abdi, 2003) is then applied to reduce the
number of dimensions. Different number of PLS
components are computed from PLS. A dimension
reduction technique of selecting the optimal num-
ber of PLS components is proposed in later sub-
section. With the optimal number of components
selected from PLS, each feature’s ‘Variable Impor-
tance of Project (VIP)’ (Wold and others, 1995) is
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Figure 2: Feature Engineering Workflow.

Algorithm 1 Pseudocode of Selecting The Optimal Number of PLS Components
1: N = Maximum Number of Components resulted from PLS
2: MC = Maximum Validation Correlation
3: BN = Selected Optimal Number of Components
4: for n = 1, n = n+1, n <= N do
5: Let Validation Correlation be the correlation for the outer
validation dataset

6: Validation Correlation = Cor(Predicted Result,CDC Rates of
validation set)

7: if MC < Validation Correlation then
8: MC = Validation Correlation
9: BN = n

10: end if
11: end for
12: Return MC, BN

calculated. Wold and others (1995) suggest that
features with very low VIP are unimportant and
can be removed. A PLS VIP based feature re-
moval technique is proposed to further remove non
important features. Recursive Feature Elimination
using Support Vector Machines (SVM) (Guyon et
al., 2002; Gunn and others, 1998) is then used to
retrieve the final set of the most important features.

2.4.1 Non Frequent and Irrelevant Features
Removal

Non frequent unique terms tend to have zero vari-
ance in the dataset, which do not significantly im-
pact the prediction outcome. Therefore, unique
terms were removed if they appeared in less than
30 tweets in our dataset. This threshold was se-
lected based on the examination of a histogram
to determine the cutoff point to exclude the “long
tail” of terms while still retaining important terms
likely to be useful for our modelling process. Ap-
plying this cutoff the number of unique concept
terms is reduced from 112,690 to 8,525. How-
ever, the number of the features is still far more
than the number of samples in the reference CDC
dataset (8,525 features vs 52 weeks per year each
year in our study). Recent studies have shown that

PLS is able to deal with datasets with more fea-
tures than the sample size (Li and Zeng, 2009),
therefore PLS is our first preferred algorithm to
train the dataset. It has been shown that PLSs pre-
dictive performance will be improved if the irrel-
evant features are removed beforehand (Li et al.,
2007). Our approach to determine irrelevant fea-
tures is different to Li et al. (2007). In this pa-
per, the PLS’s predictive performance is consid-
ered to the correlation between the predictive CDC
weekly rates and the actual CDC weekly rates. We
apply Pearson correlation to determine irrelevant
features. Pearson correlation measures linear rela-
tionship between two sets of variables. For each
input feature, the correlation between the feature’s
weekly frequency and the CDC’s weekly rates is
calculated in the training set. If the correlation is
less than 0.1, it is assumed that the linear relation-
ship between the feature and the CDC rates is very
weak, so the feature is regarded as irrelevant and
removed. The remaining set of relevant features
are used as input features for the next step.

2.4.2 PLS Components Selection

With a set of relevant features obtained from previ-
ous step, the PLS algorithm is applied to the train-
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Algorithm 2 Pseudocode of VIP Based Feature Removal
1: T = {T1,..Ti,...Tn} as the collection of VIP Threshold
2: T1 =0.02, Tn=1
3: MaxValCor = Maximum Validation Correlation among each Ti in T
4: BestVIPThreshold = VIP threshold associated with MaxValCor
5: for Ti = 0.02, Ti = Ti+ 0.02, Ti <=1 do
6: Remove features with VIP < Ti

7: Run PLS on the dataset, and let MC be the ’Maximum Validation
Correlation among PLS Components’

8: MC = result of running Pseudocode of Selecting The Number of
PLS Components

9: if MaxValCor < MC then
10: MaxValCor = MC
11: BestVIPThreshold = Ti

12: end if
13: end for

Figure 3: Flu Trend Prediction Experiment Work Flow

ing dataset with a 10-fold cross validation (Results
of this are not shown in the paper). Different num-
ber of components are created by applying PLS.
In order to select the optimal number of compo-
nents from PLS, the “outer” validation set (from
the outer CV and separate to training) is used to
validate the predictive performance of applying
different number of PLS components. The term
’outer validation set’ is used in the later sections
to refer to the validation set that is separate to the
training set. The optimal number of PLS compo-
nents is selected based on the maximum correla-
tion among all components on the validation set.

Algorithm 1 shows pseudocode of a selection
process to determine the optimal number of PLS
components with the best predictive performance
on the validation set. A loop of calculating the cor-
relation for the validation set by using all number
of PLS components is used in Algorithm 1.

2.4.3 PLS VIP based Feature Removal

With the selected number of PLS components,
each input feature’s VIP is calculated. Features’
VIP values are only valid for the selected set
of PLS components; they would be different if
a different set of PLS components was selected.
Each feature’s VIP value is related to the feature’s
weights for each latent component and the vari-
ance explained by each latent component. For-
mula for the jth feature’s VIP calculation is shown
below (Wold and others, 1995; Mehmood et al.,
2011), where N is the number of features, m is the
number of PLS latent components, wmj is the PLS
weight of the jth feature for the mth latent compo-
nent, Pm is the percentage of the response factor
(in our experiment, it is CDC weekly disease rate)
explained by the mth latent component:

V IPj =

√√√√ N∑M

m=1
.Pm

M∑
m=1

w2
mj .Pm

39



Features’ VIP values are used to determine
whether the feature should be removed or not. If
a feature’s VIP is less than a particular threshold,
this feature is removed before applying PLS again
to train the dataset.

We set the VIP threshold using the following
methodology: Values from 0.02 to 1 are consid-
ered. We use 1 as the maximum possible, as
heuristically anything greater indicates that the
feature is important (Cassotti and Grisoni, 2012).
The optimal VIP threshold is determined by run-
ning a loop, in which different VIP threshold val-
ues ranging from 0.02 to 1 are all used to remove
features. Let T = T1,..Ti,...Tn be a collection of
VIP thresholds, n is the number of thresholds, Ti

is the ith threshold in T . For each Ti (1 ≤ i ≤ n)
in T , features with VIP less than Ti are removed,
then PLS is used to train on the rest of features,
which results in different number of PLS compo-
nents. The optimal number of PLS components
is selected if it has the maximum value of corre-
lation for the outer validation dataset. This outer
validation set is the same dataset used in previous
step. These components are the representation for
the best result produced by removing features with
VIP lower than Ti. The optimal VIP threshold in T
is the one that yields the maximum correlation for
the outer validation dataset. Pseudocode for VIP
Based Feature Removal is shown in Algorithm 2.
Any features with VIP less than the selected op-
timal VIP threshold are not included for the next
step.

2.4.4 Recursive Feature Elimination (RFE)
In terms of the computational cost, if hundreds of
features resulted from the previous step are input
features for RFE, it might take too much time for
RFE to present results. Therefore, if the number of
features is greater than 200, features with VIP less
than 0.2 are removed before applying RFE. The
reduced number of features are then used as input
features for linear SVM based RFE (Guyon et al.,
2002; Gunn and others, 1998). Five times ten fold
cross validation is used for RFE with SVM. Fea-
tures selected from RFE with SVM is the final set
of features, which are the input feature for the next
step.

2.5 Linear SVM Regression and Prediction

After feature engineering, an SVM regression
model with a linear kernel function (Gunn and oth-
ers, 1998) is trained on the most important features

selected from previous RFE. The final prediction
is made using this SVM regression model.

Figure 5: Second Half Year of 2014 predicted
weekly Lyme Disease rates versus US CDC

Figure 6: Weekly frequency of spider web versus
US CDC weekly flu rate

3 Experimental Results

In this section, we show results for flu prevalence
prediction for the year 2014, as well as Lyme dis-
ease prevalence prediction for the second half year
of 2014, based both on the current week’s data
as well as using posts from a week in advance
to evaluate the possibility of getting a signal ear-
lier. Data from 2012 and 2013 is used as the train-
ing set, year 2014’s weekly data is used to predict
the weekly flu rates of the year 2014. For Lyme
disease prediction, only 18 months of data (from
2013 to the first half of 2014) is available as the
training set for Lyme disease prevalence predic-
tion.

Two fold cross validation is used for feature tun-
ing for flu prevalence. Figure 3 shows details of
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Stage Training Validation / Features VIP Feature VIP RFE
Set Test Set For PLS Removal > 0.2 SVM

Flu, current
1st 2012 2013 5353 412 103 61
2nd 2013 2012 5353 992 154 74

Final 2012, 2013 2014 – – – 22

Flu, one week
in advance

1st 2012 2013 5060 141 – 141
2nd 2013 2012 5060 78 – 77

Final 2012, 2013 2014 – – – 21

Lyme Disease,
current

1st 2013 H1, 2013 H2 2014 H1 6139 693 103 22
2nd 2013 H1, 2014 H1 2013 H2 6139 65 – 35
3rd 2013 H2, 2014 H1 2013 H1 6139 627 105 24

Final 2013, 2014 H1 2014 H2 – – – 41

Lyme Disease,
one week in
advance

1st 2013 H1, 2013 H2 2014 H1 6076 63 – 21
2nd 2013 H1, 2014 H1 2013 H2 6076 61 – 36
3rd 2013 H2, 2014 H1 2013 H1 6076 167 – 67

Final 2013, 2014 H1 2014 H2 6076 – – 54

Table 3: Number of Input Features After Each Dimension Reduction

Testing Pearson Spearman
Period Correlation Correlation R2 RMSE

Flu, current
2014 92.4% 94.9% 85.3% 1.51E-05

2014 H1 96.3% 96.6% 92.7% 1.06E-05
2014 H2 94.8% 92.3% 89.8% 1.90E-05

Flu, one week in
advance

2014 91.3% 93.3% 83.3% 1.55E-05
2014 H1 91.6% 94.6% 84.0% 1.41E-05
2014 H2 96.0% 92.3% 92.1% 1.69E-05

Lyme Disease, current 2014 H2 86.6% 89.6% 75% 3.41E-06
Lyme Disease, one
week in advance

2014 H2 90.32% 86.9% 81.6% 3.02E-06

Table 4: Flu and Lyme Disease trend prediction results

the flu trend prediction experiment. When data
from 2012 is used for training, data from 2013
is used as an outer validation set, and vice versa.
After PLS based dimension reduction, RFE with
SVM is applied to obtain the most important fea-
tures from each fold. Another round of RFE with
SVM is applied to train on the year 2012 and
2013’s data with all unique input features selected
from the previous step. This results in a final in-
put feature set, and then a regression based SVM
with linear kernel function is trained using 2012
and 2013 data. Finally, prediction of weekly flu
rates of the year 2014 is made from the trained
SVM.

For Lyme disease, we have only two years of
CDC data (2013 and 2014) which overlap with
our dataset of NER-tagged tweets. We set aside
2013 and the first 6 months of 2014 as for training
and feature tuning, keeping the final six months
for testing. We use three-fold cross-validation for
feature tuning. With each fold, six months of data
is used as an outer validation set, with the remain-
der used as a training set. Similar to the flu trend
experiment procedure shown in Figure 3, impor-
tant features selected from each cross-validation

round are all included for another round of feature
reduction by using RFE with SVM. With the fi-
nal feature set determined by RFE with SVM, an
SVM with a linear kernel function is then trained
on the training set to make the final prediction for
the Lyme disease trend for the second half of 2014.

3.1 Results of Flu and Lyme Disease Trend
Prediction and Detection

Table 3 shows number of features being reduced
after each step of dimension reduction. After VIP
based feature removal, if the number of features
exceeds 200, only features with VIP greater than
0.2 are selected. Otherwise, these features are the
input features for the next step.

Experimental results for flu and Lyme disease
trend prediction are presented in Table 4. Both
Pearson and Spearman correlations are included.
Pearson correlation measures the linear relation-
ship between two sets of variables, while Spear-
man correlation measures correlation between two
set of ranked variables, which is used to check
whether one variable increases, the other increases
or not. Therefore, Spearman correlation is used
in this paper as an alternative measurement to ex-
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Figure 4: Year 2014 predicted weekly flu rates versus the US CDC weekly flu rates.

Flu, Current ‘stomach flu’ ‘pneumonia’ ‘bronchitis’ ‘coughing’ ‘sick’ ‘cough medicine’ ‘cold
sore’ ‘cough syrup’ ‘sickness’ ‘cold’ ‘red nose’ ‘fever’ ‘sinus infection’ ‘ear infec-
tion’ ‘body ache’ ‘blush’ ‘spider web’ ‘throat hurt’ ‘aching’ ‘strep throat’ ‘alcide’
‘gelato’

Flu, In Advance ‘stomach flu’ ‘pneumonia’ ‘bronchitis’ ‘coughing’ ‘sick’ ‘cough medicine’ ‘red
nose’ ‘cough syrup’ ‘cold sore’ ‘cold’ ‘sickness’ ‘sinus infection’ ‘aloe’ ‘ear infec-
tion’ ‘fever’ ‘spider web’ ‘sleepy’ ‘aching’ ‘body ache’ ‘sore’ ‘seeing double’

Lyme Disease, Current ‘coughing’ ‘bronchitis’ ‘pneumonia’ ‘runny nose’ ‘stuffy nose’ ‘cold’ ‘stomach
flu’ ‘sick’ ‘throat hurt’ ‘sinus infection’

Lyme Disease, In Advance ‘cold’ ‘coughing’ ‘pneumonia’ ‘bronchitis’ ‘runny nose’ ‘stuffy nose’ ‘sick’
‘stress’ ‘aloe’ ‘stomach flu’ ‘sinus infection’ ‘caffeine’ ‘shaking’ ‘snoring’ ‘fart’
‘concussion’ ‘throw up’ ‘migraine’ ‘dizzy’ ‘sore throat’

Table 5: Important Features for Flu and Lyme Disease Trend Prediction

amine similarities among downward or upward
movements of the predicted trend and the CDC
trend.

When making flu prevalence predictions for
the first half, second half and the whole year of
2014, Spearman correlations are 96.6%, 92.3%
and 94.9% respectively. The first half year’s
Spearman correlation is higher than the second
half year. When the proposed methodology is
used to predict flu trend one week earlier, the first
half year’s Spearman correlation (with 94.6%) is
higher than the second half (with 92.3%). This
means the final set of the most important features
selected tends to represent more for the first half
year’s flu prevalence than the second half of year
2014. The Spearman correlation for predicting flu
trend one week before CDC for the year 2014 is
93.5%, which indicates that the proposed method-
ology has some advance predictive power ahead of
the CDC data, which is inherently less timely due
to delays in collection. Figure 4 illustrates pre-
dicted flu prevalence against current CDC data as
well as one week before.

For Lyme disease, as shown in Table 4, the Pear-
son correlation between the predicted prevalence

and CDC weekly rates is 86.6%, while the Spear-
man correlation is higher,as 89.6%. A few weeks
at the end of the year are predicted with nega-
tive rates, contributing to a relatively low Pear-
son correlation; without considering the last five
weeks, the Pearson correlation increases to 93.3%.
The relatively high Spearman correlation for Lyme
disease has indicated that the upward or down-
ward trends are well predicted. The Spearman
correlation of detecting Lyme disease trend one
week before CDC is 86.9%, which is lower than
for the current week but still shows that a use-
ful signal is being predicted. Predicted Lyme dis-
ease prevalence and CDC-reported Lyme disease
weekly rates are shown in Figure 5.

The most important features selected by the pro-
posed methodology for flu and Lyme disease trend
predictions are presented in Table 5. Most of
the features for flu prevalence prediction are rea-
sonable, such as coughing, cold and fever, which
are flu symptoms. However, spider web has been
ranked as one of the features for flu prediction
which appears in our database because spider web
appears as a pharmacological substance in the
UMLS. The weekly term frequency for spider web
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is highly negatively correlated to CDC weekly
flu rates as shown in Figure 6, due to many spi-
der webs being observed in the Northern hemi-
sphere in September, close to the low point of
the flu season. Gelato is also detected as rele-
vant for a similar reason, due to an coincidental
(negative) correlation with the flu season. Gelato
has been wrongly annotated by our system as a
pharmacological substance since in the UMLS it
refers gelato sodium fluoride instead of ice cream.

Table 5 shows the most important features for
Lyme disease prevalence prediction. Many fea-
tures selected are very similar to flu symptoms, in
line with many symptoms of Lyme disease match-
ing those of flu;2 in addition, dizzy matches a
Lyme disease symptom. However, overall the term
list for Lyme disease is less convincing than for
flu, with more symptoms of Lyme disease missed
and more terms included with no immediately ob-
vious relationship to the disease. It seems that the
relative rarity of Lyme disease is leading to noisier
signal in tweets about its symptoms.

4 Discussion

The proposed methodology is an effective ap-
proach to predict prevalences for influenza and
Lyme disease based on social media posts. It pre-
dicts flu prevalences for 2014 with Pearson corre-
lations range from 92.4% to 96.3%. Similar re-
sults have been reported with other existing ap-
proaches for flu prevalence prediction: Paul and
Dredze (2012) and Paul and Dredze (2011) pre-
dicted flu rate from August 2009 to May 2010
with Pearson correlations of 95.8% and 93.4% re-
spectively; Culotta (2010a) made predictions for
flu rate from September 2009 to May 2010 with
95% Pearson correlation. However, our method
has some advantages over these, as they require
labour-intensive manual labelling of tweets and
significant computational resources to train their
system using millions of data samples, in con-
trast with the method proposed here, where the
only computationally-intensive step is a one-off
step (reusable for other diseases and other kinds
of analytics) of applying an NER tagger to a large
Twitter corpus. In addition, Culotta (2010a) pre-
sented a method that requires prior knowledge to
manually identify flu-related key words. Here, a
manually pre-built keyword list is not required as
the most important features related to flu are au-

2http://www.cdc.gov/lyme/signs symptoms/

tomatically selected based on the data. We also
show that our method can predict disease preva-
lence with some reliability in a small time window
ahead of the reported CDC figures, which has po-
tential utility for real-time disease monitoring and
alerts.

Our method is somewhat generalisable, with
roughly the same approach achieving good corre-
lations against CDC data for Lyme disease. An
existing approach to track Lyme disease (Seifter et
al., 2010) requires knowledge to select key words
from Google trends, but there is no evaluation pro-
vided. To our knowledge there is relatively little
other work on Lyme disease surveillance so this
application is somewhat novel. However, accu-
racy for Lyme disease was weaker than for flu, in
terms of raw correlations as well as basic plausibil-
ity checks on the most important indicative terms –
canonical indicators such as the erythema migrans
rash did not make the list. An important factor is
probably the lower overall prevalence of the dis-
ease (an average of 1500 reported to the CDC per
week in our test set versus 15,000 for flu), there
are fewer instances of Twitter users experiencing
the disease and the relevant symptoms, which they
could then tweet about.

This hints a limitation of the method we have
developed. Terms showing a natural seasonal fluc-
tuation but are not indicative of disease (such as
gelato) happen to coincide with a disease may ac-
cidentally come out as important terms in the anal-
ysis. One way to mitigate this would be to im-
prove the accuracy of the named entity tagging in
the source data.

Future extensions may also be generalisable
to other regions with a high number of English-
language tweets.

5 Conclusion

We have presented an effective methodology
which produce predictions for flu and Lyme dis-
ease prevalences with strong or moderate correla-
tions with current CDC figures for the whole of
the US, and those of a week later and we expect
the approach to be somewhat generalisable across
diseases and regions.
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