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Abstract

This paper presents an extension of neu-
ral machine translation (NMT) model to
incorporate additional word-level linguis-
tic factors. Adding such linguistic fac-
tors may be of great benefits to learn-
ing of NMT models, potentially reduc-
ing language ambiguity or alleviating data
sparseness problem (Koehn and Hoang,
2007). We explore different linguistic
annotations at the word level, includ-
ing: lemmatization, word clusters, Part-of-
Speech tags, and labeled dependency re-
lations. We then propose different neural
attention architectures to integrate these
additional factors into the NMT frame-
work. Evaluating on translating between
English and German in two directions
with a low resource setting in the domain
of TED talks, we obtain promising re-
sults in terms of both perplexity reductions
and improved BLEU scores over baseline
methods.

1 Introduction

Neural Machine Translation (NMT) (Devlin et al.,
2014; Bahdanau et al., 2015) is a new paradigm in
machine translation (MT) powered by recent ad-
vances in sequence to sequence learning frame-
works (Graves, 2013; Sutskever et al., 2014).
NMT has already made remarkable results and im-
provements over conventional SMT (Luong et al.,
2015).

The core idea of NMT is the encoder-decoder
framework where an encoder encodes the source
sequence into a vector representation, and then
a decoder generates the target sequence sequen-
tially via a recurrent neural network (RNN). The

use of a RNN provides the ability to memorize
longer range dependencies that are impossible
with standard n-gram modeling - a core compo-
nent of the traditional Statistical Machine Transla-
tion (SMT) framework (Koehn et al., 2003; Lopez,
2008; Koehn, 2010). Unlike the traditional SMT,
NMT offers unique mechanisms to learn transla-
tion equivalence without extensive feature engi-
neering efforts.

Though promising, NMT still lacks of the abil-
ity of modeling deeper semantic and syntactic as-
pects of the language. Koehn and Hoang (2007)
presented a factored translation model to ad-
dress this issue for the traditional SMT framework
(Koehn et al., 2007), where the model incorporates
various linguistic annotations for the surface level
words. Particularly for low-resource conditions,
these extra annotations can lead to better transla-
tion of OOVs (or low-count words) and resolve
ambiguities, hence increase the generalization ca-
pabilities of the model.

In machine translation with a low-resource set-
ting, resolving data sparseness and semantic ambi-
guity problems can help improve its performance.
In this paper, we investigate utilizing extra syntac-
tic and semantic linguistic factors in the context
of the NMT framework. Linguistic factors can in-
clude bundles of features, e.g., stems, roots, lem-
mas, morphological classes, data-driven clusters,
syntactic analyses (part-of-speeches, constituency
parsing, dependency parsing). Adding such ex-
tra factors may be of great benefits to NMT mod-
els, potentially reducing language ambiguity and
alleviating data sparseness further. In this paper,
we explore four word-level factor annotations, in-
cluding: lemmatization, word clusters, Part-of-
Speech tags, and relation labels in dependency
parse trees (see Figure 1 for an example). We
then propose different neural attention architec-
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they       ‘ve             expanded       and           enriched        our        lives    .
they       ‘ve             expand           and           enrich            our        life       . 
011011  0100110    010111110     0111101   010111100   11100   1011    000
PRP       VBP           VBN               CC            VBN               PRP$    NNS    /
nsubj     aux             ROOT            cc             conj                nmod   dobj    none
1            1                0                     0               0                    1           0         -1

(text — lemma — word cluster — part-of-speech — labelled dependency)

Figure 1: An example of linguistic factor annota-
tions for a source sentence in English.

tures to integrate these additional factors into the
NMT framework. Evaluating on translating be-
tween English and German in two directions with
a low resource setting in the TED talks data, we
obtain perplexity reductions and improved BLEU
score over the baseline.

2 Incorporating Linguistic Factors

In this work, we investigate the feasibility of fac-
tored model idea (Koehn and Hoang, 2007) into
attentional neural translation model (Bahdanau et
al., 2015). As an initial work, we aim to find
how the neural model can benefit from incorporat-
ing the additional linguistic factors in source lan-
guage. Our work is an extension of (Bahdanau et
al., 2015) with the integration of additional lin-
guistic factors. A fully factored neural transla-
tion model for both source and target sides is con-
sidered as our future work. The following sec-
tion will discuss our extensions of (Bahdanau et
al., 2015) in §2.1. Assume that we have L lay-
ers of linguistic factor annotations. The train-
ing data then consists of N training parallel sen-
tences {({x(n,`)}L`=0,y

(n))}Nn=1 where the word
sequence of the nth sentence-pair is denoted in
the layer zero x(n,0), its length is denoted by
|x(n)|, its L layers of annotations are denoted by
{x(n,`)}L`=1, and the target sentence is denoted by
y(n). In what follows, we review and extend the
attentional encoder-decoder neural machine trans-
lation for this setting, and explore various neu-
ral attention mechanisms operating on the multi-
ple layers of linguistic factors over the source sen-
tence.

2.1 Multi-Factor Encoder-Decoder
Encoder. First, to encode the source-side infor-
mation, we first run each layer of linguistic annota-
tions through bidirectional RNNs (biRNN) for dy-
namically representing the sequence embeddings,
i.e.,

h`j = biRNN`,ψ
enc

(
x`j ,

[−→
h`j−1;

←−
h`j+1

]T)
; (1)

where x`j ∈ RH`
is the word embedding at po-

sition j in sequence layer `, and
−→
h`j and

←−
h`j are

the RNN1 hidden states. This encoding scheme
captures not only the position specific information,
but also the information coming from the left and
right contexts.

Decoder. Next, a decoder operated by another
RNN is used to predict the target y sequentially,
from left to right:

gi = RNNφ
dec (ci, yi−1, gi−1)

yi ∼ softmax (Wo ·MLP (ci, yi−1, gi) + bo) ;

where MLP is a single hidden layer neural net-
work with tanh activation. The model parameters
include φ the weight matrix Wo ∈ RVy×H and
the bias bo ∈ RVy , with Vy and H denoting the
target vocabulary size and hidden dimension size,
respectively.

Note that the state of the decoder gi is condi-
tioned on its previous state gi−1, the previously
generated target word yi−1, and the source side
context ci summarizing the areas of the source
sentence needs to be attended to. Finally, the
model is trained end-to-end by minimizing the
cross-entropy loss over the target sequence and
stochastic gradient descent (SGD) is used for op-
timizing the model parameters .

In what follows, we explore various attention
mechanisms for our case where the input sentence
is annotated with multiple linguistic factors, and
show how the source context ci is constructed.

2.2 Multi-Factor Attention Architectures

In this paper, we explore various attention mech-
anisms of integrating linguistic factors as briefly
summarized in Figure 2, including Global Atten-
tion, Local Attention, and hybrid Global-Local At-
tention.

Global Attention. Our first approach has one
shared attention vector for all the annotation lay-
ers, forcing each layer to attend to the same posi-
tions. This essentially means stacking the repre-
sentations of all the input embeddings x` into one

vector, i.e., xgj =
[
x0
j , . . . ,x

L
j

]T
. This stacked

1Generally, an RNN can be employed as Long-Short Term
Memory (LSTM) (Hochreiter and Schmidhuber, 1997) or
Gated Recurrent Unit (GRU) (Cho et al., 2014). Since the
RNN recurrent structure is not our focus, we ignored its for-
mulation in this paper.
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Figure 2: Proposed attention architectures of integrating linguistic factors for the NMT framework.

representation is used in place of only word em-
bedding xj to encode the input position (eqn 1) to
hgj . It is then used to construct the source context

for the decoder, using ci =
∑|x|

j=1 αijh
g
j with

αi = softmax(ei) ; eij = MLP
(
gi−1,h

g
j

)
hgj = biRNNθ

enc

(
xgj ,
[−→
hgj−1;

←−
hgj+1

]T)
,

where scalar eij denotes the unnormalized align-
ment probability between the source word anno-
tation j and target word i, which is produced by
single hidden layer neural network with tanh ac-
tivation.

Local Attention. The model may benefit from
different attentions learned for different layers.
Thus, the second idea is to have multiple attentions
for linguistic layers independently, and compute
layer-specific context vectors {c`i}L`=0 and stack
them up:

ci =
[
c0i , . . . , c

L
i

]T
; c`i =

Tx∑
j=1

α`ijh
`
j

α`i = softmax(e`i) ; e`ij = MLP
(
gi−1;h

`
j

)
where e`ij denotes the alignment score between the
annotation at layer ` and the target word. The
MLP for each layer has a different parameteriza-
tion.

Global-Local Attention. Finally, we consider
a hybrid global-local attention mechanism which

makes use of the global hidden representation hg

across all of the layers in generating the local at-
tentions, formulated as:

e`ij = MLP
(
gi−1,h

g
j

)
.

In contrast to the local attention the attention for
layer ` depends on the global encoding, hg, rather
than the local encoding for that layer, hl.

In training, we encourage the model to have
similar attentions across the layers by adding a
penalty term to the cross-entropy training objec-
tive,

N∑
n=1

|y(n)|∑
i=1

L∑
`=0

∥∥∥ᾱ(n)
i −α

(n),`
i

∥∥∥2
2

where α(n),`
i is the attention to the layer ` when

generating the target word i, and we define
ᾱ

(n)
i := 1

L+1

∑L
`=0α

(n),`
i as the average atten-

tion across all layers. Essentially, our regularizer
penalizes parameters which induce layer-specific
attentions deviating from the average attention.

3 Experiments

Data. We conducted our experiments on TED
Talks datasets (Cettolo et al., 2012) and translate
between English (en) ↔ German (de). For train-
ing, we used about 200K parallel sentences, and
used tst2010 for tuning model parameters (phrase-
based SMT) and early stopping (NMT). We eval-
uated on the official test sets tst2013 and tst2014,
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dataset # tokens (K) # types (K) # sents # docs
en↔de

train 4384.68 4161.58 19.42 26.22 198968 1597
tune-tst2010 35.13 33.42 3.29 3.87 1565 16
test1-tst2013 22.86 21.64 2.67 3.08 993 15
test2-tst2014 27.40 26.44 3.21 3.66 1305 16

Table 1: Statistics of the training & evaluation sets from IWSLT’14,15 MT track (including en↔de)
showing in each cell the count for the source language (left) and target language (right). “#types” refers
to filtered vocabulary with word frequency cut-off 5.

configuration tst2013 tst2014 #param (M)
en→de

Vanilla Attentional Model 8.20 10.98 47.80
w/ glo+all-factors 7.84 10.35 50.88
w/ loc+all-factors 8.02 10.80 52.06
w/ glo-loc+all-factors (w/o regularization penalty) 7.81 10.28 57.52
w/ glo-loc+all-factors (w/ regularization penalty) 7.48♠ 10.15♠ 57.52

de→en
Vanilla Attentional Model 8.76 11.81 44.46
w/ glo+all-factors 8.50 11.26 47.58
w/ loc+all-factors 8.50 11.48 48.76

w/ glo-loc+all-factors (w/ regularization penalty) 8.29♠ 10.95♠ 54.22

Table 2: Perplexity scores for attentional model variants evaluated on en↔de translations, and “#param”
refers to no. of model parameters (in millions). bold: “statistically significantly better than vanilla
attentional model”, ♠: best performance.

following Cettolo et al. (2014). We chose a word
frequency cut-off of ≥ 5 for limiting the vocab-
ulary when training neural models, resulting in
19K and 26K word types for English and German,
respectively. All details of data statistics can be
found in Table 1.

As linguistic factors, we annotated the source
sentences with lemmas,2 word clusters,3 and POS
tags. We also annotated with the labelled depen-
dency, i.e. by taking the dependency label between
each word and its head (together with its direction,
i.e. left or right)4 in the dependency parse tree.
Also note that the POS tags and dependency parse
trees were extracted from parsing results produced
by Stanford Parser5 and ParZu.6

Set-up and Baselines. We used the cnn library7

for our implementation. All neural models were
configured with 512 input embedding and hidden
layer dimensions, and 384 alignment dimension,

2NLTK, http://www.nltk.org/
3Brown clustering, https://github.com/

percyliang/brown-cluster
4The direction is encoded effectively as 3-bit vector.
5http://nlp.stanford.edu/software/

lex-parser.shtml (en)
6https://github.com/rsennrich/ParZu (de)
7https://github.com/clab/cnn/tree/

master/cnn

with 1 and 2 hidden layers in the source and target,
respectively. We employed LSTM recurrent struc-
ture (Hochreiter and Schmidhuber, 1997) for both
source and target RNN sequences. For the phrase-
based SMT baseline, we used the Moses toolkit
(Koehn et al., 2007) with its standard configura-
tion. To encode the linguistic factors, we used
128, 64, 64, 64 embedding dimensions for each
of lemma, word cluster, Part-of-Speech (POS),
and labelled dependency sequences, respectively.
For training our neural models, the best perplex-
ity scores on tuning sets were used for early stop-
ping of training, which was usually between 5-8
epochs. For decoding, we used a simple greedy
algorithm with length normalization. For evalua-
tion of translations, we applied bootstrapping re-
sampling (Koehn, 2004) to measure the statisti-
cal significance (p < 0.05) of BLEU score dif-
ferences between translation outputs of proposed
models compared to the baselines.

Results and Analysis. We report our experi-
mental results based on standard perplexity and
BLEU (Papineni et al., 2002) scores, as shown in
Tables 2 and 3, respectively. Table 2 shows that the
attentional model with our extensions is notice-
ably better than the vanilla NMT in terms of per-
plexity. Among the three attention architectures,
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configuration tst2013 tst2014
en→de

Moses baseline 21.31 19.16
Vanilla Attentional Model 25.03 20.96

w/ glo+all-factors 25.43 22.15♠

w/ loc+all-factors 25.04 21.24
w/ glo-loc+all-factors (w/o regularization penalty) 25.06 21.29
w/ glo-loc+all-factors (w/ regularization penalty) 25.92♠ 21.84

de→en
Moses baseline 29.96 25.13
Vanilla Attentional Model 29.85 24.84

w/ glo+all-factors 29.63 25.30♠

w/ loc+all-factors 29.32 24.40

w/ glo-loc+all-factors (w/ regularization penalty) 30.45♠ 24.72

Table 3: BLEU scores for attentional model variants evaluated on en↔de translations.

the glo-loc attention outperformed others, giving
significant improvement compared to the vanilla
model. The use of the loc attention did not give
much improvement. We suspect that the learned
model itself has difficulties deciding which factors
to attend to. The drawback of the glo attention
is that it enforces only one attention mechanism
for all of the layers. This may cause the loss of
individual effects that potentially exist in each of
layers. The glo-loc attention aims at taking advan-
tage of glo attention and solving the limitation of
loc attention with the penalty term, hence giving
better performance.

Table 3 shows the BLEU score results. Com-
pared to Moses baseline, the vanilla attentional
model is superior for en→de and comparable for
de→en translation tasks. It is noticeable that the
attentional model is capable of working remark-
ably well, despite the relatively small amounts of
parallel data. However, table 3 shows the inconsis-
tency, compared to the respective perplexity scores
in Table 2. For en→de, both glo and glo-loc at-
tention architectures worked competitively well,
giving significantly better BLEU scores than the
vanilla attentional model. Compared to glo, the
glo-loc attention is superior in tst2013, but slightly
detrimental in tst2014 although (its respective per-
plexity scores are better). These results show that
reductions in perplexity scores do not guarantee
improved BLEU scores, which is particularly true
for de→en translation.

For the analysis, we further investigate the im-
provement of the translation quality versus sen-
tence complexity. This would show the extent to
which the extra linguistic layers have been help-
ful in resolving ambiguities of source sentences in
translation. We formalize sentence complexity by

taking either its length or the depth of its parse tree
into consideration. Figure 3 and 4 plot the BLEU
score versus these two measures of complexity in
two evaluation sets. As seen, the extra linguistic
layers has helped the translation quality of more
complex sentences compared to the vanilla atten-
tional model.

4 Related Work

Recent advances in deep learning research facili-
tate innovative ideas in machine translation. The
attentional encoder-decoder framework pioneered
by Bahdanau et al. (2015) is the core, opening
a new trend in neural machine translation. Lu-
ong et al. (2015) followed the work of (Bahdanau
et al., 2015) by experimenting various options
on the generation of soft alignments with global
and local attention mechanisms. Inspired by re-
markable characteristics of state-of-the-art SMT
models, Cohn et al. (2016) incorporated structural
alignment biases inspired from conventional sta-
tistical alignment models (e.g. IBM models 1,
2) to encourage more linguistic structures in the
alignment process. Similar in spirit to this, Feng
et al. (2016) made use of additional RNN structure
for the attention mechanism, hence likely captur-
ing long range dependencies between the attention
vectors. Tu et al. (2016) further proposed a so-
called coverage vector to trace the attention history
for flexibly adjusting future attentions.

Though having been developed for almost 2
years, the NMT models are currently competi-
tive with state-of-the-art SMT models. However,
NMT models are still lacking of capabilities to
modelling shallow language characteristics, e.g.
the additional annotation at word level of linguis-
tic factors. Such kinds of factors can provide extra
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Figure 3: Analysis based on the evaluation set tst2013 in en→de translation.
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Figure 4: Analysis based on the evaluation set tst2014 in en→de translation.

dimensions for data sparseness problem as shown
in earlier works in SMT models, e.g., (Zhang and
Sumita, 2007; Rishøj and Søgaard, 2011; Wue-
bker et al., 2013). The most closely related work
to ours is the factored translation model for SMT
framework proposed by Koehn and Hoang (2007).
This model evaluated the effects of various lin-
guistic factors (including lemma, POS, morphol-
ogy) which are annotated for both source and tar-
get sides. Our work explored the same manner

in the context of NMT framework though only
considering source side. However, we further ex-
plored the annotation with labelled dependency
which potentially inject syntactic information into
neural model. Concurrent to our work, Sennrich
and Haddow (2016) proposed similar idea for the
NMT framework, however, their work has only
explored the so-called global attention whereas we
proposed more attention mechanisms with local
and hybrid global-local attentions. Also, our ex-
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periments were conducted in a low-resourced set-
ting in a different domain with TED talk data.

5 Conclusion & Future Work

In this paper, we have presented a novel atten-
tional encoder-decoder for translation capable of
integrating linguistic factors in the source lan-
guage. Four linguistic factors were evaluated, in-
cluding lemmatization, word clustering, part-of-
speech tagging, and labeled dependencies. We
proposed several neural attention mechanisms op-
erating over the factors. Our experimental results
on two language pairs show that the neural transla-
tion model with integrated linguistic factors can be
improved, in terms of both perplexity and BLEU
scores.

As our future work, we aim to explore whether
the attentional neural translation model can bene-
fit from linguistic factors, operating over the tar-
get language. This work can be considered as the
first work towards fully-factored neural translation
model.
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