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Abstract 

This study is a pilot research that explores the 

effectiveness of a likelihood ratio (LR)-based 

forensic voice comparison (FVC) system built 

on non-native speech production. More spe-

cifically, it looks at native Hong Kong Can-

tonese-speaking male productions of English 

vowels, and the extent to which FVC can 

work on these speakers. 15 speakers partici-

pated in the research, involving two non-

contemporaneous recording sessions with six 

predetermined target words – “hello”, “bye”, 

“left”, “right”, “yes”, and “no”. Formant fre-

quency values were measured from the trajec-

tories of the vowels and surrounding 

segments. These trajectories were modelled 

using discrete cosine transforms for each for-

mant (F1, F2 and F3), and the coefficient val-

ues were used as feature vectors in the LR 

calculations. LRs were calculated using the 

multivariate-kernel-density method. The re-

sults are reported along two metrics of per-

formance, namely the log-likelihood-ratio cost 

and 95% credible intervals. The six best-

performing word-specific outputs are present-

ed and compared. We find that FVC can be 

built using L2 speech production, and the re-

sults are comparable to similar systems built 

on native speech. 

1 Introduction 

1.1 Forensic voice comparison and the likeli-

hood-ratio framework  

Forensic voice comparison (FVC) is the forensic 

science of comparing voices. It is most often used 

in legal contexts where the origin of voice samples 

is being debated. Typically, an FVC analysis in-

volves the comparison of voice recordings of 

known origin (e.g. the suspect’s speech samples) 

with other voice recordings of disputed origin (e.g. 

the offender’s speech samples) (Rose, 2004). The 

FVC expert will apply statistical techniques on 

data extracted from speech sample evidence with 

the ultimate aim of assisting the trier of fact (e.g. 

judge(s)/jury) with their final decision. The trier of 

fact is faced with the task of making this decision 

by analysing the numerous probabilistic forms of 

evidence offered to them over the course of the 

trial. In fact, this decision is in itself a probabilistic 

statement, known as the posterior odds, and can be 

expressed mathematically as 1). 

𝑝(𝐻|𝐸)

𝑝(�̅�|𝐸)
 (1) 

In 1), 𝑝(𝐻|𝐸) represents the probability of one 

hypothesis (e.g. the prosecution hypothesis – the 

suspect is guilty), given the various forms of evi-

dence (e.g. DNA, fingerprint, voice, witness ac-

counts etc.), and 𝑝(�̅�|𝐸) represents the probability 

of the alternative hypothesis (e.g. the defence hy-

pothesis – the suspect is not guilty), given the evi-

dence. In the context of FVC, 1) becomes: 

𝑝(𝐻𝑆𝑆|𝐸)

𝑝(𝐻𝐷𝑆|𝐸)
 (2) 

In 2), 𝐻𝑆𝑆 represents the same-speaker hypothe-

sis, and 𝐻𝐷𝑆 represents the different-speaker hy-

pothesis. Before the trier of fact is able to make 

their decision of guilt or innocence, there may be 

more evidence that needs to be taken into account 

(e.g. DNA, fingerprint, witness etc.), and the FVC 

expert does not have access to this evidence (Rose, 

2002, p. 57). If the FVC expert were to provide the 
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trier of fact with this strength-of-hypotheses state-

ment, they would in effect be making a statement 

about the suspect’s guilt or innocence, which is 

usurping the role of the trier of fact (Aitken, 1995, 

p. 4; Evett, 1998; Morrison, 2009a, p. 300). This 

issue is resolved through the application of Bayes’ 

Theorem, given in 3). 

𝑝(𝐻𝑆𝑆|𝐸)

𝑝(𝐻𝐷𝑆 |𝐸)⏟      
𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑜𝑑𝑑𝑠

= 
𝑝(𝐸|𝐻𝑆𝑆)

𝑝(𝐸|𝐻𝐷𝑆 )⏟      
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑟𝑎𝑡𝑖𝑜

∗  
𝑝(𝐻𝑆𝑆)

𝑝(𝐻𝐷𝑆 )⏟    
𝑝𝑟𝑖𝑜𝑟 𝑜𝑑𝑑𝑠

 
(3) 

By using the LR framework, the FVC expert 

(and the DNA expert, the fingerprint expert, etc.) is 

able to make an objective statement regarding the 

strength of the evidence, and in doing so, does not 

usurp the role of the trier of fact. 

Put simply, the LR is the probability that some 

evidence would occur if an assertion is true, rela-

tive to the probability that the evidence would oc-

cur if the assertion is not true (Robertson & 

Vignaux, 1995, p. 17). The FVC-based LR above 

can be interpreted as the probability 𝑝 of observing 

some evidence 𝐸 (in FVC, this is the difference 

between the suspect and offender speech samples) 

if the same-speaker hypothesis 𝐻𝑆𝑆 is true, relative 

to the probability 𝑝 of observing the same evidence 

𝐸 if the different-speaker hypothesis 𝐻𝐷𝑆 is true. 

For example, a calculated LR of 100 would be in-

terpreted as follows: “the evidence is 100 times 

more likely to arise if the speech samples are of the 

same speaker, than it is if the speech samples are 

of different speakers”. To emphasise, this is not the 

same as saying: “it is 100 times more likely that 

the speech samples are of the same speaker than of 

different speakers”.  

The process essentially involves calculating the 

similarity of two samples as well as the typicality 

of the two samples against a relevant background 

population. The similarity and typicality are the 

numerator and denominator of the LR respectively. 

1.2 Non-native speakers (L2 speakers) 

Since the National Institute of Standards and 

Technology (NIST) speaker recognition evalua-

tions (SRE)
1
 started including non-native speaker 

data (mostly English), a series of experiments have 

been carried out using L2 samples in non-forensic 

contexts (Durou, 1999; Kajarekar et al., 2009; 

Scheffer et al., 2011). However, until now, FVC 
                                                           
1 http://www.itl.nist.gov/iad/mig/tests/spk/ 

research has been exclusively based on native 

(henceforth L1) speech production. However, 

crimes are obviously committed by L1 speakers 

and L2 speakers alike. There are therefore im-

portant practical applications to be developed from 

L2-based FVC research. To the best of our 

knowledge, this study is the first LR-based study 

exploring the effectiveness of an FVC system built 

on L2 speakers. While there have been studies that 

make considerations that could potentially apply to 

L2-based FVC, such as the selection of relevant 

reference samples (Morrison et al., 2012), there has 

not been an explicit attempt to build such a system.  

The participants in this study spoke English had 

reasonably strong HK Cantonese “accents”. Fur-

thermore, they exhibited many tendencies of L2 

speakers; stuttering, pausing to recall lexical items, 

using only a few set grammar patterns etc. Howev-

er, we do not know how the phonetic characteris-

tics of L2 speech affect between-speaker and 

within-speaker variations. One possibility is that 

L2 accents are not “hardwired” and therefore more 

fluid, potentially resulting in higher within-speaker 

variation; a hindrance for FVC. 

1.3 Research question 

Having briefly outlined the key concepts of the 

research, the research question is: 

Can FVC work on non-native speech? 

As the research question suggests, this study is 

exploratory in nature. We maintained tight control 

over many variables in order to eliminate some 

complexities that might arise in deeper research, in 

order to produce a baseline for future research. The 

reader should note that the aim is not to find the 

most effective method for L2-based FVC. 

2 Research Design 

Speech data were collected from 15 male speakers 

of Hong Kong (henceforth HK) Cantonese. We 

used a map task to elicit the voice samples. A map 

task is a simple speaking task in which the partici-

pant is provided a basic map, and the interviewer 

conducts a mock scenario asking for simple direc-

tions to certain places, or asks about general details 

of the map. The map task, conducted entirely in 

English, allows an interviewer to elicit large quan-

tities of a set of words without reverting to a less 

natural word-list method. 
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All speakers were 1) male; 2) over 18 years old; 

3) HK natives; 4) identify as native speakers of HK 

Cantonese; and 5) completed their compulsory 

schooling in HK. Speakers were between 18 and 

24 years of age (except one 42-year-old) and at-

tended two non-contemporaneous recording ses-

sions at least seven days apart (mean=12.86 days 

excluding an outlier of 80 days). The authors 

acknowledge that the number of speakers in the 

database is very small, though real FVC casework 

often involves analysis of limited amounts of data. 

When performing word-specific FVC research, 

it is most suitable to work with common words in 

the English vernacular, keeping the practicalities of 

real casework in mind. The words given in Table 1 

were chosen as the target words for both their pho-

netic properties and practical application. We de-

cided to use 5 random tokens of each word to build 

the FVC system. 
 

Word 
GAE broad  

transcription 

HKE broad 

transcription 

hello hələʉ haləʊ 

bye bɑe baɪ 

left left lɛft 

right rɑet raɪt 

yes jes jɛs 

no nəʉ nəʊ 

Table 1: Target words and broad transcriptions in GAE 

(General Australian English) (Harrington et al., 1997) 

and HKE (Hong Kong English) broad transcriptions. 

Target segments are in bold. Note that these transcrip-

tions are merely representative of typical phoneme real-

isation.  

The words in Table 1 are common English 

words and cover both monophthong vowel produc-

tions (stable single syllable peak with one articula-

tory target; "left", "yes") and diphthong vowel 

productions (dynamic single syllable peak with 

two distinct articulatory targets; "hello", "bye", 

"right", "no") (Cox, 2012, p. 29; Ladefoged & 

Disner, 2012, pp. 54-55). Diphthongs are common-

ly used in FVC research because they often have 

low within-speaker variation and high between-

speaker variation. This is because a diphthong, un-

like a monophthong, involves substantial move-

ment of the formant trajectories, allowing more 

room for individualising information (Li & Rose, 

2012, p. 202). 

In our case, however, we have avoided labelling 

the vowels as “monophthong” or “diphthong”, be-

cause the data were extracted in a manner that cap-

tured both the formant trajectory of the vowel and 

the surrounding consonants and transitions where 

applicable. We are therefore dealing with differing 

levels of dynamism. Under this approach, “bye” 

and “right” are classed as being the most dynamic, 

and the least dynamic are “left”, and surprisingly, 

“hello”, in some speakers’ cases. 

Each recording session was conducted in a 

soundproof recording studio using professional 

equipment. The recordings were made using the 

Audacity
2
 software, preset for a 32 bit recording on 

a mono track at a 44.1 kHz sampling rate. They 

were later downsampled to 16 kHz.  

The EMU Speech Database System
3
 was used 

to analyse and annotate the recorded samples. The 

"forest" analysis application was used with the fol-

lowing settings: 3 formants to be defined (F1, F2, 

F3), Hamming window function with window size 

set to 25ms and window shift set to 5ms. The “for-

est” analysis performed very well in general.  

2.1 Parametrisation 

In order to build our FVC system, our formant tra-

jectory portions needed to be modelled. We used a 

parametric curve fitting procedure that uses dis-

crete cosine transforms (DCTs). The DCT method 

involves an estimation of a complex curve – the 

formant trajectories – by adding simple cosine 

functions together (Morrison, 2009b, p. 2389; 

Rose, 2013). These simple cosine functions are 

defined in terms of their coefficient values, which 

specify their amplitudes. The DCT coefficient val-

ues – from models of F1, F2, and F3 trajectories – 

were used as the feature vectors in the LR calcula-

tions. The durations of the trajectories were equal-

ised because it has been shown to work well in 

FVC (Morrison, 2008, 2009b; Morrison & 

Kinoshita, 2008).  

In this study, we use the term “output” to refer 

to the statistical and graphical result of a certain set 

of combinations of DCT coefficients and formants. 

Figure 1 shows the modelled DCT curves (dot-

ted lines) alongside the complex formant trajecto-

ries (solid lines) for all “bye” tokens. It is evident 

that higher degree DCT curves better approximate 

the complex formant trajectories.  

                                                           
2 http://audacity.sourceforge.net/ 
3 http://emu.sourceforge.net/ 
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Table 2 shows the possible combinations of the 

parameters. Note that each output kept the DCT 

coefficient number constant across all formants in 

combination. 

 

 

 

Figure 1: Solid lines represent the mean complex for-

mant trajectories for all “bye” tokens in the dataset. The 

dotted lines represent 2
nd

 degree (a) and 4
th

 degree (b) 

DCT-modelled curves. X-axis = Equalised duration and 

Y-axis = Frequency in Hz.  

3 Testing  

In order to assess the performance of an FVC sys-

tem, two types of comparisons, namely same-

speaker (SS) and different-speaker (DS) compari-

sons, are necessary. In SS comparisons, two speech 

samples produced by the same individual are com-

pared and evaluated with the derived LR. Given 

the same origin, it is expected that the derived LR 

is higher than 1. In DS comparisons, they are ex-

pected to receive an LR lower than 1. In total, there 

were 15 SS comparisons and 210 DS comparisons
4
 

for each target word. 

 

Formant combination DCT coefficients 

f12, f23, f123 2, 3, 4, 5, 6, 7, 8, 9 

Table 2: The multiple-formant output combinations 

(6 × 3 × 8 = 144 total combinations). Note that, for 

example, f12 represents results involving F1 and F2; f23 

represents results involving F2 and F3, etc. 

3.1 Multivariate-kernel-density procedure  

One of the advantages of the LR framework is the 

ability to combine different pieces of evidence. If 

multiple LR values are obtained from different 

pieces of evidence (e.g. fingerprint, voice, DNA 

etc.), then these values may simply be multiplied 

together (added together in the logarithmic do-

main) to produce one LR value. This simple pro-

cedure, however, works under the assumption that 

the pieces of evidence are not correlated. 

As explained in §2.1, DCT coefficients from 

models of F1, F2, and F3 trajectories were used as 

the feature vectors in the LR calculations. An issue 

here is the potential correlation between formants. 
The issue of correlated variables was addressed by 

Aitken & Lucy (2004) with their multivariate ker-

nel density likelihood ratio (henceforth MVKD) 

formulae. By using a cross-validated MVKD pro-

cedure, we were able to obtain a single LR from 

multiple correlated features while taking the corre-

lations into account (the statistical information for 

typicality is repeatedly recalculated from all sam-

ples except those speakers in comparison). The 

cross-validated MVKD approach has been used in 

many FVC studies (Ishihara & Kinoshita, 2008; 

Morrison, 2009b; Morrison & Kinoshita, 2008; 

Rose, 2013).  

                                                           
4 For DS comparisons, two independent different DS compari-

sons are possible (e.g. (S)peaker1(R)ecording1 vs. S2R1 and 

S1R2 vs. S2R2) for each pair of different speakers (e.g. S1 vs. 

S2). 

a 

b 

F3 

F2 

F1 
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3.2 Logistic-regression calibration 

When building an FVC system, raw output values 

may need to be calibrated before they are interpret-

able. The outputs of the MVKD calculations in 

§3.1 actually result in scores. Scores are logLRs in 

that their values indicate degrees of similarity be-

tween two speech samples having taken into ac-

count their typicality against a background popula-

population (Morrison, 2013, p. 2). Logistic-

regression calibration (Brümmer & du Preez, 

2006) is a method which converts these output 

scores to interpretable logLRs by performing a lin-

ear shift (in the logarithmic scale) on the scores 

relative to a decision boundary.  

The weights involved in the shift are calculated 

by using a training set of data. This involves run-

ning sets of known-origin pairs through the system 

to obtain scores, resulting in a training model. In 

an ideal situation, one would have three databases 

upon which to build an FVC system; the back-

ground database (used to build a model of the dis-

tribution of the acoustic feature of interest), the 

development database (used to calculate the 

weights for logistic-regression calibration and for 

general optimisation), and the test database (previ-

ously unused recordings that can be used to test the 

system – often the offender and suspect record-

ings) (Morrison et al., 2012). In this study, due to 

the limitations in the amount of data, the calibra-

tion weights were obtained using a cross-validated 

procedure; each derived score was referenced 

against every other score in the database to pro-

duce the weights. This is quite a common tech-

nique, and it has been shown to work well with 

MVKD-based LR outputs (Morrison, 2009b; 

Morrison & Kinoshita, 2008; Morrison et al., 

2011).  

The FoCal toolkit
5
 was used for logistic-

regression calibration (Brümmer & du Preez, 

2006). 

3.3 Metrics of performance 

Evidence must be reported alongside measures of 

accuracy (also validity) and precision (also relia-

bility) in order to be admitted as scientific evidence 

in court (Morrison, 2009a, p. 299). Accuracy refers 

to the “closeness of agreement between a measured 

quantity value and a true quantity value of a meas-

                                                           
5 https://sites.google.com/site/nikobrummer/focal 

urand” (BIPM et al., 2008, p. 21), and precision 

refers to the “closeness of agreement between indi-

cations or measured quantity values obtained by 

replicate measurements on the same or similar ob-

jects under specified conditions” (BIPM et al., 

2008, p. 22). 

Two metrics that can be used to assess output 

performance under this requirement are the 

log-likelihood-ratio cost (the measure of validity) 

(Brümmer & du Preez, 2006), and credible inter-

vals (the measure of reliability) (Morrison, 2011). 

Log-likelihood-ratio cost 

One way of assessing validity is to find the overall 

correct-classification rate of the output – the equal 

error rate (EER). However, EER is “based on a 

categorical thresholding, error versus not-error, 

rather than a gradient strength of evidence” 

(Morrison, 2011, p. 93). It is not an appropriate 

measure of system performance as it refers to pos-

terior probability (a question of guilt or innocence). 

Furthermore, these “error versus not-error” deci-

sions are binary, unlike LRs, which are continuous; 

“[t]he size of a likelihood ratio indicates the 

strength of its support for one hypothesis over the 

other” (Morrison, 2011, p. 93). EER does not pro-

vide any means of assessing the strength of the 

LRs of an output. So, while EER can be a useful 

metric for the overall discriminability of a system, 

it is not strictly appropriate for use in FVC. 

It has been argued that a more appropriate met-

ric for assessing the validity of an output is the log-

likelihood-ratio cost (henceforth Cllr) (Brümmer & 

du Preez, 2006). Cllr can be calculated using 4). 

𝐶𝑙𝑙𝑟

=
1

2

(

 
 

1

NHp
∑ log2 (1 +

1

LRi
)

NHp

i for Hp=true

+
1

NHd
∑ log2(1 + LRj)

NHd

j for Hd=true )

 
 

 (4) 

NHp and NHd refer to the numbers of SS and DS 

comparisons. LRi and LRj refer to the LRs derived 

from these SS and DS comparisons, respectively. 

Cllr takes into account the magnitude of con-

sistent-with-fact (and contrary-to-fact) LR values, 

and assigns them appropriate penalties. For exam-

ple, log10LR= −5 for an SS comparison would 

contribute a much heavier penalty to Cllr than 

log10LR= −0.5 for an SS comparison. Similarly, a 
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correctly-classified SS comparison with 

log10LR=0.5 does not provide much support for 

the same-speaker hypothesis, and would therefore 

contribute a larger penalty than log10LR=4 for an 

SS comparison (Morrison, 2011, p. 94). For any 

output, an obtained Cllr value less than 1 implies 

that the output is providing a certain amount of 

information, and the validity gets better as Cllr ap-

proaches 0. The FoCal toolkit
6
 was also used for 

calculating Cllr values in this study (Brümmer & du 

Preez, 2006). 

Credible intervals 

To assess reliability (precision), we used 95% 

credible intervals (95% CI). Credible intervals are 

“the Bayesian analogue of frequentist confidence 

intervals”, and have the following interpretation: 

“we are 95% certain that the true value of the pa-

rameter we wish to estimate lies within the 95% 

credible interval” (Morrison, 2011, p. 95). In this 

study, uniform prior odds are assumed, so the actu-

al calculations are identical to frequentist confi-

dence intervals. It is also important to note that as 

there were only two recordings of each speaker, 

95% CI values can only be estimated from the DS 

comparisons. 

4 Results 

Table 3 shows the best-performing outputs for 

each target word in terms of Cllr.  

 

word Cllr 
formant 

combination 

DCT 

coefficients 

95% 

CI 

Bye 0.158 23 5 9.996 

Right 0.271 123 2 7.272 

No 0.318 123 2 3.472 

Left 0.342 123 2 4.249 

Hello 0.392 123 2 3.518 

Yes 0.527 23 5 4.232 

Table 3: Best-performing outputs for each target 

word by Cllr.  

Table 3 shows that “bye” performed best in 

terms of Cllr, and “yes” was the worst by the same 

measure. However, on closer inspection we see 

that the 95% CI for “bye” is poor in comparison to 

the other words. This is not a coincidence; “bye” 

consistently performed the best in terms of Cllr 

                                                           
6 https://sites.google.com/site/nikobrummer/focal 

even with other combinations of the parameters, 

while performing the worst in terms of 95% CI.  

A Pearson correlation test shows a negative cor-

relation between the Cllr and 95% CI values 

(= -0.700; p < 0.0001) across all words. This is 

actually to be expected; Morrison (2011)) notes 

that one would ideally hope for low values for both 

metrics, but in practice, this is not often the case. It 

is clear that there is a trade-off when it comes to 

assessing the performance of the outputs.  

When comparing the typical trajectories of the 

vowels in these words, it is noticeable that perfor-

mance, in terms of Cllr, roughly corresponds to the 

level of dynamism of the trajectories. 2
nd

, 3
rd

, 4
th
, 

and 5
th
 degree DCT-modelled curves tended to per-

form the best.  

Presented in Figure 2 are the Tippett plots for 

the best-performing outputs of each word. Tippett 

plots show the cumulative distribution of log10LRs 

for SS and DS comparisons. As stated earlier, in a 

good output we expect most SS comparisons to 

produce log10LRs > 0, and most DS comparisons 

to produce log10LRs < 0. The counter-factual LRs 

(circled in Figure 2a as an example) that are “pe-

nalised” by Cllr (and their strength) become clear 

when inspecting a Tippett plot. The EER is also 

made clear in a Tippett plot; it is the crossing point 

of the SS and DS lines (indicated by the arrow in 

Figure 2e as an example). 95% CI bands (grey dot-

ted curves) are also included in the Tippett plots 

given in Figure 2 for the DS comparison curves. 

As can be seen in Figure 2, in all outputs, the DS 

LRs achieve greater values compared to the SS 

LRs; the DS curves are less steep than the SS 

curves. This is partly due to the number of DS 

comparisons (210) in each output outnumbering 

the number of SS comparisons (15). Also, when 

counter-factual, the DS comparisons tend to be 

more counter-factual than SS comparisons (except 

“yes” SS comparisons).  

It is immediately obvious that “bye” is the high-

est performer; it achieves the greatest SS and DS 

values of all the outputs (values furthest away from 

log10LR = 0) and it has 100% correct discrimina-

tion for SS comparisons. It does produce mislead-

ing DS LRs, but the strength of these LRs is 

comparable with the other outputs. “No” also 

achieves 100% correct discrimination for SS com-

parisons, and “right” and “left” come very close to 

doing so.  
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Figure 2: Tippett plots of the best-performing outputs for the target words. Black curve = calibrated SS LRs; Grey 

solid curve = calibrated DS LRs. Dotted grey curves = 95% CI band. The circle in Panel A indicates the counter-

factual LRs and the arrow in Panel E indicates the EER. 

a: hello 

c: left 

b: bye 

d: right 

f: no e: yes 
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5 Discussion 

For the participants in this study, phonetic realisa-

tion varied greatly between speakers, and speakers 

were generally consistent internally. Table 4 and 

Table 5 show various phonetic realisations for 

“bye” and “hello” respectively. The effect of this 

variation is seen in the overall performance of our  

system; our DS comparisons tended to perform 

very well.  
 

bye 

consonant start target length end target 

b 

p 

a 

ɑ 

æ 

ɐ 

unmarked 

̆ 

ˑ 

ː 

i 

ɪ 

e 

ə 

Table 4: Various phonetic variations seen in the produc-

tion of “bye”. (Not all combinations were realised– this 

is a list of articulations that appeared in the given posi-

tions.) 

 

hello 

consonant vowel consonant target 1 target 2 

h 

ɛ 

ə 

ɐ 

a 

l 

ˡ 

ɾ 

Ø 

ə 

ɜ 

ɛ 

o 

ʊ 

u 

 

Table 5: Various phonetic variations seen in the produc-

tion of “hello”. Another common final vowel was [oː]. 

While our research aim makes no mention of a 

comparison of our L2-based FVC system with sim-

ilar traditional L1-based FVC systems, it is still an 

issue of particular interest. While it is not theoreti-

cally appropriate to directly compare Cllr values 

between systems unless the experimental settings 

are identical, doing so can provide a rough com-

parison of two systems. Morrison (2009b) looked 

at parametric representations (DCTs and polyno-

mials) of the formant trajectories of five Australian 

English diphthongs, namely /aɪ/, /eɪ/, /oʊ/, /aʊ/, /ɔɪ/ 

(/aɪ/ corresponds to the /aɪ/ in this study, and /oʊ/ 

corresponds to the /əʊ/ in this study) from 27 Aus-

tralian males. The best /aɪ/ output achieved a Cllr of 

0.156, compared to 0.158 (“bye”) and 0.271 

(“right”) in this study, and the best /oʊ/ (/əʊ/) out-

put achieved 0.129, compared to 0.318 (“no”) and 

0.392 (“hello”) in this study. We can see that the 

performance of the diphthong-specific outputs is 

quite comparable to the equivalent outputs in this 

study. This implies that L2-based FVC systems 

have no major shortcomings. 

6 Conclusion 

This study was the first to build an LR-based FVC 

system on L2 speech production, motivated by the 

relative prevalence of crimes involving L2 speak-

ers. 15 native HK Cantonese-speaking males par-

ticipated in the research. Six common words were 

targeted, and DCT-modelled parametric curves 

were fitted to the formant trajectories of the six 

target words. The coefficient values of the DCT-

modelled curves were used as feature vectors in the 

LR calculations. The MVKD procedure (Aitken & 

Lucy, 2004) was used to produce LRs for each 

word. We used logistic-regression calibration 

(Brümmer & du Preez, 2006) to calibrate the out-

puts of the MVKD procedure.  

Each output was evaluated with two metrics; the 

log-likelihood-ratio cost (Cllr) measured validity, 

and credible intervals (95% CI) measured reliabil-

ity. We found that the words with more dynamic 

formant trajectories tended to perform best, and 

outputs involving F1, F2 and F3 performed better 

than outputs involving just F1 and F2, or F2 and 

F3. 2
nd

, 3
rd

, 4
th
, and 5

th
 degree DCT-modelled 

curves tended to produce the best outputs.  

In terms of the research question – whether or 

not FVC can be performed on L2 speech – we have 

clearly demonstrated that FVC can, and does, work 

on L2 speech. Further, we achieved results compa-

rable to traditional L1-based FVC systems, which 

is certainly promising for the prospects of the field. 
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