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Abstract

Relation extraction is the task of ex-
tracting predicate-argument relationships
between entities from natural language
text. This paper investigates whether back-
ground information about entities avail-
able in knowledge bases such as FreeBase
can be used to improve the accuracy of
a state-of-the-art relation extraction sys-
tem. We describe a simple and effective
way of incorporating FreeBase’s notable
types into a state-of-the-art relation extrac-
tion system (Riedel et al., 2013). Experi-
mental results show that our notable type-
based system achieves an average 7.5%
weighted MAP score improvement. To
understand where the notable type infor-
mation contributes the most, we perform
a series of ablation experiments. Results
show that the notable type information im-
proves relation extraction more than NER
labels alone across a wide range of entity
types and relations.

1 Introduction

The goal of relation extraction is to extract rela-
tional information about entities from a large text
collection. For example, given the text “Michael
Bay, the director of Transformers, visited Paris
yesterday,” a relation extraction system might ex-
tract the relationship film director(Michael Bay,
Transformers). These tuples can be then used to
extend a knowledge base. With the increase in the
amount of textual data available on the web, rela-
tion extraction has gained wide applications in in-
formation extraction from both general newswire
texts and specialised document collections such as
biomedical texts (Liu et al., 2007).

∗This work was partially done while Lan Du was at Mac-
quarie University.

A typical relation extraction system functions as
a pipeline, first performing named entity recog-
nition (NER) and entity disambiguation to link
the entity mentions found in sentences to their
database entries (e.g., “Michael Bay” and “Trans-
formers” would both be linked to their respective
database ids). Then the context in which these en-
tity mentions co-occur is used to predict the re-
lationship between the entities. For example, the
path in a syntactic parse between two mentions in
a sentence can be used as a feature to predict the
relation holding between the two entities. Contin-
uing our example, the text pattern feature X-the-
director-of-Y (or a corresponding parse subtree
fragment) might be used to predict the database
relation film director(X,Y). In such a pipeline ar-
chitecture, information about the entities from the
database is available and can be used to help de-
termine the most appropriate relationship between
the entities. The goal of this paper is to identify
whether that information is useful in a relation ex-
traction task, and study such information about the
entities with a set of ablation experiments.

We hypothesise that information from database
entries can play the role of background knowl-
edge in human sentence comprehension. There is
strong evidence that humans use world knowledge
and contextual information in both syntactic and
semantic interpretation (Spivey-Knowlton and Se-
divy, 1995), so it is reasonable to expect a machine
might benefit from it as well. Continuing with our
example, if our database contained the information
that one particular entity with the name Michael
Bay had died a decade before the movie Trans-
formers was released, then it might be reason-
able to conclude that this particular individual was
unlikely to have directed Transformers. Clearly,
modelling all the ways in which such background
information about entities might be used would be
extremely complex. This paper explores a simple
way of using some of the background information
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about entities available in FreeBase (Bollacker et
al., 2008).

Here we focus on one particular kind of back-
ground information about entities — the informa-
tion encoded in FreeBase’s notable types. Free-
Base’s notable types are simple atomic labels
given to entities that indicate what the entity is
notable for, and so serve as a useful informa-
tion source that should be relatively easy to ex-
ploit. For example, the search results for “Jim
Jones” given by FreeBase contains several dif-
ferent entities. Although they all have the same
name entity (NE) category PERSON, their no-
table types are different. The notable types
for the top 4 “Jim Jones” results are organiza-
tion/organization founder, music/composer, base-
ball/baseball player and government/politician. It
is clear that the notable type information provides
much finer-grained information about “Jim Jones”
than just the NE category. It is reasonable to ex-
pect that notable types would be useful for relation
extraction; e.g., the politician Jim Jones is likely
to stand for election, while the baseball player is
likely to be involved in sport activities.

We extend one state-of-the-art relation extrac-
tion system of Riedel et al. (2013) to exploit this
notable type information. Our notable type ex-
tensions significantly improve the mean averaged
precision (MAP) by 7.5% and the weighted MAP
by 6% over a strong state-of-the-art baseline. With
a set of ablation experiments we further evaluate
how and where the notable type information con-
tributes to relation extraction.The rest of this paper
is structured as follows. The next section describes
related work on relation extraction. Section 3 de-
scribes how a state-of-the-art relation extraction
system can be extended to exploit the notable type
information available in FreeBase. Section 4 spec-
ifies the inference procedures used to identify the
values of the model parameters, while section 5
explains how we evaluate our models and presents
a systematic experimental comparison of the mod-
els by ablating the notable type in different ways
based on entities’ NE categories. Section 6 con-
cludes the paper and discusses future work.

2 Related work

Most approaches to relation extraction are either
supervised or semi-supervised. Supervised ap-
proaches require a large set of manually annotated
text as training data (Culotta and Sorensen, 2004),

but creating these annotations is both expensive
and error-prone. Semi-supervised approaches, by
contrast, rely on correlations between relations
and other large data sources.

In relation extraction, most semi-supervised ap-
proaches use distant supervision, which aligns
facts from a large database, e.g., Freebase, to un-
labelled text by assuming some systematic rela-
tionship between the documents and the database
(Bunescu and Mooney, 2007; Mintz et al., 2009;
Riedel et al., 2010; Yao et al., 2010). Typically,
we assume that (a) an entity linker can reliably
identify entity mentions in the text and map them
to the corresponding database entries, and (b) for
all tuples of entities that appear in a relation in
the database, if we observe that entity tuple co-
occurring in a suitable linguistic construction (e.g.,
a sentence) then that construction expresses the
database relationship about those entities. Pre-
vious work (Weston et al., 2013; Riedel et al.,
2013; Bordes et al., 2013; Chang et al., 2014)
has shown that models leveraging rich information
from database often yield improved performance.

In this work we are particularly interested in ex-
ploring entity type information in relation extrac-
tion, as semantic relations often have selectional
preference over entity types. Yao et al. (2010),
Singh et al. (2013), Yao et al. (2013), Koch et al.
(2014) and Chang et al. (2014) have shown that the
use of type information, e.g., NE categories, sig-
nificantly improves relation extraction. Our work
here is similar except that we rely on Freebase’s
notable types, which provide much finer-grained
information about entities. One of the challenges
in relation extraction, particularly when attempt-
ing to extract a large number of relations, is to gen-
eralise appropriately over both entities and rela-
tions. Techniques for inducing distributed vector-
space representations can learn embeddings of
both entities and relations in a high-dimensional
vector space, providing a natural notion of simi-
larity (Socher et al., 2013) that can be exploited in
the relation extraction task (Weston et al., 2013).
Instead of treating notable types as features Ling
and Weld (2012), here we learn distributed vector-
space representations for notable types as well as
entities, entity tuples and relations.

3 Relation extraction as matrix
completion

Riedel et al. (2013) formulated the relation extrac-

32



tion task as a matrix completion problem. In this
section we extend this formulation to exploit no-
table types in a simple and effective way. Specif-
ically, we follow Riedel et al. (2013) in assum-
ing that our data O consists of pairs 〈r, t〉, where
r ∈ R is a relation and t ∈ T is a tuple of en-
tities. The tuples are divided into training and
test depending on which documents they are ex-
tracted from. In this paper, the tuples in T are
always pairs of entities, but nothing depends on
this. There are two kinds of relations inR: syntac-
tic patterns found in the document collection, and
those appearing in the database (including target
relations for extraction). For our notable type ex-
tension we assume we have a function n that maps
an entity e to its FreeBase notable type n(e).

For example, given text “Michael Bay, the di-
rector of Transformers, visited Paris yesterday”
we extract the pair 〈r, t〉 where t = 〈Michael Bay,
Transformers〉 and r = X-the-director-of-Y (actu-
ally, the path in a dependency parse between the
named entities). From FreeBase we extract the
pair 〈r′, t〉 where r′ = film/director. FreeBase
also tells us that n(Michael Bay) = Person and
n(Transformers) = Film. Our goal is to learn a
matrix Θ whose rows are indexed by entity tuples
in T and whose columns are indexed by relations
in R . The entry θt,r is the log odds of relation
r ∈ R holding of tuple t ∈ T , or, equivalently,
the probability that relation r holds of tuple t is
given by σ(θt,r), where σ is the logistic function:
σ(x) = (1 + e−x)−1.

Riedel et al. (2013) assume that Θ is the sum of
three submodels: Θ = ΘN + ΘF + ΘE, where
ΘN is the neighbourhood model, ΘF is the latent
feature model and ΘE is the entity model (these
will be defined below). Here we extend these sub-
models using FreeBase’s notable types.

3.1 A notable type extension to the
neighbourhood model

The neighbourhood model ΘN captures depen-
dencies between the syntactic relations extracted
from the text documents and the database relations
extracted from FreeBase. This is given by:

θNr,t =
∑

〈r′,t〉∈O\{〈r,t〉}

wr,r′ ,

whereO is the set of relation/tuple pairs in the data
andO\{〈r, t〉} isO with the tuple 〈r, t〉 removed.
w is a matrix of parameters, where wr,r′ is a real-
valued weight with which relation r′ “primes” re-

lation r that will be learnt from the training data.
The neighbourhood model can be regarded as pre-
dicting an entry θr,t by using entries along the
same row. It functions as a logistic regression clas-
sifier predicting the log odds of a FreeBase rela-
tion r applying to the entity tuple t using as fea-
tures the syntactic relations r′ that hold of t.

Our notable type extension to the neigh-
bourhood model enriches the syntactic pat-
terns in the training data O with notable
type information. For example, if there is
a syntactic pattern for X-director-of-Y in
our training data (say, as part of the tuple
〈X-director-of-Y, 〈Michael Bay, Transformers〉〉),
then we add a new syntactic pattern
〈Person(X)-director-of-Film(Y)〉, where Per-
son and Film are notable types and add
the tuple 〈Person(X)-director-of-Film(Y),
〈Michael Bay, Transformers〉〉 to our data O.
Each new relation corresponds to a new col-
umn in our matrix completion formulation.
More precisely, the new relations are mem-
bers of the set N = {〈r, n(t)〉 : 〈r, t〉 ∈ O},
where n(t) is the tuple of notable types cor-
responding to the entity tuple t. For example,
if t = 〈Michael Bay, Transformers〉 then
n(t) = 〈Person, Film〉. Then the notable type
extension of the neighbourhood model is:

θN
′

r,t =
∑

〈r′,t〉∈O\{〈r,t〉}

wr,r′ + w′r,〈r′,n(t)〉

where w′ is a matrix of weights relating the rela-
tions N to the target FreeBase relation r.

3.2 A notable type extension to the latent
feature model

The latent feature model generalises over relations
and entity tuples by associating each of them with
a 100-dimensional real-valued vector. Intuitively,
these vectors organise the relations and entity tu-
ples into clusters where conceptually similar rela-
tions and entity tuples are “close,” while those that
are dissimilar are far apart. In more detail, each
relation r ∈ R is associated with a latent feature
vector ar of size K = 100. Similarly, each entity
tuple t ∈ T is also associated with a latent feature
vector vt of size K as well. Then the latent fea-
ture score for an entity tuple t and relation r is just
the dot product of the corresponding relation and
entity tuple vectors, i.e.: θFr,t = ar · vt.

We extend the latent feature model by associat-
ing a new latent feature vector with each notable
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type sequence observed in the training data, and
use this vector to enrich the vector-space repre-
sentations of the entity tuples. Specifically, let
T ′ = {n(t) : t ∈ T } be the set of notable type
tuples for all of the tuples in T , where n(t) is the
tuple of notable types corresponding to the tuple
of entities t as before. We associate each tuple of
notable types t′ ∈ T ′ with a latent feature vector
v′t′ of dimensionality K. Then we define the no-
table type extension to the latent feature model as:

θF
′

r,t = ar · (vt + v′n(t)) .

This can be understood as associating each entity
tuple t ∈ T with a pair of latent feature vectors vt
and vn(t). The vector vn(t) is based on the notable
types of the entities, so it can capture generalisa-
tions over those notable types. The L2 regularisa-
tion employed during inference prefers latent fea-
ture vectors in which vt and v′n(t) are small, thus
encouraging generalisations which can be stated in
terms of notable types to be captured by v′n(t).

3.3 A notable type extension of the entity
model

The entity model represents an entity e with a K-
dimensional (K = 100) feature vector ue. Sim-
ilarly, the ith argument position of a relation r is
also represented by a K-dimensional feature vec-
tor dr,i. The entity model associates a score θEr,t
with a relation r ∈ R and entity tuple t ∈ T
as follows: θEr,t =

∑|t|
i=1 dr,i · uti , where |t| is

the arity of (i.e., number of elements in the entity
tuple t), ti is the ith entity in the entity tuple t,
and dr,i and uti are K-dimensional vectors asso-
ciated with the ith argument slot of relation r and
the entity ti respectively. The intuition is that the
latent feature vectors of co-occurring entities and
argument slots should be close to each other in the
K-dimensional latent feature space, while entities
and argument slots that do not co-occur should be
far apart.

Our notable type extension of the entity model
is similar to our notable type extension of the la-
tent feature model. We associate each notable type
m with a K-dimensional feature vector u′m, and
use those vectors to define the entity model score.
Specifically, the entity model score is defined as:

θE
′

r,t =

|t|∑
i=1

dr,i ·
(
uti + u′n(ti)

)
,

where n(e) is the notable type for entity e and |t| is
the length of tuple t. The L2 regularisation again
should encourage generalisations that can be ex-

pressed in terms of notable types to be encoded in
the u′n(ti) latent feature vectors.

4 Inference for model parameters

The goal of inference is to identify the values
of the model’s parameters, i.e., w,a,v,d and u
in the case of the Riedel et al model, and these
plus w′,v′ and u′ in the case of the notable
type extensions. The inference procedure is in-
spired by Bayesian Personalised Ranking (Rendle
et al., 2009). Specifically, while the true value of
θr,t is unknown, it’s reasonable to assume that if
〈r, t+〉 ∈ O (i.e., is observed in the training data)
then θr,t+ > θr,t− for all 〈r, t−〉 6∈ O (i.e., not
observed in the training data). Thus the training
objective is to maximise

` =
∑

〈r,t+〉∈O

∑
〈r,t−〉6∈O

`〈r,t+〉,〈r,t−〉

where: `〈r,t+〉,〈r,t−〉 = log σ(θr,t+ − θr,t−), and
θr,t = θNr,t + θFr,t + θEr,t or θr,t = θN

′
r,t + θF

′
r,t + θE

′
r,t,

depending on whether the submodels with notable
type extensions are used. The objective function
` is then maximised by using stochastic gradient
ascent. The stochastic gradient procedure sweeps
through the training data, and, for each observed
tuple 〈r, t+〉 ∈ O, samples a negative evidence tu-
ple 〈r, t−〉 6∈ O not in the training data, adjusting
weights to prefer the observed tuple.

In our experiments below we ran stochastic gra-
dient ascent with a step size of 0.05 and an L2
regulariser constant of 0.1 for the neighbourhood
model and 0.01 for the latent feature and entity
models (we used the same regulariser constants for
models both with and without the notable type ex-
tensions). We ran 2,000 sweeps of stochastic gra-
dient ascent.

5 Experimental evaluation

We used a set of controlled experiments to see
to what extent the notable type information im-
proves the state-of-the-art relation extraction sys-
tem. We used the New York Times corpus (Sand-
haus, 2008) in our experiments, assigning articles
from the year 2000 as the training corpus and the
articles from 1990 to 1999 for testing. The entity
tuples T were extracted from the New York Times
corpus (tuples that did not appear at least 10 times
and also appear in one of the FreeBase relations
were discarded). The relations R are either syn-
tactic patterns found in the New York Times cor-
pus, FreeBase relations, or (in our extension) no-
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table types extracted from FreeBase. Our evalua-
tion focuses on 19 FreeBase relations, as in Riedel
et al. (2013).

5.1 Notable type identification
Our extension requires a FreeBase notable type
for every entity mention, which in turn requires
a Freebase entity id because a notable type is a
property associated with entities in FreeBase. We
found the entity id for each named entity as fol-
lows. We used the FreeBase API to search for the
notable type for each named entity mentioned in
the training or test data. In cases where several en-
tities were returned, we used the notable type of
the first entity returned by the API. For example,
the FreeBase API returns two entities for the string
“Canada:” a country and a wine (in that order), so
we use the notable type “country” for “Canada” in
our experiments. This heuristic is similar to the
method of choosing the most likely entity id for a
string, which provides a competitive baseline for
entity linking (Hoffart et al., 2011).

5.2 Evaluation procedure
After the training procedure is complete and we
have estimates for the model’s parameters, we can
use these to compute estimates for the log odds θr,t
for the test data. These values quantify how likely
it is that the FreeBase relation r holds of an entity
tuple t from the test set, according to the trained
model.

In evaluation we follow Riedel et al. (2013) and
treat each of the 19 relations r as a query, and
evaluate the ranking of the entity tuples t returned
according to θr,t. For each relation r we pool
the highest-ranked 100 tuples produced by each
of the models and manually evaluate their accu-
racy (e.g., by inspecting the original document if
necessary). This gives a set of results that can be
used to calculate a precision-recall curve. Aver-
aged precision (AP) is a measure of the area under
that curve (higher is better), and mean average pre-
cision (MAP) is average precision averaged over
all of the relations we evaluate on. Weighted MAP
is a version of MAP that weights each relation by
the true number of entity tuples for that relation
(so more frequent relations count more).

An unusual property of this evaluation is that
increasing the number of models being evaluated
generally decreases their MAP scores: as we eval-
uate more models, the pool of “true” entity tuples
for each relation grows in size and diversity (recall

Relation # NF NFT NFE NFET

person/company 131 0.83 0.89 0.83 0.86
location/containedby 88 0.68 0.69 0.68 0.69
person/nationality 51 0.11 0.55 0.15 0.45
author/works written 38 0.51 0.53 0.57 0.53
person/parents 34 0.14 0.31 0.11 0.28
parent/child 31 0.48 0.58 0.49 0.58
person/place of birth 30 0.51 0.48 0.56 0.57
person/place of death 22 0.75 0.77 0.75 0.77
neighbourhood/neighbourhood of 17 0.48 0.55 0.52 0.54
broadcast/area served 8 0.21 0.41 0.26 0.30
company/founders 7 0.46 0.27 0.40 0.28
team owner/teams owned 6 0.21 0.25 0.25 0.25
team/arena stadium 5 0.06 0.07 0.06 0.09
film/directed by 5 0.21 0.25 0.24 0.35
person/religion 5 0.20 0.28 0.21 0.23
composer/compositions 4 0.42 0.44 0.06 0.42
sports team/league 4 0.70 0.62 0.63 0.64
film/produced by 3 0.17 0.30 0.12 0.26
structure/architect 2 1.00 1.00 1.00 1.00
MAP 0.43 0.49 0.42 0.48
Weighted MAP 0.55 0.64 0.56 0.62

Table 1: Averaged precision and mean aver-
age precision results. The rows correspond to
FreeBase relations, and the columns indicate the
combination of sub-models (N = neighbourhood
model, F = latent feature model, E = entity model).
The superscript “T ” indicates the combined mod-
els that incorporate the notable type extensions,
and the # column gives the number of true facts.
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Figure 1: Averaged 11-point precision-recall
curve for the four models shown in Table 1.

that this pool is manually constructed by manually
annotating the highest-scoring tuples returned by
each model). Thus in general the recall scores of
the existing models are lowered as the number of
models increases.

5.3 Experiments with Notable Types

We found we obtained best performance from the
model that incorporates all submodels (which we
call NFET ) and from the model that only incorpo-
rates the Neighbourhood and Latent Feature sub-
models (which we call NFT ), so we concentrate
on them here. Table 1 presents the MAP and
weighted MAP scores for these models on the 19
FreeBase relations in the testing set.

The MAP scores are 6% higher for both NFT

and NFET , and the weighted MAP scores are 9%
and 6% higher for NFT and NFET respectively.

35



Relation # N
E

N
FE

T

N
E

+P

N
E

+L

N
E

+O

N
E

+M

person/place of birth 30 0.52 0.57 0.54 0.50 0.50 0.54
author/works written 38 0.57 0.53 0.61 0.56 0.57 0.49
team/arena stadium 5 0.08 0.09 0.10 0.09 0.07 0.09
composer/compositions 4 0.35 0.42 0.51 0.37 0.35 0.45
person/company 131 0.81 0.86 0.84 0.82 0.83 0.86
film/directed by 5 0.30 0.35 0.41 0.27 0.27 0.41
neighbourhood/neighbourhood of 17 0.59 0.54 0.59 0.49 0.59 0.62
film/produced by 3 0.20 0.26 0.29 0.18 0.19 0.40
person/religion 5 0.22 0.23 0.21 0.22 0.28 0.53
location/containedby 88 0.66 0.69 0.68 0.64 0.64 0.70
sports team/league 4 0.53 0.64 0.54 0.52 0.75 0.75
person/parents 34 0.33 0.28 0.30 0.32 0.35 0.34
parent/child 31 0.55 0.58 0.56 0.55 0.59 0.56
person/place of death 22 0.71 0.77 0.74 0.74 0.78 0.72
company/founders 7 0.22 0.28 0.28 0.21 0.29 0.22
team owner/teams owned 6 0.34 0.25 0.27 0.34 0.36 0.35
person/nationality 51 0.19 0.45 0.23 0.50 0.20 0.21
broadcast/area served 8 0.32 0.30 0.33 0.38 0.31 0.29
structure/architect 2 1.00 1.00 1.00 1.00 1.00 1.00
MAP 0.45 0.48 0.48 0.46 0.47 0.50
Weighted MAP 0.57 0.62 0.59 0.60 0.58 0.60

Table 2: Results of ablation experiments on the
NFET model. The columns correspond to experi-
ments, and the column labels are explained in Ta-
ble 3.

A sign test shows that the difference between the
models with notable types and those without the
notable types is statistically significant (p < 0.05).
Clearly, the notable type extensions significantly
improve the accuracy of the existing relation ex-
traction models. Figure 1 shows an averaged 11-
point precision-recall curve for these four mod-
els. This makes clear that across the range of
precision-recall trade-offs, the models with no-
table types offer the best performance.

5.4 Ablation Experiments

We performed a set of ablation experiments to de-
termine exactly how and where the notable type
information improves relation extraction. In these
experiments entities are divided into 4 “named en-
tity” (NE) classes, and we examine the effect of
just providing notable type information for the en-
tities of a single NE class. The 4 NE classes we
used were PERSON, LOCATION, ORGANISA-
TION, and MISC (miscellaneous). We classified
all entities into these four categories using their
FreeBase types, which provide a more coarse-
grained classification than notable types. For ex-
ample, if an entity has a FreeBase “people/person”
type, then we assigned it to the NE class PER-
SON; if an entity has a “location/location” type,
then its NE class is LOCATION; and if an en-
tity has a “organisation/organisation” type, then
its NE class is ORGANISATION. All entities not
classified as PERSON, LOCATION, or ORGAN-
ISATION were labelled MISC.

We ran a set of ablation experiments as fol-

Ablation setting Description
NE All entities are labelled with their NE class instead of

their notable type.
NE+P Only PERSON entities have notable type information;

the notable type of other entities is replaced with their
NE class.

NE+L Only LOCATION entities have notable type informa-
tion; the notable type of other entities is replaced with
their NE class.

NE+O Only ORGANISATION entities have notable type in-
formation; the notable type of other entities is replaced
with their NE class.

NE+M Only MISC entities have notable type information; the
notable type of other entities is replaced with their NE
class.

Table 3: Descriptions of the ablation experiments
in Table 2.

lows. For each NE class c in turn, we replaced
the notable type information for entities not clas-
sified as c with their NE class. For example, when
c = PERSON, only entities with the NE label
PERSON had notable type information, and the
notable types of all other entities was replaced
with their NE labels. Table 3 lists the different ab-
lation experiments. The ablation experiments are
designed to study which NE classes the notable
types help most on. The results are reported in Ta-
ble 2. The results clearly indicate that different re-
lations benefit from the different kinds of notable
type information about entities.

Column “NE+P” shows that relations
such as “author/works written”, “com-
poser/compositions” and ”film/directed by”
benefit the most from notable type information
about PERSONs. We noticed that there are about
43K entities classified as PERSON, which in-
cludes 8,888 book authors, 802 music composers,
1212 film directors, etc. These entities have 214
distinct notable types. Our results show that it is
helpful to distinguish the PERSON entities with
their notable types for relations involving profes-
sions. For example, not all people are authors, so
knowing that a person is an author increases the
accuracy of extracting “author/works written”.
Similarly, Column “NE+L” shows that “per-
son/nationality” and “broadcast/area served”
gain the most from the notable type information
about locations. There are about 8.5K entities
classified as LOCATION, which includes 4807
city towns, 301 countries, and so on. There
are 170 distinct notable types for LOCATION
entities.

Column “NE+O” shows that the notable type
information about ORGANISATION entities im-
proves the accuracy of extracting relations involv-
ing organisations. Indeed, there are more than
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3K business companies and 200 football teams.
Notable type information about organisations im-
proves extraction of the “parent/child” relation be-
cause this relation involves entities such as com-
panies. For example, in our corpus the sentence
“CNN, a unit of the Turner Broadcasting, says
that 7000 schools have signed up for The News-
room” expresses the parent/child(Turner Broad-
casting, CNN) relation.

The ablation results in Column “NE+M” show
that information about MISC entities is most use-
ful of all, as this ablation experiment yielded the
highest overall MAP score. There are about 13.5K
entities labelled MISC. The most frequent no-
table types for entities in the MISC NE class are
“film/film” and “book/book”. Therefore it is rea-
sonable that notable type information for MISC
entities would improve AP scores for relations
such as “film/directed by” and “person/religion”.
For example, “George Bush reached a turning
point in his life and became a born-again Chris-
tian” is an example of the “person/religion” rela-
tion, and it’s clear that it is useful to know that
“born-again Christian” belongs to the religion no-
table type. The “sports team/league” relation is
interesting because it performs best with notable
type information for entities in the ORGANISA-
TION or MISC NE classes. It turns out that
roughly half the sports teams are classified as OR-
GANISATIONs and half are classified as MISC.
The sports teams that are classified as MISC are
missing the “organisation/organisation” type in
their FreeBase entries, otherwise they would be
classified as ORGANISATIONs.

In summary, the ablation results show that the
contribution of notable type information depends
on the relation being extracted. The result demon-
strates that relations involving organisations bene-
fits from the notable type information about these
organisations. It also demonstrates that certain re-
lations benefit more from notable type information
than others. Further research is needed understand
some of the ablation experiment results (e.g., why
does person/place of death perform best with no-
table type information about ORGANISATIONs?)

6 Conclusion and future work

In this paper we investigated the hypothesis that
background information about entities present in a
large database such as FreeBase can be useful for
relation extraction. We modified a state-of-the-art

relation extraction system (Riedel et al., 2013) by
extending each of its submodels to exploit the “no-
table type” information about entities available in
FreeBase. We demonstrated that these extensions
improve the MAP score by 6% and the weighted
MAP score by 7.5%, which is a significant im-
provement over a strong baseline. Our ablation
experiments showed that the notable type informa-
tion improves relation extraction more than NER
tags across a wide range of entity types and rela-
tions.

In future work we would like to develop meth-
ods for exploiting other information available in
FreeBase to improve a broad range of natural
language processing and information extraction
tasks. We would like to explore ways of exploit-
ing entity information beyond (distant) supervi-
sion approaches, for example, in the direction of
OpenIE (Wu and Weld, 2010; Fader et al., 2011;
Mausam et al., 2012). The temporal information
in a large database like FreeBase might be es-
pecially useful for named entity linking and re-
lation extraction: e.g., someone that has died is
less likely to release a hit single. In summary, we
believe that there are a large number of ways in
which the rich and diverse information present in
FreeBase might be leveraged to improve natural
language processing and information retrieval, and
exploiting notable types is just one of many possi-
ble approaches.
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