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Abstract

We experiment graph-based Semi-
Supervised Learning (SSL) of Conditional
Random Fields (CRF) for the application
of Spoken Language Understanding
(SLU) on unaligned data. The aligned
labels for examples are obtained using
IBM Model. We adapt a baseline semi-
supervised CRF by defining new feature
set and altering the label propagation al-
gorithm. Our results demonstrate that our
proposed approach significantly improves
the performance of the supervised model
by utilizing the knowledge gained from
the graph.

1 Introduction

The aim of Spoken Language Understanding
(SLU) is to interpret the intention of the user’s ut-
terance. More specifically, a SLU system attempts
to find a mapping from user’s utterance in natu-
ral language, to the limited set of concepts that is
structured and meaningful for the computer. As an
example, for the sample utterance:

I want to return to Dallas on Thursday
It’s corresponding output would be:
GOAL : RETURN
TOLOC.CITY = Dallas
RETURN.DATE = Thursday.
SLU can be widely used in many real world appli-
cations; however, data processing costs may im-
pede practicability of it. Thus, attempting to train
a SLU model using less training data is a key issue.

The first statistical SLU system was based on
hidden Markov model and modeled using a fi-
nite state semantic tagger employed in AT&T’s
CHRONUS system (Pieraccini et al., 1992). Their
semantic representation was flat-concept; but,
later He and Young (2005) extended the represen-
tation to a hierarchical structure and modeled the

problem using a push-down automaton. There are
other works which have dealt with SLU as a se-
quential labeling problem. Raymond and Riccardi
(2007) and Wang and Acero (2006) have fully an-
notated the data and trained the model in discrim-
inative frameworks such as CRF. CRF captures
many complex dependencies and models the se-
quential relations between the labels; therefore, it
is a powerful framework for SLU.

The Semi-Supervised Learning (SSL) approach
has drawn a raft of interest among the machine
learning community basically because of its prac-
tical application. Manual tagging of data can take
considerable effort and time; however, in the train-
ing phase of SSL, a large amount of unlabeled data
along with a small amount of labeled data is pro-
vided. This makes it more practicable and cost ef-
fective than providing a fully labeled set of train-
ing data; thus, SSL is more favorable.

Graph-based SSL, the most active area of re-
search in SSL in the recent years, has shown to
outperform other SSL methods (Chapelle et al.,
2006). Graph-based SSL algorithms are gener-
ally run in two steps: graph construction and label
propagation. Graph construction is the most im-
portant step in graph-based SSL; and, the funda-
mental approach is to assign labeled and unlabeled
examples to nodes of the graph. Then, a similar-
ity function is applied to compute similarity be-
tween pairs of nodes. The computed similarities
are then assigned as the weight of the edges con-
necting the nodes (Zhu et al., 2003). Label prop-
agation operates on the constructed graph. Based
on the constraints or properties derived from the
graph, labels are propagated from a few labeled
nodes to the entire graph. These constraints in-
clude smoothness (Zhu et al., 2003; Subramanya
et al., 2010; Talukdar et al., 2008; Garrette and
Baldridge, 2013), and sparsity (Das and Smith,
2012; Zeng et al., 2013).

Labeling unaligned training data requires much
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less effort compared to aligned data (He and
Young, 2005). Nevertheless, unaligned data can-
not be used to train a CRF model directly since
CRF requires fully-annotated data. On the other
hand, robust parameter estimation of a CRF model
requires a large set of training data which is un-
realistic in many practical applications. To over-
come this problem, the work in this paper applies
semi-supervised CRF on unlabeled data. It is mo-
tivated by the hypothesis that data is aligned to la-
bels in a monotone manner, and words appearing
in similar contexts tend to have same labels. Under
these circumstances, we were able to reach 1.64%
improvement on the F-score over the supervised
CRF and 1.38% improvement on the F-score over
the self trained CRF.

In the following section we describe the algo-
rithm this work is based on and our proposed al-
gorithm. In Section 3 we evaluate our work and in
the final section conclusions are drawn.

2 Semi-supervised Spoken Language
Understanding

The input data is unaligned and represented
as a semantic tree, which is described in (He
and Young, 2005). The training sentences and
their corresponding semantic trees can be aligned
monotonically; hence, we chose IBM Model 5
(Khadivi and Ney, 2005) to find the best alignment
between the words and nodes of the semantic tree
(labels). Thus, we have circumvented the prob-
lem of unaligned data. More detailed explanation
about this process can be found in our previous
work (Aliannejadi et al., 2014). This data is then
used to train the supervised and semi-supervised
CRFs.

2.1 Semi-supervised CRF
The proposed semi-supervised learning algorithm
is based on (Subramanya et al., 2010). Here, we
quickly review this algorithm (Algorithm 1).

In the first step, the CRF model is trained on the
labeled data (Dl) according to (1):

Λ∗ = arg min
Λ∈RK

[
−

l∑
i=1

log p(yi|xi; Λ) + γ‖Λ‖2
]
,

(1)
where Λ∗ is the optimal parameter set of the base
CRF model and ‖Λ‖2 is the squared `2-norm reg-
ularizer whose impact is adjusted by γ. At the first
line, Λ∗ is assigned to Λ(n=0) i.e. the initial pa-
rameter set of the model.

Algorithm 1 Semi-Supervised Training of CRF
1: Λ(n=0) = TrainCRF(Dl)
2: G = BuildGraph(Dl ∪ Du)
3: {r} = CalcEmpiricalDistribution(Dl)
4: while not converged do
5: {m} = CalcMarginals(Du,Λn)
6: {q} = AverageMarginals(m)
7: {q̂} = LabelPropagation(q, r)
8: Dv

u = ViterbiDecode({q̂}, Λn)
9: Λn+1 = RetrainCRF(Dl ∪ Dv

u,Λn);
10: end while
11: Return final Λn

In the next step, the k-NN similarity graph (G)
is constructed (line 2), which will discussed in
more detail in Section 2.3. In the third step, the
empirical label distribution (r) on the labeled data
is computed. The main loop of the algorithm is
then started and the execution continues until the
results converge.

Marginal probability of labels (m) are then com-
puted on the unlabeled data (Du) using Forward-
Backward algorithm with the parameters of the
previous CRF model (Λn), and in the next step,
all the marginal label probabilities of each trigram
are averaged over its occurrences (line 5 and 6).

In label propagation (line 7), trigram marginals
(q) are propagated through the similarity graph
using an iterative algorithm. Thus, they become
smooth. Empirical label distribution (r) serves as
the priori label information for labeled data and
trigram marginals (q) act as the seed labels. More
detailed discussion is found in Section 2.4.

Afterwards, having the results of label propaga-
tion (q̂) and previous CRF model parameters, la-
bels of the unlabeled data are estimated by com-
bining the interpolated label marginals and the
CRF transition potentials (line 8). For every word
position j for i indexing over sentences, interpo-
lated label marginals are calculated as follows:

p̂(y
(j)
i = y|xi) = αp(y

(j)
i = y|xi; Λn)

+ (1− α)q̂T (i,j)(y), (2)

where T (i, j) is a trigram centered at position j of
the ith sentence and α is the interpolation factor.

In the final step, the previous CRF model pa-
rameters are regularized using the labels estimated
for the unlabeled data in the previous step (line 9)
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Description Feature
Context x1 x2 x3 x4 x5

Left Context x1 x2

Right Context x4 x5

Center Word in trigram x3

Center is Class IsClass(x3)

Center is Preposition IsPreposition(x3)

Left is Preposition IsPreposition(x2)

Table 1: Context Features used for constructing
the similarity graph

as follows:

Λn+1 = arg min
Λ∈RK

[
−

l∑
i=1

log p(yi|xi; Λn)

− η
u∑

i=l+1

log p(yi|xi; Λn) + γ‖Λ‖2
]
, (3)

where η is a trade-off parameter whose setting is
discussed later in Section 3.

2.2 CRF Features
By aligning the training data, many informative la-
bels are saved which are omitted in other works
(Wang and Acero, 2006; Raymond and Riccardi,
2007). By saving these information, the first order
label dependency helps the model to predict the la-
bels more precisely. Therefore the model manages
to predict the labels using less lexical features and
the feature window that was [-4,+2] in previous
works is reduced to [0,+2]. Using smaller feature
window improves the generalization of the model
(Aliannejadi et al., 2014).

2.3 Similarity Graph
In our work we have considered trigrams as the
nodes of the graph and extracted features of each
trigram x2 x3 x4 according to the 5-word con-
text x1 x2 x3 x4 x5 it appears in. These features
are carefully selected so that nodes are correctly
placed in neighborhood of the ones having simi-
lar labels. Table 1 presents the feature set that we
have applied to construct the similarity graph.
IsClass feature impacts the structure of the

graph significantly. In the pre-processing phase
specific words are marked as classes according to
the corpus’ accompanying database. As an ex-
ample, city names such as Dallas and Baltimore
are represented as city name which is a class type.

Since these classes play an important role in calcu-
lating similarity of the nodes, IsClass feature is
used to determine if a given position in a context
is a class type.

Furthermore, prepositions like from and be-
tween are also important, e.g. when two trigrams
like ”from Washington to” and ”between Dallas
and” are compared. The two trigrams are totally
different while both of them begin with a prepo-
sition and are continued with a class. Therefore,
IsPreposition feature would be particularly suit-
able to increase the similarity score of these two
trigrams. In many cases, these features have a
significant effect in assigning a better similarity
score.

To define a similarity measure, we compute the
Pointwise Mutual Information (PMI) between all
occurrences of a trigram and each of the features.
The PMI measure transforms the independence as-
sumption into a ratio (Lin, 1998; Razmara et al.,
2013). Then, the similarity between two nodes
is measured as the cosine distance between their
PMI vectors. We carefully examined the similarity
graph on the training data and found out the head
and tail trigrams of each sentence which contain
dummy words, make the graph sparse. Hence, we
have ignored those trigrams.

2.4 Label Propagation

After statistical alignment, the training data gets
noisy. Hence, use of traditional label propagation
algorithms causes an error propagation over the
whole graph and degrades the whole system per-
formance. Thus, we make use of the Modified Ad-
sorption (MAD) algorithm for label propagation.

MAD algorithm controls the label propagation
more strictly. This is accomplished by limiting the
amount of information that passes from a node to
another (Talukdar and Pereira, 2010). Soft label
vectors Ŷv are found by solving the unconstrained
optimization problem in (4):

min
Ŷ

∑
l∈C

[
µ1(Yl − Ŷl)>S (Yl − Ŷl)

+ µ2Ŷl
>
L′Ŷl + µ3

∥∥Ŷl −Rl

∥∥2
]
, (4)

where µi are hyper-parameters and Rl is the em-
pirical label distribution over labels i.e. the prior
belief about the labeling of a node. The first
term of the summation is related to label score
injection from the initial score of the node and
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% of Labeled Data
10 20 30

Supervised CRF 86.07 87.69 88.64
Self-trained CRF 86.34 87.73 88.64

Semi-supervised CRF 87.72 88.75 89.12

Table 2: Comparison of training results.
Slot/Value F-score in %.

makes the output match the seed labels Yl (Raz-
mara et al., 2013). The second term is associated
with label score acquisition from neighbor nodes
i.e. smooths the labels according to the similarity
graph. In the last term, the labels are regularized
to match a priori label Rl in order to avoid false
labels for high degree unlabeled nodes. A solution
to the optimization problem in (4) can be found
with an efficient iterative algorithm described in
(Talukdar and Crammer, 2009).

Many errors of the alignment model are cor-
rected through label propagation using the MAD
algorithm; whereas, those errors are propagated
in traditional label propagation algorithms such as
the one mentioned in (Subramanya et al., 2010).

2.5 System Overview

We have implemented the Graph Construction in
Java and the CRF is implemented by modifying
the source code of CRFSuite (Okazaki, 2007).
We have also modified Junto toolkit (Talukdar
and Pereira, 2010) and used it for graph prop-
agation. The whole source code of our system
is available online1. The input utterances and
their corresponding semantic trees are aligned us-
ing GIZA++ (Och and Ney, 2000); and then used
to train the base CRF model. The graph is con-
structed using the labeled and unlabeled data and
the main loop of the algorithm continues until con-
vergence. The final parameters of the CRF are re-
tained for decoding in the test phase.

3 Experimental Results

In this section we evaluate our results on Air
Travel Information Service (ATIS) data-set (Dahl
et al., 1994) which consists of 4478 training, 500
development and 896 test utterances. The devel-
opment set was chosen randomly. To evaluate
our work, we have compared our results with re-
sults from Supervised CRF and Self-trained CRF
(Yarowsky, 1995).

1https://github.com/maxxkia/g-ssl-crf

For our experiments we set hyper-parameters as
follows: for graph propagation, µ1 = 1, µ2 =
0.01, µ3 = 0.01, for Viterbi decoding, α = 0.1,
for CRF-retraining, η = 0.1, γ = 0.01. We have
chosen these parameters along with graph fea-
tures and graph-related parameters by evaluating
the model on the development set. We employed
the L-BFGS algorithm to optimize CRF objective
functions; which is designed to be fast and low-
memory consumer for the high-dimensional opti-
mization problems (Bertsekas, 1999).

We have post-processed the sequence of labels
to obtain the slots and their values. The slot-
value pair is compared to the reference test set and
the result is reported in F-score of slot classifica-
tion. Table 2 demonstrates results obtained from
our semi-supervised CRF algorithm compared to
the supervised CRF and self-trained CRF. Experi-
ments were carried out having 10%, 20% and 30%
of data being labeled. For each of these tests, la-
beled set was selected randomly from the training
set. This procedure was done 10 times and the re-
ported results are the average of the results thereof.
The Supervised CRF model is trained only on the
labeled fraction of the data. However, the Self-
trained CRF and Semi-supervised CRF have ac-
cess to the rest of the data as well, which are unla-
beled. Our Supervised CRF gained 91.02 F-score
with 100% of the data labeled which performs bet-
ter compared to 89.32% F-score of Raymond and
Riccardi (2007) CRF model.

As shown in Table 2, the proposed method per-
forms better compared to supervised CRF and
self-trained CRF. The most significant improve-
ment occurs when only 10% of training set is
labeled; where we gain 1.65% improvement on
F-score compared to supervised CRF and 1.38%
compared to self-trained CRF.

4 Conclusion

We presented a simple algorithm to train CRF in a
semi-supervised manner using unaligned data for
SLU. By saving many informative labels in the
alignment phase, the base model is trained using
fewer features. The parameters of the CRF model
are estimated using much less labeled data by
regularizing the model using a nearest-neighbor
graph. Results demonstrate that our proposed al-
gorithm significantly improves the performance
compared to supervised and self-trained CRF.
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