
A Comparative Study of Weighting Schemes for
the Interpretation of Spoken Referring Expressions

Su Nam Kim, Ingrid Zukerman, Thomas Kleinbauer and Masud Moshtaghi
Clayton School of Information Technology, Monash University

Clayton, Victoria 3800, Australia
firstname.lastname@monash.edu

Abstract

This paper empirically explores the influ-
ence of two types of factors on the in-
terpretation of spoken object descriptions:
(1) descriptive attributes, e.g., colour and
size; and (2) interpretation stages, e.g.,
syntax and pragmatics. We also investi-
gate two schemes for combining attributes
when estimating the goodness of an in-
terpretation: Multiplicative and Additive.
Our results show that the former scheme
outperforms the latter, and that the weights
assigned to the attributes of a description
and the stages of an interpretation influ-
ence interpretation accuracy.

1 Introduction

Referring expressions have been the topic of con-
siderable research in Natural Language Genera-
tion (NLG) and psychology. In particular, atten-
tion has been paid to the usage of descriptive at-
tributes, such as lexical item, colour, size, location
and orientation (Section 2).

In this paper, we present an empirical study
that examines the contribution of two types of fac-
tors to the understanding of spoken descriptions:
(1) descriptive attributes, such as colour and size;
and (2) stages of an interpretation, e.g., syntax and
pragmatics. Our study was conducted in the con-
text of Scusi?, a Spoken Language Understanding
(SLU) system that interprets descriptions of house-
hold objects (Zukerman et al., 2008) (Section 3).
Given a description such as “the large blue mug”,
where the descriptive attributes pertain to colour
and size, in the absence of such a mug, should an
SLU system prefer a large pink mug or a small
blue mug? A preference for the former favours
size over colour, while preferring the latter has the
opposite effect. Similarly, considering the stages

of an interpretation, if an Automatic Speech Rec-
ognizer (ASR) produces the text “the played inside
the microwave” when a speaker says “the plate in-
side the microwave”, should an SLU system pre-
fer interpretations comprising objects inside the
microwave or interpretations where “played” is
considered a verb? A preference for the former
favours pragmatics, while a preference for the lat-
ter favours the heard text.

We represent the contribution of a factor by
assigning it a weight — factors with a higher
weight are more influential than those with a lower
weight; and investigate two methods for learning
the weights of the factors pertaining to descriptive
attributes and to interpretation stages: steepest as-
cent hill climbing and a genetic algorithm (Sec-
tion 4). In addition, we consider two schemes for
combining descriptive attributes, viz Multiplica-
tive and Additive (Section 3.1). Our contribution
pertains to the idea of empirically determining the
influence of different factors on the interpretation
accuracy of an SLU module, the methods for do-
ing so, and the analysis of our results.

The rest of this paper is organized as follows.
Next, we discuss related work. In Section 3, we
outline our SLU system and the schemes for com-
bining descriptive attributes. The learning algo-
rithms appear in Section 4, and the results of our
evaluation experiments in Section 5, followed by
concluding remarks.

2 Related Work

The use and importance of different attributes in
object descriptions has been studied both in psy-
chology and in NLG (Krahmer and van Deemter,
2012), but there is little related research in Natu-
ral Language Understanding (NLU). Further, we
have found no work on the relative importance of
the different interpretation stages, e.g., is pragmat-
ics more important than parsing?

Several studies have found that people tend

Su Nam Kim, Ingrid Zukerman, Thomas Kleinbauer and Masud Moshtaghi. 2014. A Comparative Study of
Weighting Schemes for the Interpretation of Spoken Referring Expressions. In Proceedings of Australasian
Language Technology Association Workshop, pages 50−58.

to include in their descriptions attributes that do
not add discriminative power, e.g., (Dale and
Reiter, 1995; Levelt, 1989, p. 129–134), which
can be partly explained by the incremental nature
of human language production and understand-
ing (Pechmann, 1989; Kruijff et al., 2007). The in-
crementality of human speech was also considered
by van der Sluis and Krahmer (?), in combination
with object salience, when generating multimodal
object references; while van Deemter (2006) and
Mitchell et al. (2011) studied the generation of
descriptions that employ gradable attributes, ob-
tained from numerical data, focusing on size-
related modifiers.

Gatt et al. (2007) compared the performance
of several generation algorithms with respect to a
combination of features, viz colour, position (re-
stricted to placement in a grid), orientation and
size. Their algorithm produced descriptions simi-
lar to those generated by people when the priority
order of the attributes was colour � orientation �
size. In contrast, Herrmann and Deutsch (1976)
found that the choice of discriminative attributes
is perceptually driven, but posited that there is
no universally applicable priority ordering of at-
tributes. This view was extended by Dale and Re-
iter (1995, p. 20), who suggested investigations to
determine the priority order of attributes for differ-
ent domains.

In this paper, we apply Dale and Reiter’s sug-
gestion to the understanding of spoken descrip-
tions. However, rather than finding a priority or-
der of attributes like Gatt et al. (2007), we learn
weights that reflect the importance of descriptive
attributes, and consider two schemes for combin-
ing these attributes. In addition, we extend this
idea to the processing stages employed when in-
terpreting descriptions.

3 SLU Systems and Case Study

The study described in this paper was conducted
in the context of our SLU system Scusi? (Zuk-
erman et al., 2008). However, what is important
is not the specifics of a particular system, but the
features of SLU systems to which our study is rel-
evant. Specifically, the systems in question must
have several processing stages, e.g., ASR, syntax,
semantics and pragmatics; each processing stage
must produce an N-best list of outputs (interpreta-
tions), e.g., N parse trees; and each interpretation
generated at each stage must be assigned a score

lex=table
size=big

mug03

location_on

table02

lex=on

colour=blue
lex=mug

(b) ICG(a) UCG

Figure 1: Sample UCG and ICG for “the blue mug
on the big table”.

ICG −− Instantiated Concept Graph

UCG −− Uninstantiated Concept Graph

UCG11

ICG111 ICG112

. . .

ParseTr22ParseTr21 ParseTr23

UCG21 UCG22

ICG212 ICG221

. . .

.

R
E
C
O
G
.

S
P
E
E
C
H

S
E
M
A
N
T
I
C

I
N
T
E
R
P
.

Speech Wave

. . .

. . .

ParseTr11 ParseTr12

Text2Text1

P
A
R
S
I
N
G

Figure 2: Scusi?’s processing stages.

or probability that reflects its goodness.
Scusi? has four interpretation stages: ASR

(Microsoft Speech SDK 6.1) produces candidate
texts from a speech wave; Syntax (Charniak’s
probabilistic parser) generates parse trees; Se-
mantics produces uninstantiated Concept Graphs
(UCGs) (Sowa, 1984); and Pragmatics generates
instantiated Concept Graphs (ICGs). Each of
these outputs is assigned a probability. A UCG
contains descriptive attributes (lexical item, colour
and size of concepts, and positional relations be-
tween concepts) extracted from its “parent” parse
tree. An ICG contains candidate objects within
the current context (e.g., a room) and positional
relations that reflect those specified in its parent
UCG. For instance, Figure 1(a) shows one of the
UCGs returned for the description “the blue mug
on the big table”, and Figure 1(b) displays one
of the ICGs generated for this UCG. Note that
the concepts in the UCG have generic names,
e.g., mug, while the ICG contains specific ob-
jects, e.g., mug03, which is a candidate match for
lex=mug, colour=blue.

Most interpretation stages can produce multiple
outputs for a given input, e.g., up to 50 parse trees

51

for a given ASR output. The graph of all possi-
ble interpretations (Figure 2) is usually too large
to explore exhaustively in a practical spoken di-
alogue system. Therefore, Scusi? initially gener-
ates a promising ICG by selecting the top-ranked
interpretation for each stage, and then performs a
prescribed number of iterations as follows: in each
iteration, an interpretation type (speech wave, text,
parse tree or UCG) is selected probabilistically for
further processing, giving preference to types pro-
duced by later interpretation stages in order to in-
crease the specificity of the generated interpreta-
tions. An interpretation of the selected type is
then probabilistically chosen for expansion, giv-
ing preference to more promising (higher scoring)
interpretations, e.g., if a text is chosen, then a new
parse tree for this text is added to the list of avail-
able parse trees.

3.1 Probability of an interpretation

The scores produced by Scusi? are in the [0, 1]
range, allowing them to be interpreted as subjec-
tive probabilities (Pearl, 1988). After making con-
ditional independence assumptions, the probabil-
ity of an ICG is estimated as follows (Zukerman et
al., 2008):

Pr(I|S, C) = Pr(T |S)WtPr(P |T)Wp (1)

Pr(U |P)WuPr(I|U, C)Wi

where S, T, P, U and I denote speech wave, tex-
tual interpretation, parse tree, UCG and ICG re-
spectively, and C denotes the current context (e.g.,
a room). The weights Wt,Wp,Wu and Wi reflect
the importance of the outcome of each interpre-
tation stage, i.e., ASR (text), Syntax (parse tree),
Semantics (UCG) and Pragmatics (ICG).

The first two probabilities in Equation 1 are ob-
tained from the ASR and the parser. The third
probability, which reflects the complexity of a se-
mantic interpretation, is estimated as the recipro-
cal of the number of nodes in a UCG. The last
probability, viz the probability of an ICG I given
UCG U and context C, reflects the goodness of the
match between ICG I and its parent UCG U in
context C. Specifically, the probability of I is esti-
mated by a combination of functions that calculate
how well the actual attributes of the objects in I
(lexical item, colour, size and positional relation)
match those specified in its parent UCG U .

We studied two schemes for combining these
functions: Multiplicative and Additive.

Multiplicative scheme. This scheme is similar
to that used in Equation 1:

SCMULT(I|U, C)=
N∏
i=1

N∏
j=1

Pr(loc(ki, kj))Wloc× (2)

N∏
i=1

Pr(ui,lex|ki)WlexPr(ui,col|ki)WcolPr(ui,siz|ki)Wsiz ,

whereN is the number of objects in ICG I , and the
weightsWlex,Wcol,Wsiz andWloc reflect the impor-
tance of lexical item, colour, size and location re-
spectively. The second line in Equation 2 repre-
sents how well each object ki in ICG I matches
the lexical item, colour and size specified in its
parent concept ui in UCG U ; and the first line
represents how well the relative locations of two
objects ki and kj in context C (e.g., a room) match
their specified locations inU (e.g., on(ki, kj)). For
instance, given the ICG in Figure 1(b), the sec-
ond line in Equation 2 estimates the probability
that mug03 could be called “mug” and its colour
could be called “blue” (no size was specified), and
the probability that table02 could be called “ta-
ble” and considered “big” (no colour was speci-
fied). The first line estimates the probability that
mug03 could be said to be on table02 (if the
mug is elsewhere, this probability is low).

This scheme is rather unforgiving of partial
matches or mismatches, e.g., the probability of a
lexical match between “mug” and cup01, which
is less than 1, is substantially reduced when raised
to an exponent greater than 1; and a mismatch of a
single attribute in an ICG significantly lowers the
probability of the ICG.

Additive scheme. This more forgiving scheme
employs the following formulation to estimate the
probability of an ICG I given its parent UCG U
and context C:

SCADD(I|U, C)=
N∑
i=1

N∑
j=1

Pr(loc(ki, kj))Wloc+ (3)

N∑
i=1

{Pr(ui,lex|ki)Wlex + Pr(ui,col|ki)Wcol +

Pr(ui,siz|ki)Wsiz} .

In principle, this scheme could also be applied
to combining the probabilities of the interpretation
stages. However, we did not explore this option
owing to its inferior performance with respect to
descriptive attributes (Section 5).

52

Probabilities from different sources
There are large variations in the probabilities re-
turned by the different interpretation stages. In
particular, the probabilities returned by the parser
are several orders of magnitude smaller than those
returned by the other stages. To facilitate the learn-
ing of weights, we adjust the probabilities returned
by the different interpretation stages so that they
are of a similar magnitude. To this effect, we adopt
two approaches: (1) adjusting the probabilities re-
turned by the parser by calculating their standard-
ized score zi, and (2) normalizing the probabili-
ties of the ICGs by introducing a factor that de-
pends on the weights assigned to different descrip-
tive attributes. The second approach takes advan-
tage of specific information about ICGs, which is
not available about parse trees.

Adjusting parse-tree probabilities. Given a
probability pi returned by the parser, we calcu-
late its z-score zi for an input value xi as fol-
lows: zi = (xi − µ)/σ, where µ is the mean
and σ the standard deviation of the probabilities
returned by the parser for our development cor-
pus (Section 5.2). The zi scores are then trans-
formed to the [0, 1] range using a sigmoid function
zNorm
i = 1

1+e−zi
.

Normalizing ICG probabilities. The ICG
scores obtained by the Multiplicative scheme are
often in a small band in a very low range, while
the ICG scores obtained by the Additive scheme
are typically greater than 1. In order to expand
the range of the former, and map the latter into
the [0, 1] range, we incorporate the following
normalizing factor ϕ into their formulation:

ϕ =
M∑
i=1

M∑
j=1

Wloc +
M∑
i=1

{Wlex +Wcol +Wsiz} ,

where the weights correspond to the descriptive at-
tributes that were mentioned.

This factor is incorporated into the Multiplica-
tive and Additive schemes as follows:

• Multiplicative scheme.

PrMULT(I|U, C) =SCMULT(I|U, C)1/ϕ (4)

• Additive scheme.

PrADD(I|U, C) =
1

ϕ
SCADD(I|U, C) (5)

4 Learning Weights
In this section, we describe the algorithms used to
learn the weights for the interpretation stages (Wt,
Wp, Wu, Wi) and the descriptive attributes (Wlex,
Wcol, Wsiz, Wloc), and our evaluation metrics.

4.1 Learning algorithms

In order to learn the values of the weights, an SLU
system must be run on the entire training corpus
each time a set of weights is tried. To control the
search time, Scusi? was set to perform 150 iter-
ations. In addition, we investigated only irrevo-
cable search strategies: steepest ascent hill climb-
ing and a genetic algorithm, employing two ranges
of integer weights: a small range of [1, 4] for
our cross-validation experiment (Section 5), and a
larger range of [1, 20] for our development-dataset
experiment (Section 5.2). In general, the algo-
rithms produced low weights, except for the ge-
netic algorithm in the development-dataset exper-
iment, where it generated high weights for most
descriptive attributes.

The fitness function for both search strategies
is the system’s average performance on a training
corpus using the NDCG@10 metric. This metric,
which is described in Section 4.2, was chosen due
to its expressiveness, and the value 10 was selected
because a response generation system may plausi-
bly inspect the top 10 interpretations returned by
an SLU module.

Steepest ascent hill climbing (SA). All weights
are initially set to 1. In each iteration, a weight
is increased by 1 while keeping the other weights
at their previous value;1 the weight configuration
that yields the best performance is retained. This
process is repeated until performance no longer
improves after one round of changes.

Genetic algorithm (GA). One set of weights is
considered a gene. Owing to the relatively long
processing time for training corpus runs, we re-
strict the gene population size to 15, initialized
with random values for all weights. In each itera-
tion, the 10 best performing genes are kept, and
the other five genes are replaced with offspring
of the retained genes. Offspring are generated by
selecting two genes probabilistically, with better
genes having a higher selection probability, and
probabilistically choosing between mutation and

1In preliminary experiments, we considered increments of
0.5, but this did not affect the results.

53

crossover, and between the parent weights to be
retained in a crossover operation. This process is
repeated until the performance of the population
does not improve four times in a row.

4.2 Evaluation metrics
Scusi?’s performance is evaluated using two mea-
sures: Fractional Recall @K (FRecall@K) and
Normalized Discounted Cumulative Gain @K
(NDCG@K) (Järvelin and Kekäläinen, 2002).

FRecall@K is a variant of Recall that accounts
for the fact that an N-best system ranks equiprob-
able interpretations arbitrarily:

FRecall@K(d) =

∑K
j=1 fc(Ij)

|C(d)|
,

where C(d) is the set of correct interpretations for
description d, Ij is a candidate interpretation for
d, and fc is the fraction of correct interpretations
among those with the same probability as Ij (it is
a proxy for the probability that Ij is correct).

DCG@K is similar to FRecall, but provides a
finer-grained account of rank by discounting inter-
pretations with higher (worse) ranks. This is done
by dividing fc(Ij) by a logarithmic penalty that re-
flects Ij’s rank:

DCG@K(d) = fc(I1) +
K∑
j=2

fc(Ij)
log2 j

.

DCG@K is normalized to the [0, 1] range by di-
viding it by the DCG@K score of an ideal N-best
result, where the |C(d)| correct interpretations of
description d are ranked in the first |C(d)| places:

NDCG@K(d) =
DCG@K(d)

1 +
∑min{|C(d)|,K}

j=2
1

log2 j

.

5 Evaluation
In this section, we describe two experiments
where we compare the performance of three ver-
sions of Scusi?: (1) with weights learned by SA,
(2) with weights learned by GA, and (3) with
Unity weights (all descriptive attributes and inter-
pretation stages have a weight of 1).

As mentioned in Section 4.1, the entire training
corpus must be processed for each weight config-
uration, resulting in long training times, in partic-
ular for GA. To reduce these times, rather than try-
ing to learn all the weights at once, we first learned
the weights of descriptive attributes, and then used

Table 1: Distribution of descriptive attributes over
the 341-dataset.

Attribute Number (%)
Lexicon, Colour 14 (4.11%)
Lexicon, Colour, Position 150 (43.99%)
Lexicon, Colour, Size 3 (0.88%)
Lexicon, Colour, Position, Size 20 (5.87%)
Lexicon, Position 152 (44.57%)
Lexicon, Position, Size 2 (0.59%)
Lexicon, Size 0 (0.00%)
Total 341 (100%)

the results of this experiment to learn the weights
of the interpretation stages. Further, the former
weights were learned from manually transcribed
texts, while the latter were learned from actual
ASR outputs. This was done because descrip-
tive attributes in head nouns (lexical item, colour
and size) were often mis-heard by the ASR, which
hampers a learning system’s ability to determine
their contribution to the performance of an SLU
module.

The resultant versions of Scusi? were evalu-
ated using the corpus described in (Kleinbauer et
al., 2013), denoted 341-dataset, which consists of
341 free-form, spoken descriptions generated by
26 trial subjects for 12 objects within four diverse
scenes (three objects per scene, where a scene con-
tains between 9 and 17 objects). The descriptions
are annotated with Gold standard ICGs. Table 1
displays the details of the descriptions and their
attributes.

5.1 Experiment 1 – Cross-validation

Owing to run-time restrictions, we performed only
three-fold cross validation, where the search algo-
rithms were trained on 120 descriptions and tested
on 221 descriptions. Both the training set and the
test set were selected by stratified sampling ac-
cording to the distribution of the descriptive at-
tributes. Note that the training corpora comprise
360 descriptions in total, i.e., there are 19 extra
descriptions in the training data because, as seen
in Table1, descriptions containing size, e.g., “the
large brown desk”, were quite rare, and hence
were included in more than one training set.

Each algorithm learned weight configurations
for the interpretation stages and the descriptive
attributes for each validation fold. The weights
learned by SA generally differed from those
learned by GA, and there were some differences in

54

(a) Multiplicative scheme (b) Additive scheme

Figure 3: Average NDCG@K obtained over three-fold cross validation (scale 0.4-0.7).

(a) Multiplicative scheme (b) Additive scheme

Figure 4: Average FRecall@K obtained over three-fold cross validation (scale 0.35-0.8).

the weights learned for each fold. Both algorithms
assigned a weight of 1 to the ASR stage under
the Additive attribute-combination scheme, and a
higher weight under the Multiplicative scheme;
the Syntax stage mostly received a weight of 1;
and the Semantics and Pragmatics stages were as-
signed higher weights. GA tended to assign higher
weights than SA to descriptive attributes, while
SA consistently ascribed a weight of 1 to size
and location. Despite these differences, both al-
gorithms outperformed the Unity baseline on the
training set, with GA achieving the best results,
and the Multiplicative scheme outperforming the
Additive scheme.

Results
Figures 3 and 4 display the average of NDCG@K
and FRecall@K respectively for the three valida-
tion folds forK∈{1, 3, 10, 20, all} under the Mul-
tiplicative and the Additive attribute-combination
schemes (the grey shadow in Figures 3b and 4b
represents the best performance obtained under
the Multiplicative scheme for ease of comparison).
Note that owing to the small number of folds, sta-
tistical significance cannot be calculated.

Performance across attribute-combination
schemes – the Multiplicative scheme outper-

forms the Additive scheme in terms of NDCG@K
for all values of K, and performs slightly better
than the Additive scheme in terms of FRecall@K
forK ∈ {1, 3, all} (the schemes perform similarly
for K ∈ {10, 20}).

Comparison with Unity – in terms of
NDCG@K, SA outperforms Unity for all
values of K under both attribute-combination
schemes; and GA outperforms Unity for all
values of K under the Additive scheme, and for
K ≥ 3 under the Multiplicative scheme. In terms
of FRecall@K, SA outperforms Unity for all
values of K under the Multiplicative scheme; GA
performs better than Unity under the Multiplica-
tive scheme for K ≥ 3; and both SA and GA
outperform Unity for K ≤ 10 under the Additive
scheme (all the schemes perform similarly for
K ∈ {20, all}). It is worth noting the influence of
the Additive scheme on Unity’s performance in
terms of NDCG@K, suggesting that Unity fails to
find the correct interpretation more often than the
other schemes or finds it at worse (higher) ranks.

SA versus GA – GA outperforms SA under the
Additive scheme in terms of both performance
metrics for K = 1, while SA outperforms GA
in terms of FRecall@10. Under the Multiplica-

55

tive scheme, SA performs better than GA in terms
of NDCG@K for all values of K, and in terms
of FRecall@K for K ≤ 3. The algorithms per-
form similarly for the other values ofK under both
attribute-combination schemes.

Summary – SA’s superior performance in terms
of NDCG@K indicates that it finds the correct in-
terpretations at lower (better) ranks than Unity and
GA. GA’s good performance on the training data,
together with its slightly worse performance on the
test data, suggests that GA over-fits the training
data.

5.2 Experiment 2 – Development Set

The results of our first experiment show that
the proposed weight-learning scheme for descrip-
tive attributes and interpretation stages improves
Scusi?’s performance. However, as seen in Ta-
ble 1, speakers in this dataset used positional at-
tributes in the vast majority of the descriptions,
rarely using size. This influences the weights that
were learned, in particular Wsiz, as size had little
effect on performance.

To address this issue, we conducted an exper-
iment where we learned the weights on a hand-
crafted development dataset, and tested the per-
formance of the three versions of our SLU sys-
tem on the entire 341-dataset. The development
dataset, denoted 62-dataset, was designed to fa-
cilitate learning the influence of descriptive at-
tributes on an SLU system’s performance (assum-
ing consistent ASR performance, the influence
of the interpretation stages should be largely in-
variant across corpora). Thus, the descriptive at-
tributes and combinations thereof are more evenly
distributed in the development corpus than in the
341-dataset, but positional attributes still have a
relatively high frequency. Table 2 displays the de-
tails of the descriptions in the 62-dataset and their
attributes.

Despite the wider range of values considered
for this experiment ([1, 20]), the weights learned
by SA from the 62-dataset were only slightly dif-
ferent from those learned from the three training
folds in the 341-dataset. In contrast, several of the
weights learned by GA were in the high end of the
range. This is partly explained by the fact that the
genes in GA are randomly initialized from the en-
tire range.

Table 2: Distribution of descriptive attributes over
the 62-dataset.

Attribute Number (%)
Lexicon, Colour 5 (8.06%)
Lexicon, Colour, Position 8 (12.90%)
Lexicon, Colour, Size 7 (11.30%)
Lexicon, Colour, Position, Size 8 (12.90%)
Lexicon, Position 20 (32.26%)
Lexicon, Position, Size 10 (16.13%)
Lexicon, Size 4 (6.45%)
Total 62 (100%)

Results
Figures 5 and 6 respectively display the aver-
age of NDCG@K and FRecall@K for K ∈
{1, 3, 10, 20, all} under the Multiplicative and the
Additive attribute-combination schemes. Statis-
tical significance was calculated using the two-
tailed Wilcoxon signed rank test, and reported for
p-value≤0.05.

Performance across attribute-combination
schemes – the Multiplicative scheme outper-
forms the Additive scheme in terms of NDCG@K
for all values of K (statistically significant with
p-value � 0.01 for SA and Unity, and only for
K = 1 for GA). In terms of FRecall@K, the
Multiplicative scheme outperforms the Additive
scheme for all values of K for SA (statistically
significant for K ≤ 10), for K ≤ 3 for Unity
(statistically significant), and for K ∈ {1, 3, all}
for GA (statistically significant for K = 1).

Comparison with Unity – SA outperforms Unity
under the Multiplicative attribute-combination
scheme (statistically significant for NDCG@K for
K ≥ 3 and for FRecall@3). Under the Ad-
ditive scheme, SA outperforms Unity in terms
of NDCG@K (statistically significant for K ∈
{1, 3, 10, all}), but in terms of FRecall@K, SA
outperforms Unity only for K ≤ 3 (statistically
significant for K = 1). In contrast to SA,
GA’s performance was rather disappointing, with
Unity outperforming GA under the Multiplicative
scheme (statistically significant for NDCG@20),
and GA slightly outperforming Unity under the
Additive scheme only for K≤3.

SA versus GA – SA consistently outperforms
GA under both attribute-combination schemes for
both performance metrics (statistically significant
for all values of K in terms of NDCG@K and for
K ≤ 20 in terms of FRecall@K under the Multi-

56

1 3 10 20 all
0.4

0.45

0.5

0.55

0.6

0.65

0.7

K

N
D
C
G
@
K

Unity

SA

GA

(a) Multiplicative scheme

1 3 10 20 all
0.4

0.45

0.5

0.55

0.6

0.65

0.7

K

N
D
C
G
@
K

Multiplicative

Unity

SA

GA

(b) Additive scheme

Figure 5: Average NDCG@K obtained from training on the 62-dataset (scale 0.4-0.7).

1 3 10 20 all
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

K

F
R
e
c
a
ll
@
K

Unity

SA

GA

(a) Multiplicative scheme

1 3 10 20 all
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

K

F
R
e
c
a
ll
@
K

Multiplicative

Unity

SA

GA

(b) Additive scheme

Figure 6: Average FRecall@K obtained from training on the 62-dataset (scale 0.35-0.8).

plicative scheme, and in terms of NDCG@K for
K∈{3, 10, 20} under the Additive scheme).

Summary – the results of this experiment are
consistent with those of the cross-validation ex-
periment in the superior performance of the Multi-
plicative attribute-combination scheme, and of SA
under this scheme. However, in this experiment,
SA consistently outperforms GA under the Ad-
ditive scheme, Unity outperforms GA under the
Multiplicative scheme, and GA and Unity perform
similarly under the Additive scheme.

6 Conclusion
We have offered an approach for learning the
weights associated with descriptive attributes and
the stages of an interpretation for an N-best, proba-
bilistic SLU system that understands referring ex-
pressions in a household context. In addition, we
have compared two schemes for combining de-
scriptive attributes: Multiplicative and Additive.

Our results show that in the context of our ap-
plication, interpretation performance can be im-
proved by assigning different weights to differ-
ent interpretation stages and descriptive attributes.
Specifically, the best performance was obtained
using weights learned with SA under the Mul-
tiplicative attribute-combination scheme. How-

ever, the fact that different weights were obtained
for each validation fold and for the development
dataset indicates that the weights are sensitive
to the training corpus, and a larger training cor-
pus is required. Nonetheless, despite the differ-
ences in the learned weights, SA performed simi-
larly across both datasets/training-regimes, as did
Unity. In contrast, GA exhibited larger differ-
ences between the weights and results obtained
for the two datasets/training-regimes, in particu-
lar for the Additive attribute-combination scheme.
This, together with GA’s excellent performance on
the training data, especially in the cross-validation
experiment, compared to its performance on the
test data, suggests that GA may be over-fitting the
training data.

We also found that performance was sensitive
to the values of tunable system parameters, such
as the number of interpretations generated per de-
scription (Scusi? was set to generate only 150 in-
terpretations to reduce the run time of the learning
algorithms). The effect of these values on perfor-
mance requires further investigation, e.g., learn-
ing the values of the system’s parameters together
with the weights of the descriptive attributes and
the interpretation stages, which in turn would pose
additional challenges for the learning process.

57

Acknowledgments
This research was supported in part by grant
DP110100500 from the Australian Research
Council.

References
R. Dale and E. Reiter. 1995. Computational interpreta-

tions of the Gricean maxims in the generation of re-
ferring expressions. Cognitive Science, 18(2):233–
263.

A. Gatt, I. van der Sluis, and K. van Deemter. 2007.
Evaluating algorithms for the generation of referring
expressions using a balanced corpus. In ENLG07
– Proceedings of the 11th European Workshop on
Natural Language Generation, pages 49–56, Saar-
brücken, Germany.

T. Herrmann and W. Deutsch. 1976. Psychologie der
Objektbenennung. Hans Huber.

K. Järvelin and J. Kekäläinen. 2002. Cumulated gain-
based evaluation of IR techniques. ACM Trans-
actions on Information Systems (TOIS), 20(4):422–
446.

Th. Kleinbauer, I. Zukerman, and S.N. Kim. 2013.
Evaluation of the Scusi? spoken language interpre-
tation system – A case study. In IJCNLP2013 – Pro-
ceedings of the 6th International Joint Conference
on Natural Language Processing, pages 225–233,
Nagoya, Japan.

E. Krahmer and K. van Deemter. 2012. Computational
generation of referring expressions: A survey. Com-
putational Linguistics, 38(1):173–218.

G.-J. Kruijff, P. Lison, T. Benjamin, H. Jacobsson, and
N. Hawes. 2007. Incremental, multi-level process-
ing for comprehending situated dialogue in human-
robot interaction. In LangRo’2007 – Proceedings
from the Symposium on Language and Robots, pages
509–514, Aveiro, Portugal.

W.J.M. Levelt. 1989. Speaking: from Intention to Ar-
ticulation. MIT Press.

M. Mitchell, K. van Deemter, and E. Reiter. 2011.
Two approaches for generating size modifiers. In
ENLG2011 – Proceedings of the 13th European
Workshop on Natural Language Generation, pages
63–70, Nancy, France.

J. Pearl. 1988. Probabilistic Reasoning in Intelligent
Systems. Morgan Kaufmann Publishers, San Mateo,
California.

T. Pechmann. 1989. Incremental speech produc-
tion and referential overspecification. Linguistics,
27:89–110.

J.F. Sowa. 1984. Conceptual Structures: Information
Processing in Mind and Machine. Addison-Wesley,
Reading, MA.

K. van Deemter. 2006. Generating referring expres-
sions that involve gradable properties. Computa-
tional Linguistics, 32(2):195–222.

I. Zukerman, E. Makalic, M. Niemann, and S. George.
2008. A probabilistic approach to the interpreta-
tion of spoken utterances. In PRICAI 2008 – Pro-
ceedings of the 10th Pacific Rim International Con-
ference on Artificial Intelligence, pages 581–592,
Hanoi, Vietnam.

58

