
Working with Defaults in a Controlled Natural Language

Rolf Schwitter
Department of Computing

Macquarie University
Sydney NSW 2109, Australia

Rolf.Schwitter@mq.edu.au

Abstract

In this paper, we discuss how statements
about defaults and various forms of excep-
tions to them can be incorporated into an
existing controlled natural language. We
show how these defaults and exceptions
are translated and represented in the an-
swer set programming paradigm in order
to support automated reasoning.

1 Introduction

Defaults are statements in natural language that
contain words such as generally, normally, or typ-
ically and generalise over what a particular kind
of objects does. These kinds of statements are
very useful in human communication, since we
often do not have complete information about the
world, but must be able to draw conclusions based
on incomplete information. These conclusions are
preliminary, and we may be forced to withdraw
them later when new information becomes avail-
able. In this paper, we investigate how statements
about defaults and exceptions to them can be in-
corporated into an existing controlled natural lan-
guage (White and Schwitter, 2009) and what kind
of formal machinery is required to process these
defaults and to reason with them in the answer set
programming paradigm (Gelfond and Lifschitz,
1988; Lifschitz, 2008; Gebser et al., 2012). An-
swer set programming (ASP) has its roots in logic
programming and non-monotonic reasoning and
is well suited for solving problems which involve
commonsense reasoning (Eiter et al., 2009).

It is important to note that we are working here
with a controlled natural language (for a survey
see (Kuhn, 2013)). Our controlled natural lan-
guage (CNL) consists of a well defined subset of
English and has been designed to serve as a knowl-
edge representation language with automated rea-
soning support (White and Schwitter, 2009). The

CNL allows domain specialists to write a textual
specification using the vocabulary of the applica-
tion domain. The writing process of the CNL is
guided by an intelligent authoring tool, and there
is no need for the human author to formally en-
code the knowledge since the language processor
takes care of this process.

2 CNL and Answer Set Programming

Our CNL processor translates a specification writ-
ten in CNL with the help of a discourse representa-
tion structure (DRS) (Schwitter, 2012) in the spirit
of (Kamp and Reyle, 1993; van Eijck and Kamp,
2011) into an executable ASP program.

An ASP program looks similar to a Prolog pro-
gram but relies on a completely different compu-
tational mechanism. Instead of deriving a solu-
tion from a program specification using resolution
like Prolog does, finding a solution in the ASP
paradigm corresponds to computing one or more
stable models (Gelfond and Lifschitz, 1988) that
in principle always terminate. Stable models are
also known as answer sets (Lifschitz, 2008).

The building blocks of an ASP program are
atomic formulas (atoms), literals and rules. A rule
is an expression of the following form:

L0 or ... or Lk ← Lk+1, ..., Lm, not Lm+1, ..., not Ln.

where Li’s are literals. A literal is either an atom a
or its classical negation ¬a. The symbol not stands
for negation as failure; not Li means that Li is not
known. The symbol← stands for an implication.
The expression on the left-hand side of this sym-
bol is called the head of the rule and may consist
of a disjunction (or) of literals. The expression on
the right-hand side is called the body of the rule. If
the body of a rule is empty, then the rule is called
a fact, and if the head of a rule is empty, then the
rule is called a constraint. Constraints are not im-
portant in the following discussion, but they can
be expressed in our CNL (Schwitter, 2012).

Rolf Schwitter. 2013. Working with Defaults in a Controlled Natural Language. In Proceedings of Australasian
Language Technology Association Workshop, pages 106−110.

Our CNL processor takes, for example, the fol-
lowing text as input:

1. Sam is a child.

2. John is the father of Sam and Alice is the
mother of Sam.

3. Every father of a child is a parent of the child.

4. Every mother of a child is a parent of the
child.

5. Every parent of a child cares about the child.

and translates it via a DRS into an ASP program.
In our case, the resulting ASP program is a posi-
tive logic program (without any form of negation
or disjunction) and consists of a set of facts and
rules:

child(sam).
father(john,sam).
mother(alice,sam).
parent(X,Y) :- father(X,Y), child(Y).
parent(X,Y) :- mother(X,Y), child(Y).
care(X,Y) :- parent(X,Y), child(Y).

This program derives the following unique an-
swer set with the help of an answer set solver:

{ child(sam) father(john,sam)
mother(alice,sam) parent(john,sam)
parent(alice,sam) care(alice,sam)
care(john,sam) }

It contains – among other literals – the two lit-
erals care(alice,sam) and care(john,sam).

3 Extending the CNL with Defaults

Now, let’s assume that we learn the subsequent
new information via the CNL sentence (6) and (7):

6. John does not care about Sam.

7. Alice is absent.

In everyday human reasoning this new informa-
tion does in general not cause problems, since hu-
mans seem to able to revise their beliefs with ease.
However, the addition of the formal representa-
tion -care(john,sam) derived from sentence (6)
to the above-mentioned ASP program results in
an inconsistent answer set. And the addition of
the formal representation absent(alice) derived
from sentence (7) does not have any impact on
the conclusion care(alice,sam) (humans might
have a least some doubts here).

In order to deal with this situation, we have to
replace sentence (5) that results in a strict rule by

a sentence such as (5’) that expresses a default us-
ing the keyword normally1 and builds the starting
point for non-monotonic reasoning:

5’. Parents of a child normally care about the
child.

As we will see, defaults can have two types of
exceptions: strong exceptions and weak excep-
tions (Gelfond and Kahl, 2014). Strong excep-
tions refute a default’s conclusion and derive the
opposite of the default as sentence (6) should do.
Weak exceptions render a default inapplicable and
do not support certain conclusions as sentence (7)
should do (the reasoner should not conclude that
Alice cares about Sam).

In order to achieve this form of non-monotonic
reasoning, we need to translate sentence (5’) via
a DRS into a suitable rule in ASP. Before we
show how this can be done, we discuss in the next
section what the target representation for defaults
looks like in the ASP paradigm.

4 Representing Defaults in ASP

ASP is well suited for representing defaults since it
distinguishes between two kinds of negation: clas-
sical negation and negation as failure. Combining
both forms of negation allows us to express, for
example, the closed world assumption, i.e., the as-
sumption that a literal that is currently not known
to be true is false. The closed world assumption
is an example of a default (Reiter, 1978). For
instance, the following ASP program includes a
closed world assumption rule that combines clas-
sical negation (-) and negation as failure (not):
r(1). r(2). s(3). s(4). q(1,3). q(2,3).
-q(X,Y) :- r(X), s(Y), not q(X,Y).

This ASP program has a unique answer set
that includes the two negative literals -q(2,4) and
-q(1,4):
{ r(1) r(2) s(3) s(4) q(1,3) q(2,3)

-q(2,4) -q(1,4) }

It is interesting to note that an ASP program that
combines strong negation and weak negation can
apply the closed world assumption rule to some of
its literals and leave other literals in the scope of
the open world assumption. The same technique
of combining classical negation and negation as
failure can be used in our context.

1(Pelletier and Asher, 1997) convincingly argue that there
exists no univocal (probabilistic-oriented) quantifier (like
most parents) that characterises all defaults.

107

A default that states that most elements X of a
class c have property p can be represented by the
following rule in ASP (Gelfond and Kahl, 2014).

p(X) :- c(X), not ab(d(X)), not -p(X).

That means p(X) holds if c(X) holds and it can-
not be shown (not) that X is abnormal (ab) with
respect to a default d and that it cannot be shown
(not) that -p(X) does hold. Note that X might be
abnormal and that -p(X) might hold but we cur-
rently cannot find any evidence that this is the
case.

We can use the same technique to represent sen-
tence (5’) that results in a default (d(care(X,Y)))
with the help of the following rule:

care(X,Y) :-
parent(X,Y), child(Y),
not ab(d(care(X,Y))),
not -care(X,Y).

The subsequent ASP program that uses this de-
fault rule and represents the information derived
from sentence (6) and (7) finally leads to a consis-
tent answer set:

child(sam).
father(john,sam).
mother(alice,sam).
parent(X,Y) :- father(X,Y), child(Y).
parent(X,Y) :- mother(X,Y), child(Y).

-care(john,sam).
absent(alice).
care(X,Y) :-
parent(X,Y), child(Y),
not ab(d(care(X,Y))),
not -care(X,Y).

Note that sentence (6) is a strong exception to
the default rule and refutes the conclusion of the
default. So far, there is no information in the ASP
program that states that the default d is not applica-
ble to care(X,Y). In order to ensure that the weak
exception absent(alice) derived from sentence
(7) is correctly processed and can render the de-
fault d inapplicable, we need to add a so-called
cancellation axiom to the ASP program:

ab(d(care(X,Y))) :-
parent(X,Y), child(Y),
not -absent(X).

This cancellation axiom makes sure that an ab-
sent parent of a child can be viewed as a weak
exception to the default. Adding this cancellation
axiom to our ASP program results in a unique an-
swer set where the conclusion care(alice,sam)

is abnormal (ab) with respect to the default d and
the literal care(alice,sam) is unknown to the an-
swer set:

{ child(sam) father(john,sam)
mother(alice,sam) absent(alice)
-care(john,sam) parent(john,sam)
parent(alice,sam)
ab(d(care(alice,sam)))
ab(d(care(john,sam))) }

Note that if our ASP program would con-
tain the information -absent(alice) instead of
absent(alice), then the default rule would suc-
ceed and the answer set would contain the infor-
mation that Alice cares about Sam. If none of
these two literals is available in the ASP, then the
default rule does not apply.

5 Translating the CNL with Defaults

Our existing CNL processor consists of a chart
parser, a unification-based grammar and a domain-
specific lexicon (White and Schwitter, 2009). The
language processor takes a CNL text as input and
generates an extended DRS (Schwitter, 2012) for
that text. This DRS is then translated into an
ASP program (Schwitter, 2013) that is executed
by clingo (Gebser et al., 2011), an ASP tool.

In our case, a DRS is a term of the form
drs(U,C). The first argument U is a list of dis-
course referents (i.e. quantified variables), and the
second argument C is a list of simple and com-
plex conditions for these discourse referents. Sim-
ple conditions are logical atoms and complex con-
ditions are built from other DRSs with the help
of logical connectors. Our extended DRS uses a
reified notation for logical atoms together with a
small number of predefined predicates.

Since our existing CNL already distinguishes
between classical negation and negation as fail-
ure, it is possible to express rules that enforce the
closed world assumption (as introduced in the last
section). For example, the conditional sentence:

8. If there is no evidence that a mother of a child
is absent then the mother is not absent.

is translated during the parsing process into the
following DRS:
[]

[A,B]
relation(mother,A,B)
object(B,child)
NAF
[]
property(absent,A)

==>
[]

NEG
[]
property(absent,A)

108

This DRS consists of a complex implicative
condition (==>). Note that the CNL expression
there is no evidence that results in a negation as
failure operator (NAF) in the antecedent of this
DRS and the translation of the expression does not
leads to a classical negation (NEG) in the conse-
quent. This extended DRS is then further trans-
lated into a strict rule in ASP:

-absent(X) :-
mother(X,Y), child(Y),
not absent(X).

This works fine; however, we also have to guar-
antee that sentences such as (5’) are correctly
translated into a default rule in an ASP program.

In order to achieve this, this sentence is first
translated into the following DRS that uses a new
operator ∼∼> to mark this kind of default:

[]
[A,B]

relation(parent,A,B)
object(B,child)

∼∼>
[]

predicate(care,A,B)

This operator helps us to distinguish between
a strict rule and a default rule. The subsequent
translation process into an ASP program identifies
the type of operator in the DRS and translates the
DRS into the following ASP rule:

care(X,Y) :-
parent(X,Y), child(Y),
not ab(d(care(X,Y))),
not -care(X,Y).

This translation is achieved with the help of a
Prolog program that takes a DRS as input and ap-
plies templates of the following form to generate
the default rule:

[Predicate, ’:-’,
Term,
not ab(d(Predicate)),
not -Predicate]

It is interesting to see that our existing CNL has
already all the ingredients that are necessary in or-
der to paraphrase this default rule. But in contrast
to sentence (5’) that uses the keyword normally,
we end up with a rather lengthy circumscription:

9. If there is no evidence that a parent abnor-
mally cares about a child and there is no evi-
dence that the parent does not care about the
child then the parent cares about the child.

But note that the translation of sentence (5’)
and sentence (9) result in the same default rule.

In the case of sentence (9), the expression ab-
normally cares about translates into the literal
ab(d(care(X,Y))).

Finally, we want to make sure that also cancella-
tion axioms that implement a weak exception can
be expressed in CNL and be translated into ASP
rules. For example, the conditional sentence:

10. If there is no evidence that a parent of a child
is not absent then the parent abnormally cares
about the child.

represents a cancellation axiom and results in the
following ASP rule:

ab(d(care(X,Y))) :-
parent(X,Y), child(Y),
not -absent(X).

Note that we could completely replace the ex-
pression not absent in our CNL specification by
the positive expression present and we would end
up with the same kind of inferences. That means
strong negation is actually only a modelling con-
venience in ASP (Brewka et al., 2011) but does not
increase the expressive power of the language.

6 Conclusion

Most of what we know about the world is normally
true, with a few exceptions. Defaults allow us to
draw conclusions based on knowledge that is com-
mon and normally the case. These defaults are
sensitive to strong and weak exceptions and are
important to non-monotonic reasoning that plays
an important role in everyday human communica-
tion.

In this paper, we showed how an existing con-
trolled natural language can be extended to accom-
modate statements about defaults and exceptions,
how these statements can be translated via dis-
course representation structures into an answer set
program, and how this answer set program can be
used for automated reasoning. The general strat-
egy for representing these defaults and exceptions
to them in answer set programming is based on
the work of (Gelfond and Kahl, 2014) and pro-
vides a clean and computationally elegant way to
deal with these constructions.

To the best of our knowledge, our controlled
natural language is the first one that supports the
specification of defaults and exceptions in a well-
defined subset of natural language and provides
access to this form of non-monotonic reasoning
via answer set programming.

109

References
Gerhard Brewka, Thomas Eiter, Miroslaw

Truszczyński. 2011. Answer Set Program-
ming at a Glance. In: Communications of the ACM,
Vol. 54, No. 12, December.

Jan van Eijck and Hans Kamp. 2011. Discourse Repre-
sentation in Context. In: J. van Benthem and A. ter
Meulen (eds.), Handbook of Logic and Language,
Second Edition, Elsevier, pp. 181–252.

Thomas Eiter, Giovambattista Ianni, Thomas Kren-
nwallner. 2009. Answer Set Programming: A
Primer. In: Reasoning Web. Semantic Technologies
for Information Systems, LNCS, Vol. 5689, pp. 40–
110.

Martin Gebser, Roland Kaminski, Benjamin Kauf-
mann, Max Ostrowski, Torsten Schaub, and Marius
Schneider. 2011. Potassco: The Potsdam Answer
Set Solving Collection. In: AI Communications,
Vol. 24, No. 2, pp. 105–124.

Martin Gebser, Roland Kaminski, Benjamin Kauf-
mann, Torsten Schaub. 2012. Answer Set Solving
in Practice. Synthesis Lectures on Artificial Intelli-
gence and Machine Learning, Morgan and Claypool
Publishers.

Michael Gelfond and Vladimir Lifschitz. 1988. The
stable model semantics for logic programming. In:
R. Kowalski and K. Bowen (eds.), Proceedings of
International Logic Programming Conference and
Symposium, pp. 1070–1080.

Michael Gelfond and Yulia Kahl. 2014. Knowledge
Representation, Reasoning, and the Design of In-
telligent Agents. The Answer-Set Programming Ap-
proach, Cambridge University Press.

Hans Kamp and Uwe Reyle. 1993. From Discourse
to Logic: Introduction to Modeltheoretic Semantics
of Natural Language, Formal Logic and Discourse
Representation Theory. Kluwer, Dordrecht.

Tobias Kuhn. 2013. A Survey and Classification of
Controlled Natural Languages. In: Computational
Linguistics, MIT Press.

Vladimir Lifschitz. 2008. What Is Answer Set Pro-
gramming? In: Proceedings of AAAI’08, Vol. 3, pp.
1594–1597.

Francis Jeffry Pelletier and Nicolas Asher. 1997.
Generics and Defaults. In: J. van Benthem and
A. ter Meulen (eds.), Handbook of Logic and Lan-
guage, Elsevier Science, Chapter 20, pp. 1125–
1177.

Raymond Reiter. 1978. On closed world data bases.
In: H. Gaillaire and J. Minker (eds.), Logic and Data
Bases, Plenum Press, New York, pp. 55–76.

Rolf Schwitter. 2012. Answer Set Programming via
Controlled Natural Language Processing. In: T.
Kuhn and N. E. Fuchs (eds.), CNL 2012, LNCS
7427, Springer, pp. 26–43.

Rolf Schwitter. 2013. The Jobs Puzzle: Taking on
the Challenge via Controlled Natural Language Pro-
cessing. In: Journal of Theory and Practice of Logic
Programming, Vol. 13, Special Issue 4-5, pp. 487–
501.

Coline White and Rolf Schwitter. 2009. An Update on
PENG Light. In: L. Pizzato and R. Schwitter (eds.),
Proceedings of ALTA 2009, Sydney, Australia, pp.
80–88.

110

