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Abstract

Clustering the results of a search can help
a multi-document summarizer present a
summary for evidence based medicine
(EBM). In this work, we introduce a clus-
tering technique that is based on multi-
objective (MOO) optimization. MOO is a
technique that shows promise in the areas
of machine learning and natural language
processing. In our approach we show
how MOO based semi-supervised cluster-
ing technique can be effectively used for
EBM.

1 Introduction

Evidence Based Medicine (EBM) urges the med-
ical doctor to incorporate the latest clinical evi-
dence available at point of care (Sackett et al.,
1996). However, the amount of published clinical
evidence is enormous. PubMed,1 for example, in-
dexes over 23 million citations, and the amount is
growing every day. There are systematic reviews
such as Cochrane’s reviews that distill and summa-
rize the information relevant to a particular topic,
but often the doctor needs to access the primary
literature, especially for cases that are rather in-
frequent and do not have systematic reviews ded-
icated to them, when dealing with particular seg-
ments of the population, or when the patient has si-
multaneous conditions (“comorbidity”). A search
to PubMed can easily return hundreds of results,
and finding specific information from that sea of
information is time-consuming.

To help the doctor’s need to find the evidence, it
has been proposed to cluster the search results ac-
cording to the different topics present in the clini-
cal answer (Shash and Mollá, 2013). The motiva-
tion for this is that answers to a clinical question
usually have several distinct parts, each of which

1http://www.ncbi.nlm.nih.gov/pubmed

Which treatments work best for hemorrhoids?

1. Excision is the most effective treatment for
thrombosed external hemorrhoids. [11289288]
[12972967] [15486746]

2. For prolapsed internal hemorrhoids, the best
definitive treatment is traditional hemorrhoidec-
tomy. [17054255] [17380367]

3. Of nonoperative techniques, rubber band ligation
produces the lowest rate of recurrence. [1442682]
[16252313] [16235372]

Figure 1: PubMed IDs of documents relevant to
the answer to a clinical question.

is backed by a distinct set of published evidence.
For example, as shown in Figure 1, the documents
that answer the clinical inquiry which treatments
work best for hemorrhoids? published in the Jour-
nal of Family Practice2 can be grouped into three
clusters, one for each suggested treatment (exci-
sion, hemorrhoidectomy, rubber band ligation).

We therefore propose to cluster all the docu-
ments relevant to a clinical query into clusters.
Given a collection of clinical questions, the doc-
uments of each question represent a separate clus-
tering task. In this paper, we present a method
that uses multi-objective optimization techniques
to cluster the results.

Section 2 gives a brief survey of clustering in
general and within EBM. Section 3 introduces the
general framework for the multi-objective opti-
mization techniques that we use. Section 4 de-
tails the particular approach that we use to inte-
grate multi-objective optimization techniques for
clustering. Section 5 presents and discuss the re-
sults, and section 6 concludes this paper.

2 Brief Survey of Clustering

Document clustering is an unsupervised machine
learning task that focuses on grouping similar doc-

2http://www.jfponline.com
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uments into clusters (Andrews and Fox, 2007). It
has been used in a wide range of tasks such as Web
search (Di Marco and Navigli, 2013), topic de-
tection and tracking (Rajaraman and Tan, 2001),
training data expansion for supervised classifica-
tion (Karystinos and Pados, 2000), and multi-
document summarization (Wang et al., 2008).

Document clustering has also been used within
the domain of EBM. For example, Pratt and Fa-
gan (2000) clustered search results corresponding
to a user query. Lin and Demner-Fushman (2007)
grouped MEDLINE citations into clusters based
on interventions extracted from the document ab-
stracts. Lin et al. (2007) used K-Means clustering
to group PubMed query results. And Shash and
Mollá (2013) used K-Means clustering to recover
the original clusters used to determine the refer-
ences relevant to clinical queries.

3 Formulation of Clustering as a
Multi-objective Optimization Problem

Most of the existing clustering techniques are
based on a single criterion which reflects a single
measure of goodness of a partitioning. However,
a single cluster quality measure is seldom equally
applicable for different kinds of data sets with dif-
ferent characteristics. Hence, it may become nec-
essary to simultaneously optimize several cluster
quality measures that can capture different data
characteristics. In order to achieve this, the prob-
lem of clustering a data set has been posed as
one of multiobjective optimization (MOO) (Deb,
2001) in literature. Therefore, the application
of sophisticated metaheuristic multiobjective op-
timization techniques seems appropriate and natu-
ral.

Determining the appropriate number of clusters
from a given data set is an important consideration
in clustering. For this purpose, and also to vali-
date the obtained partitioning, several cluster va-
lidity indices have been proposed in the literature.
The measure of validity of the clusters should be
such that it will be able to impose an ordering of
the clusters in terms of their goodness. In the lit-
erature there exists many cluster validity indices,
that can be grouped mainly in two types: external
and internal. In external validity indices, the true
partitioning information (provided by user) is uti-
lized while validating a particular partition. But
in unsupervised classification, it is often difficult
to generate such information. Because of this rea-

son, external validity indices are rarely used to val-
idate partitionings. Some common examples of
such indices include Minkowski scores (Jiang et
al., 2004) and F-measures (Saha and Bandyopad-
hyay, 2013). Internal validity indices rely on the
intrinsic structure of the data. Most of the inter-
nal validity indices quantify how good a particu-
lar partitioning is in terms of the compactness and
separation between clusters:

Compactness: This type of indices measures the
proximity among the various elements of the
cluster. One of the commonly used measures
for compactness is the variance.

Separability: This particular type of indices is
used in order to differentiate between two
clusters. Distance between two cluster cen-
troids is a commonly used measure of sep-
arability. This measure is easy to compute
and can detect hyperspherical-shaped clus-
ters well.

Some well-known internal cluster validity in-
dices are the BIC-index (Raftery, 1986), CH-
index (Caliński and Harabasz, 1974), Silhouette-
index (Rousseeuw, 1987), DB-index (Davies and
Bouldin, 1979), Dunn-index (Dunn, 1973), XB-
index (Xie and Beni, 1991), PS-index (Chou et
al., 2002), and I-index (Maulik and Bandyopad-
hyay, 2002). Maulik and Bandyopadhyay (2002)
show the effectiveness of I-index and XB-index
compared to the other indices in determining the
appropriate number of clusters from the data sets.
Being guided by these observations we use these
two cluster validity indices as the two objective
functions in our proposed multiobjective cluster-
ing technique. However it is to be noted that the
proposed algorithm is very general, and can be ap-
plicable with any sets of cluster validity indices.
These objectives are not conflicting to each other,
and their (I-index and XB-index) goals are to min-
imize cluster compactness and maximize cluster
separation. But while XB-index maximizes mini-
mum distance between any two cluster centroids,
I-index maximizes maximum distance between
any two cluster centroids. This difference helps
them to determine different sets of clusters from a
data set.
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3.1 I-Index
The I-index (Maulik and Bandyopadhyay, 2002)
is defined in the following equation:

I(K) = (
1

K
× E1
EK
×DK)p (1)

where K is the number of clusters. Here

EK =
K∑
k=1

nk∑
j=1

de(ck, x
k
j ) (2)

and
DK =

K
max
i,j=1

de(ci, cj) (3)

where cj denotes the centroid of the jth cluster and
xkj denotes the jth point of the kth cluster. The
number nk is the total number of points present
in the kth cluster. The value of K for which I-
index takes its maximum value is considered as
the appropriate number of clusters.

The index I is a composition of three factors,
namely 1

K , E1EK and DK . The first factor attempts
to reduce index I as the value of K is increased.
The second factor is the ratio of E1 and EK. While
the former remains constant for a given data set,
the later decreases with increase in K. Hence, be-
cause of this term, index I gradually increases as
EK decreases. This, in turn, denotes that forma-
tion of more numbers of compact clusters would
be encouraged. Finally, the third factor, DK , mea-
sures the maximum separation between two clus-
ters over all possible pairs of clusters. This in-
creases proportionally with the value of K. How-
ever, the ultimate value of this factor can exceed
the maximum separation between two points in the
data set. Thus, the three factors are found to com-
pete with and balance each other critically. The
power p is used to control the contrast between the
different cluster configurations. In this paper, we
set the value of p to 2.

3.2 XB-Index
The second objective function used in the clus-
tering algorithm is the XB-index. This is one of
the widely used internal cluster validity indices
in the literature. In 1991, Xie and Beni (1991)
developed this cluster validity index (XB-index)
which is again based on two properties: compact-
ness and separation. As per the definitions the
numerator quantifies the compactness of the par-
titioning while the denominator quantifies the sep-
aration between clusters. Separation is measured

based on the Euclidean distance between the clus-
ter centroids. In principle, in order to attain a
good partitioning, the compactness value should
be minimum and the separation should be max-
imum. Therefore, in order to obtain a desirable
partitioning, the value of XB-index should be min-
imized after varying the number of clusters in the
range, k = 1, . . . ,Kmax. Let K cluster cen-
troids be represented by ci where 1 ≤ i ≤ K
and [uij ]K×n denote the membership matrix for
the data. Then the XB-index is defined by the fol-
lowing equation:

XB(K) =

∑K
i=1

∑n
j=1 u

2
ij‖xj − ci‖2

n(mini 6=k ‖ci − ck‖2)
(4)

Thus the two objective functions used for cluster-
ing are f1 = I and f2 = 1

XB . The clustering algo-
rithm will attempt to maximize these two indices.

3.3 Multi-Objective Optimization

Multi-objective optimization can be formally
stated as follows: find the vector x∗ =
[x∗1, x

∗
2, . . . , x

∗
n]T of decision variables that simul-

taneously optimize M objective values

{f1(x), f2(x), . . . , fM (x)}

while satisfying user-defined constraints, if any.
An important concept in MOO is that of dom-

ination. Within the context of a maximization
problem, a solution xi is said to dominate xj if
∀k ∈ 1, 2, . . . ,M, fk(xi) ≥ fk(xj) and ∃k ∈
1, 2, . . . ,M, such that fk(xi) > fk(xj). Among
a set of solutions P , the nondominated set of so-
lutions P

′
are those that are not dominated by any

member of the set P . The nondominated set of the
entire search space S is called the globally Pareto-
optimal set or Pareto front. In general, a MOO
algorithm outputs a set of solutions not dominated
by any solution encountered by it.

These notions can be illustrated by considering
an optimization problem with two objective func-
tions — say, f1 and f2 — with five different solu-
tions, as shown in Figure 2. In this example, solu-
tions 3 and 5 dominate all the other three solutions
1, 2 and 4; solutions 3 and 5 are non-dominating to
each other, because whereas 5 is better than 3 with
respect to f1, 3 is better than 5 with respect to f2.
Therefore, the Pareto front is made of solutions 3
and 5.
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f1(maximize)

f2(minimize)

2

1

4

3

5

Figure 2: Example of dominance and Pareto opti-
mal front.

4 Proposed Method of Multi-Objective
Clustering

This section describes the multi-objective cluster-
ing technique, AMOSA-clus, in detail. This tech-
nique uses AMOSA (Bandyopadhyay et al., 2008)
as the underlying optimization strategy. A short
description of AMOSA is also provided in this
section.

4.1 String Representation and Population
Initialization

In AMOSA-clus clustering, centroid-based real-
encoding is used. Here each member of the
archive is encoded as a string that represents the
coordinates of the centroids of the partitions. Each
string has a different length. Let us assume string i
represents the centroids of Ki clusters and the di-
mension of the data space is d, then the string has
length li where li = d ∗ Ki. For example, in the
case of two-dimensional space, the string

< 12.3 1.4 22.1 0.01 0.0 15.3 10.2 7.5 >

represents four cluster centroids:

(12.3, 1.4), (22.1, 0.01), (0.0, 15.3), (10.2, 7.5)

An important point of string encoding is that
each centroid is regarded to be indivisible. This
means at the time of mutation if we will insert a
new centroid all the dimensional values have to be
inserted and if we want to delete a centroid all the
dimensional values have to be deleted. The num-
ber of centroids,Ki, encoded in a string i is chosen
randomly between two limits Kmin and Kmax.
The value is determined using the following equa-
tion:

Ki = (rand()mod(Kmax − 1)) + 2 (5)

Here, rand() is a function returning a random in-
teger number, and Kmax is the upper-limit of the
number of clusters. The minimum number of clus-
ters is assumed to be 2. The number of whole
clusters present in a particular string of archive
can therefore vary in the range of two to Kmax.
The Ki cluster centroids represented in a string
are some randomly selected distinct points from
the data set.

4.2 Assignment of Points to Different
Clusters and Objective Function
Computations

The computation of the objective functions is done
in two steps. The first step concerns with the as-
signment of n points (where n is the total num-
ber of points in the data set) to different clusters.
In the second step, we compute our two cluster
validity indices, XB-index (Xie and Beni, 1991)
and I-index (Maulik and Bandyopadhyay, 2002),
and use them as two objective functions of the
string. Thereafter we simultaneously optimize the
two objective functions using the search capability
of AMOSA.

4.2.1 Assignment of Points to Different
Clusters

In AMOSA-clus, the assignment of points to dif-
ferent clusters is done based on the minimum dis-
tance based criterion in a similar way as is done in
an iteration of the K-means clustering algorithm.
In particular, any point j is assigned to a cluster
k whose centroid has the minimum distance to j.
That is:

k = argmini=1,...Kd(xj , ci) (6)

K denotes the total number of clusters, xj is the
jth data point, ci is the centroid of the ith cluster
and d(xj , ci) denotes some distance measure be-
tween the data point xj and cluster centroid ci.

After assigning all the points to different clus-
ters, the cluster centroids represented in a particu-
lar string of the archive are updated by the average
of the points which are in a single cluster:

ci =

∑ni
j=1(x

i
j)

ni
, 1 ≤ i ≤ K (7)

Where ni is the number of points in cluster i and
xij is the jth point of the ith cluster.
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4.3 Search Operators

As mentioned earlier the proposed clustering tech-
nique uses a multiobjective simulated annealing
based technique as the underlying optimization
technique. As a simulated annealing step, we need
to introduce mutation operations. We introduce
three:

Mutation 1: In this mutation each cluster cen-
troid is changed by some small amount. The
Laplacian distribution is used in order to
generate some completely random numbers.
Here each cluster centroid represented in a
string is modified with a random variable
which is drawn using a Laplacian distribu-
tion,

p(ε) ∝ e−
|ε−µ|
δ

The magnitude of perturbation is measured
using the scaling factor δ and µ is the old
value at the position which is to be mutated.
The scaling factor δ is generally set equal to
1.0. By using the Laplacian distribution a
value near the old value is generated and the
old value is replaced with the newly gener-
ated value. This is applied individually to all
the dimensions of a particular centroid if it is
selected for mutation.

Mutation 2: This mutation operation is used to
reduce the size of the string. A cluster cen-
troid is generated at random and selected to
be deleted from the string. This is done to
decrease the number of cluster centroids en-
coded in the string by 1. Cluster centroids are
considered to be indivisible. This means as a
result of deleting a particular cluster centroid,
all the dimensional values are removed.

Mutation 3: This mutation is for incrementing
the number of clusters by 1. One new cen-
troid is inserted in the string, and so the num-
ber of cluster centroids encoded in the string
is incremented by 1. As the cluster centroids
are indivisible, all the dimensional values of
the centroid, selected randomly, are inserted
into the string.

For example, let the string
< 3.5 1.5 2.1 4.9 1.6 1.2 > represent three
cluster centroids in a 2-d plane (3.5, 1.5),
(2.1, 4.9), and (1.6, 1.2).

1. For mutation type 1, let position 2 be selected
randomly. Then, each dimension of (2.1, 4.9)
will be changed by some values generated us-
ing the Laplacian distribution.

2. If mutation type 2 is selected, a centroid will
be removed from the string. Let centroid 3
be selected for deletion. Then, after deletion,
the string will look like< 3.5 1.5 2.1 4.9 >.

3. In case of third mutation, a new centroid will
be added to the string. Let the randomly cho-
sen point from the data set to be added to the
string be (9.7, 2.5). After inclusion of this
centroid, the string looks like
< 3.5 1.5 2.1 4.9 1.6 1.2 9.7 2.5 >.

In order to generate a new string any one of the
above-mentioned mutation types is applied to each
string. We have associated equal probability with
each of these mutation operations. Thus in 33%
cases mutation 1, in 33% cases mutation 2 and in
33% cases mutation 3 take place.

4.4 Selecting a Single Solution from the
Pareto Optimal Front

Any multi-objective optimization technique pro-
duces a set of non-dominated solutions on its final
Pareto optimal front (Deb, 2001). Each of these
non-dominated solutions corresponds to a com-
plete assignment of clusters to the data set. In the
absence of additional information, any of those so-
lutions can be selected as the optimal solution. But
sometimes the user can have labelled information
for some portions of the dataset. In this section
we describe a process of semi-supervised cluster-
ing where, for every question, a portion of the
documents are already clustered. This could hap-
pen, for example, when someone wants to update
some known evidence with further evidence gath-
ered via a document search process. The known
information can be used to select one of the non-
dominated solutions from the final Pareto front.

In our experiments, we use cluster entropy to
determine the best solution from the Pareto front.
Cluster entropy is calculated based on the cluster
precision, that is the ratio of elements retrieved
from a particular source cluster. Thus, to com-
pute the entropy of cluster i, we first determine
how many data points from each source cluster j
appear in cluster i, relative to the size of cluster i:

pij =
mi,j

mi
(8)
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Then the entropy of cluster i is:

Entropy(i) = −
∑
j

pi,j × log2pi,j (9)

The entropy measure of the clusters generated for
a particular data set is the weighted sum of the en-
tropies of all clusters for that data set. Here the
weight is the ratio of the cluster size relative to the
total number of data points present in the data set.

For every non-dominated solution, the entropy
values of the training set are computed, and the
solution with lowest (best) entropy is selected. For
the results presented in this paper we have chosen
a training set of 10% of the total data points.

Let us take an example. Suppose that we have
four questions, each one with five documents. The
set of documents is:

S =
{{a, b, c, d, e}, {f, g, h, i, j},
{k, l,m, n, o}, {p, q, r, s, t}}

We apply the AMOSA-clus clustering technique on
these four questions separately. For the sake of
this example, for each question we select one doc-
ument as the training set. Let us assume there is
a total of N solutions on the final Pareto front.
Based on each of these N solutions, we assign a
class label to this training document. Now the en-
tropy value is computed for this one document for
each solution. The solution with minimum entropy
value is selected as the optimal solution. Now the
centers encoded in this solution are used to as-
sign class labels to the remaining four documents.
Next AMOSA-clus is applied on the second ques-
tion and the same procedure is repeated to calcu-
late the overall entropy for the second question. In
this way the AMOSA-clus clustering technique is
applied for all the questions and the same proce-
dures are repeated to compute the final results.

4.5 The SA Based MOO Algorithm: AMOSA

Archived multi-objective simulated annealing
(AMOSA) (Bandyopadhyay et al., 2008) is an ef-
ficient MOO version of the simulated annealing
(SA) algorithm. Simulated annealing is a search
technique for solving difficult optimization prob-
lems, which is based on the principles of statisti-
cal mechanics (Kirkpatrick et al., 1983). Although
the single objective version of SA has been quite
popular, its utility in the multi-objective case was
limited because of its search-from-a-point nature.
Recently Bandyopadhyay et al. (2008) developed

an efficient multi-objective version of SA called
AMOSA that overcomes this limitation.

The AMOSA algorithm incorporates the con-
cept of an archive where the non-dominated so-
lutions seen so far are stored. Two limits are kept
on the size of the archive: a hard or strict limit
denoted by HL, and a soft limit denoted by SL.
Given γ > 1, the algorithm begins with the initial-
ization of a number (γ × SL) of solutions each of
which represents a state in the search space. The
multiple objective functions are computed. Each
solution is refined by using simple hill-climbing
and domination relation for a number of itera-
tions. Thereafter the non-dominated solutions are
stored in the archive until the size of the archive
increases to SL. If the size of the archive exceeds
HL, a single-linkage clustering scheme is used to
reduce the size to HL. Then, one of the points
is randomly selected from the archive. This is
taken as the current-pt, or the initial solution, at
temperature T = Tmax. The current-pt is per-
turbed/mutated to generate a new solution named
new-pt, and its objective functions are computed.
The domination status of the new-pt is checked
with respect to the current-pt and the solutions in
the archive. A new quantity called amount of dom-
ination, ∆dom(a, b) between two solutions a and
b is defined as follows:

∆dom(a, b) =
M∏

i=1,fi(a)6=fi(b)

fi(a)− fi(b)
Ri

(10)

where fi(a) and fi(b) are the ith objective val-
ues of the two solutions, Ri is the corresponding
range of the objective function and M is the num-
ber of objective functions. Based on domination
status different cases may arise viz., accept the (i)
new-pt, (ii) current-pt, or, (iii) a solution from the
archive. Again, in case of overflow of the archive,
clustering is used to reduce its size to HL. The
process is repeated iter times for each temperature
that is annealed with a cooling rate of α(< 1) till
the minimum temperature Tmin is attained. The
process thereafter stops, and the archive contains
the final non-dominated solutions.

In order to reduce the temperature, we have
used geometric cooling: Tk+1 = α × Tk where
α is the cooling rate. We have used α = 0.9 in the
current paper. We use AMOSA as the underlying
MOO technique in this work because of its im-
proved performance over some other well-known
MOO algorithms especially for three or more ob-
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jectives (Bandyopadhyay et al., 2008).

5 Results

Below we present the results based on a random
partition of 276 clinical questions from the cor-
pus by Mollá and Santiago-Martı́nez (2011). Each
question has an average of 5.89 documents. The
corpus is based on the material from the Clinical
Inquiries section of the Journal of Family Practice.
The data set has information about the question,
the answer, and the documents that are relevant to
each part of the answer, as illustrated in the exam-
ple of Figure 1. The documents of each of the an-
swer parts determines a cluster. The AMOSA-clus
clustering technique is therefore applied on each
question individually. The average entropy value
of all the questions is then calculated. The param-
eters of the AMOSA-clus clustering technique are
as follows: SL=100 HL=50, iter=50, Tmax=100,
Tmin=0.0001 and cooling rate α = 0.9.

Table 1 compares the entropy results for cluster-
ing using AMOSA-clus with a fixed and variable
number of clusters. We experimented with two
cluster measures of document distance: Euclidean
distance, and cosine distance. The cosine distance
is computed as 1-cosine similarity. Strictly speak-
ing this is not a distance metric but it is included to
compare with the results presented by Shash and
Mollá (2013), who reported optimal results by us-
ing K-means with this use of the cosine distance,
and which we also include in the table as the base-
line.3 We include the Euclidean distance since this
is the standard metric used for K-means clustering
and is also reported by Shash and Mollá (2013).
All the results reported in the table, included the
K-means baseline, are based on the same parti-
tion of 276 questions from the corpus developed
by Mollá and Santiago-Martı́nez (2011).

Each document is represented as a vector of
tf.idf values based on stemmed and lowercased
words, with stop words removed.

5.1 Finding the Number of Clusters

The training set includes information about the ac-
tual number of clusters. We have used this infor-
mation to test AMOSA-clus’ ability to determine
the optimal number of clusters, by implementing
two variants: AMOSA-clus1 performs clustering
by fixing the number of clusters to the number pro-

3Our baseline is a replication of the original paper’s ex-
periment and the results are different.

Table 2: Measure of the error of number of clusters
of AMOSA-clus2 and a number of popular meth-
ods.

Method Error

AMOSA-clus2 Cosine 1.90
AMOSA-clus2 Euclidean 1.91
k = 1 3.91
k = 2 2.14
k = 3 2.38
k = 4 4.61
Rule of Thumb 2.56
Cover 1.98

vided by the corpus, whereas AMOSA-clus2 auto-
matically determines the optimal number of clus-
ters.

AMOSA-clus2 is executed on each question by
varying the number of clusters in a range between
2 and

√
n where n is the number of documents per

question, and using the above mentioned indices
I-index and XB-index to determine the best solu-
tion. The average number of clusters identified by
this procedure for each question is 2.51 and 2.34,
respectively, with cosine and Euclidean distance
measurements. The average number of clusters in
the actual annotated set is 2.38. Since entropy is
based on cluster precision, a larger number of clus-
ters will naturally lead to a better value of entropy,
reaching a perfect zero when there are as many
clusters as documents. Consequently, we can only
rely on the Euclidean metric (with average 2.34
clusters) to assess the efficacy of the automatic se-
lection of number of clusters. We observe that
the results of AMOSA-clus2 using the Euclidean
metric is slightly better than AMOSA-clus1, which
gives some evidence that the proposed AMOSA-
clus2 technique to determine the number of clus-
ters is promising.

Next we have compared the generated number
of clusters with the known number of clusters us-
ing the mean of the squares of the errors:

error =

∑
i(targeti − predictedi)2

# of questions
(11)

Table 2 compares the error in the generation of
numbers of clusters between AMOSA-clus2 and
a set of heuristics widely used in the literature:
fixed number of clusters (k = 1, 2, 3, 4), the Rule
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Table 1: Average Entropy values obtained by two variants of AMOSA-clus and a baseline K-means clus-
tering technique for whole XML files; here AMOSA-clus1: AMOSA-clus with fixed number of clusters,
AMOSA-clus2: AMOSA-clus with variable number of clusters, K-means: K-means with fixed number of
clusters; best: entropy value of the solutions selected by the procedure described in Section 4.4; average:
average entropy of all the solutions present on the final Pareto front.

Distance
Measure

AMOSA-clus1 AMOSA-clus2 K-means
(baseline)best average best average

Euclidean 0.190 0.249 0.177 0.235 0.240
Cosine 0.187 0.231 0.177 0.230 0.237

of Thumb (k =
√
n/2) (Mardia et al., 1979),

and the cover method (Can and Esen A. Ozkara-
han, 1990). We observe that the error of AMOSA-
clus2 is lowest in both distance measures, cosine
and Euclidean. We conducted a Wilcoxon signed-
rank test and observed that the differences in the
squared errors between the AMOSA-clus2 variants
and the cover method are statistically significant.

5.2 Semi-supervised Setting

Each AMOSA-clus1 and AMOSA-clus2 has been
run both in a semi-supervised setting and a fully
unsupervised setting. In the semi-supervised set-
ting, the information of 10% of the documents rel-
evant to a question is used to select the best non-
domimant solution from the Pareto front as de-
scribed in Section 4.4. The entropy reported in
the best column of Table 1 indicates the entropy
values after disregarding the 10% documents used
to select the solution. In the unsupervised set-
ting, we report the average of all solutions of the
Pareto front and is presented in the average col-
umn. We observe that the semi-supervised ap-
proach produces a better (lower) entropy, and a
Wilcoxon signed-rank test reveals that the differ-
ence with respect to the baseline K-means cluster-
ing method is statistically significant. The results
of the unsupervised setting also have a statistically
significant difference with the baseline, though we
can observe that the difference is much lesser and
in one case it is worse.

6 Conclusions

We have presented a novel approach for cluster-
ing documents that is based on the use of multi-
objective optimization (MOO), for the task of
splitting the documents relevant to the answer of a
clinical question into each of the answer parts. The

MOO approach is based on a variant of Archived
Multi-Objective Simulated Annealing (AMOSA)
that we call AMOSA-clus, which uses cluster-
based evaluation indices as the objectives to opti-
mize. Even though the results do not show an im-
provement over a baseline of K-means reported in
the literature, a semi-supervised variant shows an
improvement over the baseline. Our experiments
show the effectiveness of the use of MOO tech-
niques for this clustering task in particular. Given
the generality of the approach proposed, it is rea-
sonably to conclude that these MOO techniques
would be useful in a general clustering setting.

We have experimented with a variant that uses
the known cluster numbers, and another variant
that automatically determines the optimal number
of clusters. The good results of the option with
automatic number of clusters show the promising
potential of this approach.

The improvement of results by using MOO
techniques are highly encouraging. Further work
can be done in several fronts. First of all, further
experiments are required to improve the efficacy
of the automatic selection of the number of clus-
ters. Also, it is desirable to test whether AMOSA-
clus improves the results in other clustering appli-
cations such as the ones briefly mentioned in Sec-
tion 2. In our experiments we used the I and XB
indices as the objective functions to optimise due
to their general popularity. It would be interesting
to test the use of other combinations of cluster va-
lidity indices, or even to build a MOO system that
uses a larger selection of them.

Within the area of multi-document summariza-
tion, further work will focus on the determination
of techniques of extraction or generation of topic
labels that could be used for the generation of the
final summaries.
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R. B. Caliński and J. Harabasz. 1974. A dendrite
method for cluster analysis. Comm. in Stat., 3:1–27.

Fazli Can and Esen A. Ozkarahan. 1990. Concepts
and Effectiveness of the Cover-Coefficient-Based
Clustering Methodology for Text Databases. ACM
Transactions on Database Systems, 15(4):483–517.

Chien-Hsing Chou, Mu-Chun Su, and Eugene Lai.
2002. Symmetry as a new measure for cluster va-
lidity. In 2nd WSEAS Int. Conf. on Scientific Com-
putation and Soft Computing, pages 209–213. Crete,
Greece.

David L. Davies and Donald W. Bouldin. 1979. A
cluster separation measure. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 1:224–
227.

Kalyanmoy Deb. 2001. Multi-objective Optimization
Using Evolutionary Algorithms. John Wiley and
Sons, Ltd, England.

Antonio Di Marco and Roberto Navigli. 2013. Clus-
tering and Diversifying Web Search Results with
Graph-Based Word Sense Induction. Computa-
tional Linguistics, 39(3):709–754, November.

J. C. Dunn. 1973. A fuzzy relative of the ISO-
DATA process and its use in detecting compact well-
separated clusters. Journal of Cybernetics, 3:32–57.

Daxin Jiang, Chun Tang, and Aidong Zhang. 2004.
Cluster analysis for gene-expression data: A survey.
IEEE Trans. Knowledge Data Eng., 16:1370–1386.

G N Karystinos and D A Pados. 2000. On overfit-
ting, generalization, and randomly expanded train-
ing sets. IEEE transactions on neural networks / a
publication of the IEEE Neural Networks Council,
11(5):1050–7, January.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. 1983.
Optimization by simulated annealing. Science,
220:671–680.

Jimmy J. Lin and Dina Demner-Fushman. 2007. Se-
mantic clustering of answers to clinical questions.
In AMIA Annual Symposium Proceedings.

Yongjing Lin, Wenyuan Li, Keke Chen, and Ying Liu.
2007. A Document Clustering and Ranking Sys-
tem for Exploring {MEDLINE} Citations. Journal
of the American Medical Informatics Association,
14(5):651–661.

Kanti V. Mardia, John T. Kent, and John M. Bibby.
1979. Multivariate Analysis. Academic Press, Lon-
don.

Ujjwal Maulik and Sanghamitra Bandyopadhyay.
2002. Performance evaluation of some clustering
algorithms and validity indices. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
24(12):1650–1654.
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