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Abstract

The N400 is a human neuroelectric response
to semantic incongruity in on-line sentence
processing, and implausibility in context has
been identified as one of the factors that influ-
ence the size of the N400. In this paper we in-
vestigate whether predictors derived from La-
tent Semantic Analysis, language models, and
Roark’s parser are significant in modeling of
the N400m (the neuromagnetic version of the
N400). We also investigate significance of a
novel pairwise-priming language model based
on the IBM Model 1 translation model. Our
experiments show that all the predictors are
significant. Moreover, we show that predictors
based on the 4-gram language model and the
pairwise-priming language model are highly
correlated with the manual annotation of con-
textual plausibility, suggesting that these pre-
dictors are capable of playing the same role
as the manual annotations in prediction of the
N400m response. We also show that the pro-
posed predictors can be grouped into two clus-
ters of significant predictors, suggesting that
each cluster is capturing a different character-
istic of the N400m response.

1 Introduction

There is increasing interest in using computational
models to help understand on-line sentence process-
ing in humans. New experimental techniques in
psycholinguistics and neurolinguistics are produc-
ing rich data sets that are difficult to interpret us-
ing standard techniques, and it is reasonable to ask
if the statistical models developed in computational
linguistics can be helpful here (Keller, 2010).

The N400 is a human brain response to se-
mantic incongruity or implausibility that has been
widely studied in psycholinguistics and neurolin-
guistics. A large set of factors has been shown
to influence the strength of the N400, including
intra- and extra-sentential context (Kutas and Fed-
ermeier, 2000; Van Petten and Kutas, 1990). Here
we study the strength of the N400 as measured by
magnetoencephalography (MEG) (so the signal we
study is sometimes called the N400m) on sentence-
final words in a variety of “constraining” and “non-
constraining” sentential contexts (Kalikow et al.,
1977). For example, Her entry should win first
prize is an example of a constraining-context sen-
tence, while We are speaking about the prize is a
non-constraining context sentence (target words are
underlined in this paper).

This paper shows that language models of the
kind developed in computational linguistics can be
used to help identify the factors that determine the
strength of the N400. We investigate a number of
different kinds of predictors constructed from a va-
riety of language models and Latent Semantic Anal-
ysis (LSA) to determine how well they describe the
N400. The first set of predictors is derived from
LSA, which is a method for analysing relationships
between a set of documents and the terms they con-
tain (Mitchell et al., 2010). LSA has been success-
fully applied in similar research areas such as eye-
movements and word-by-word reading times. Our
experiments show that these predictors are signif-
icant in modeling the N400m response. The sec-
ond set of predictors is that proposed by Roark et
al. (2009), which is derived from the Roark (2001)
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parser and designed to be useful in psycholinguistic
modeling. While one of these predictors is statisti-
cally significant (lexical entropy), we observe that
many of the prime-target word pairs appearing in
our experimental sentences do not appear in the 1-
million word Wall Street Journal - Penn Treebank
(WSJ-PTB) corpus that this parser is trained on, so
this model cannot capture the association between
these words. This leads us to experiment with lan-
guage models trained on larger corpora.

Using the SRI-LM toolkit (Stolcke, 2002) we
construct a 4-gram language model based on the Gi-
gaword corpus (Graff et al., 2005), and show that
predictors based on it are also statistically significant
predictors of the N400m. However, we go on to ob-
serve that many of the prime-target word pairs in our
experimental sentences are separated by more than 3
words, so there is no way that a 4-gram language can
capture the relationship between these words.

This leads us to develop a “pairwise-priming” lan-
guage model that captures longer-range dependen-
cies between pairs of words. This pairwise priming
model is based on the IBM Model 1 machine transla-
tion model (Brown et al., 1993), and trained using a
similar EM-procedure. We train this model on Giga-
word, and show that predictors based on this model
are also statistically significant.

Finally, we compare the predictors from the vari-
ous language models with the original manual clas-
sification of the experimental sentences into “con-
straining” or “non-constraining” contexts given by
Kalikow et al. (1977). We show that the predictor
based on LSA is statistically significant even when
the human “constraining” annotations are present as
a factor. We also find out that the 4-gram model
and the pairwise-priming model are highly corre-
lated with this manually-annotated context predic-
tor. These findings suggest that the predictors can
be grouped into two clusters i.e., one that contains
the LSA predictor, and another one that contains the
manually-annotated context predictor, the pairwise-
priming predictor, the 4-gram language model pre-
dictor, and the lexical entropy predictor.

2 Related work

One recent strand of work uses machine-learning to
perform “mind reading”, i.e., predicting what a sub-

ject is seeing or thinking based on information about
their neural state. Mitchell et al. (2008) have trained
a classifier that identifies the word a subject is think-
ing about from input derived from fMRI images of
the subject’s brain, and Murphy et al. (2009) have
constructed a similar classifier that takes EEG sig-
nals as its input. Abstractly then, this work uses
classifiers that take as input information about a sub-
ject’s brain state to predict the (linguistic or visual)
stimulus the subject is exposed to.

A more traditional line of research tries to identify
factors that cause particular psycholinguistic or neu-
rolinguistic responses. For example, Hale (2001),
Bicknell and Levy (2009) and many others show
that predictors derived from on-line parsing mod-
els can help explain eye-movements and word-by-
word reading times. Abstractly, this work involves
building statistical models which take as input prop-
erties of the stimuli presented to the subject (i.e., the
sentence they are hearing or reading) to predict their
psychological or neural responses. The goal of this
line of research is to establish which properties of
the input sentence or the parsing model’s state de-
termine the psychological or neural responses, rather
than just predicting these responses as accurately as
possible.

The work that is perhaps most closely related to
this paper is by Bachrach (2008), who tries to iden-
tify which factors are responsible for specific activa-
tion patterns in fMRI brain images of subjects read-
ing natural texts. He found that predictors derived
from the Roark (2001) parser were most explana-
tory. Roark et al. (2009) have subsequently iden-
tified a number of such predictors; we investigate
these in our analysis below.

3 Experimental data

The N400 is a component of time-locked EEG sig-
nals known as event-related potentials (ERP) that
occurs in sentences containing semantically unex-
pected or anomalous words (Kutas and Hillyard,
1980). It is so-called because it is a negative-going
deflection that peaks around 400 milliseconds post-
stimulus onset. There has been considerable re-
search into the factors that influence the strength of
the N400. Inverse word frequency and contextual
unpredictability (e.g., as quantified by Cloze prob-
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ability) are both significant predictors of the N400
(Van Petten and Kutas, 1990). The strength of the
N400 is sometimes taken to be a measure of the “ef-
fort” required for “semantic integration” in on-line
sentence processing.

For example, there is a much stronger N400 at the
target word building in the sentence a sparrow is a
kind of building than there is at the word bird in A
sparrow is a kind of bird. Interestingly, while the
N400 is sensitive to the global context in which the
target word is located, the N400 does not seem to be
directly sensitive to the truth conditions of the sen-
tence (Kutas and Federmeier, 2000). Thus sentential
negation does not seem to directly affect the strength
of the N400. For example, a strong N400 occurs in
A sparrow is not a kind of building, as compared to
A sparrow is not a kind of bird.1 This observation in-
spired the pairwise-priming model discussed below.

As previously mentioned, N400s are usually stud-
ied using EEG. In this work we use magnetoen-
cephalography (MEG) to study the N400; the signal
we analyse here is sometimes called the N400m to
indicate its provenance. We used MEG because this
study is the first step in a project to use statistical
models to study the neural mechanisms involved in
language processing, and MEG seems ideally suited
to this work.

MEG is a non-invasive technique for imaging
electrical activity in the brain by measuring the mag-
netic fields it produces using arrays of SQUIDs (su-
perconducting quantum interference devices). It has
a number of potential advantages over competing
technologies such as fMRI and EEG. For example,
MEG has a much faster response latency than fMRI
because MEG directly measures electrical activity
while fMRI measures the hemodynamic response
caused by that activity. Because magnetic fields are
less distorted than electric fields by the scalp and the
skull, MEG has a better spatial resolution than EEG,
which should help us localise neural processes more
accurately.

However in this first study we do not exploit these
advantages of MEG, but just average the signals col-
lected by 12 MEG sensors over a time window con-

1The fact that the conditional probability of a word in a sen-
tence does not depend on that sentence’s veracity may be rele-
vant here.

taining the target word. This produces a single nu-
meric value for each trial which we call the N400m,
which we model below.

Stimuli consisted of 180 sentences drawn from
the list published by Kalikow et al. (1977) and
synthesized using TextAlound (NextUp, Clemmons,
NC). They were presented to 22 listeners via in-
sert earphones (Etymotic Research Inc. Model ER-
30, Elk Grove Village, IL). There were 90 exam-
ples of “constraining context” sentences, i.e., with
predictable endings (e.g. He got drunk in the local
bar) and 90 examples of “non-constraining context”
sentences, i.e., with unpredictable endings (e.g. He
hopes Tom asked about the bar). Each target word
appears both in a constraining context sentence and
in a non-constraining context sentence. To maintain
vigilance during the experiment, there were 10 catch
trials consisting of sentences containing the word
mouse, where subjects were required to press a but-
ton. The three types of sentences were presented in
randomized order.

MEG amplitudes were extracted from a cluster
of 12 sensors over the left hemisphere where the
largest N400m responses were obtained over sub-
jects. Amplitudes in femto-Tesla were averaged
over these sensors and over a time window of 400-
600 ms. MEG data was digitized with a sample rate
of 1000 Hz and were filtered offline with a bandpass
of 0.1 to 40 Hz. Data was epoched relative to the
onset of the terminal word of each sentence using a
1200 ms window (-200 to 1000 ms).

4 Hypothesis-testing

Our goal in this paper is to identify the factors that
significantly influence the N400m, rather than pre-
dicting the N400m responses as accurately as possi-
ble. We use statistical methods for hypothesis test-
ing (e.g., likelihood ratio tests) to do this. The next
two paragraphs explain why we use these methods
rather than the held-out test set methodology usually
used in computational linguistics.

The goal of most statistical modeling in compu-
tational linguistics is prediction, which in turn in-
volves generalisation to previously-unseen contexts,
and the held-out test set methodology measures the
ability of a model to generalise correctly. One might
attempt to identify significant predictors by build-
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ing the best machine learning model of the N400m
one can, and see which features that model incor-
porates. However, many state-of-the-art machine
learning methods are capable of exploiting very
large sets of possibly redundant features and con-
trol over-learning via regularisation. The fact that
such a method includes a particular predictor as a
feature does not mean that this predictor is signifi-
cant; e.g., the method may assign the feature a very
small (but non-zero) weight. Intuitively, the goal of
a machine-learning method is to make the most ac-
curate prediction possible, not to identify the signif-
icant predictors.

Instead, we formulate the problem as one of hy-
pothesis testing. The statistical techniques used
to do this involve the construction of linear mod-
els similar to those used in some machine-learning
methods, but they also permit us to perform hypoth-
esis testing and posterior inference. For example,
by computing confidence intervals on a predictor’s
weight in such a model we can see whether that con-
fidence interval contains zero, and hence whether the
predictor is significant. We also use likelihood-ratio
tests below to assess the significance of predictors.

We used a quantile plot to identify outliers in
the N400m data; four responses were removed, and
one response value was unavailable, producing five
missing values for the N400m in total. The N400m
data range from -1,054 to 1,362 with a mean of 14,
a variance of 172 and an interquartile range of (-
68,100). We normalised the N400m responses by
subtracting the per-subject mean and then dividing
by the per-subject standard deviation. The N400m
responses are the values of the Response variable
in the models below.

4.1 Parser-based predictors

The Roark (2001) parser is an incremental syntac-
tic parser based language model that uses rich lex-
ical and syntactic contexts as features to predict its
next moves. It uses a beam search to explore the
space of partial parse trees. Bachrach (2008) found
that predictors derived from the incremental state of
the Roark parser were highly significant in models
of their fMRI data; this work motivated us to ex-
plore predictors like lexical entropy and lexical sur-
prisal based on the Roark parser here. Roark et al.
(2009) describes in detail how a variety of predictors

can be extracted from the Roark parser. We used
Roark’s parser to compute these predictors for the
target words in all 180 of the experimental sentences
used here.

4.2 4-gram language model predictors

We used the Gigaword corpus which contains
1.5 billion words in 82 million sentences (Graff et
al., 2005). We trained a 4-gram language model with
Kneser-Ney smoothing and unigram caching using
the SRI-LM toolkit (Stolcke, 2002). We used this
language model to estimate the conditional proba-
bilities of the target words given the words in their
preceding context in all of the experimental sen-
tences. These probabilities are often very close to
zero, can vary by many orders of magnitude, and
may be highly skewed. In order to mitigate the ef-
fect of these properties we used log ratio of these
probabilities to the unigram probabilities of the tar-
get words as predictors. This is called the P4 pre-
dictor below.

4.3 Pairwise-priming predictors

By definition, a 4-gram language model only cap-
tures dependencies between words within a 4 word
window. However, many of the experimental sen-
tences contain dependencies between words that are
more than 3 words apart. For example, in “con-
straining context” sentences such as The steamship
left on a cruise or We camped out in our tent, the
priming words steamship and camped do not appear
in the 4 word window containing the target words
cruise and tent, but these priming words are intu-
itively responsible for making the corresponding tar-
get words more likely.

It is plausible that “trigger” language models can
capture these kinds of longer-range dependencies
(Goodman, 2001). There are a wide variety of such
models, and it would be interesting to see which of
them are most useful for constructing N400 predic-
tors. Rather than using an existing trigger language
model, we develop our own “pairwise-priming” lan-
guage model here. This model is especially designed
to identify longer-range interactions between pairs
of words, which we believe is consistent with the
description given by Kutas and Federmeier (2000)
of the factors influencing the strength of the N400.
This model is also especially simple to estimate us-
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ing a variant of the EM training procedure for IBM
Model 1.

The model is a simple additive mixture model.
Each word wi in a sentence is associated with a con-
text Ci which is used to predict wi. The context Ci

is a bag containing the words that precede wi in the
sentence and that also belong to a 60,000 word vo-
cabulary W, plus 5 instances of a special null word
token.2 The vocabulary consists of the most frequent
words in the Gigaword corpus, from which 60 open-
class stop words have been removed. Our model
is parameterised by a matrix θ, where θwi|wj

is the
probability of generating wi given that wj is in the
contextCi. The probability P(wi | Ci) of generating
wi in the context Ci is approximated by an additive
mixture:

P(wi | Ci) =
1

|Ci|
∑

wj∈Ci

θwi|wj
.

This is a conventional generative model in which
each word wi is generated from the words in its
context Ci, and it is straightforward to estimate the
pairwise-priming parameters θ using a variant of
the IBM Model 1 EM training procedure. This
EM procedure computes a sequence of estimates
θ(1),θ(2), . . . that approximate the maximum likeli-
hood estimate θ̂ for θ. The M-step computes θ(t+1)

from the expected pairwise counts obtained using
θ(t):

θ
(t+1)
w′|w =

Eθ(t) [nw′,w]∑
w′′∈W Eθ(t) [nw′′,w]

.

The E-step calculates the expected counts
Eθ(t) [nw′,w] given the current parameters θ(t):

Eθ(t) [nw′,w] =
∑

i :wi=w′

j :wj=w,wj∈Ci

θ
(t)
w′|w∑

w′′∈Ci
θ
(t)
w′|w′′

In the E-step we skip the first four wi words of
every sentence because we think their contexts Ci

2The null word token plays the same role here as it does
in the IBM Model 1 machine translation model (Brown et al.,
1993). Moore (2004) points out that including multiple null
word tokens reduces the tendency of the IBM Model 1 to find
spurious low-frequency associations; we found here that while
including multiple null word tokens in the Ci is important, the
results do not depend strongly on the number of null word to-
kens used.

are likely to be too small to be useful, but we did
no experiments to test this. We initialised with the
uniform distribution (by using an argument analo-
gous to the one for IBM model 1 it is easy to show
the log-likelihood surface is convex), and ran 10 EM
iterations on the Gigaword corpus to estimate θ̂.

Just as for the 4-gram models, we used the pair-
wise priming model to compute the conditional
probability of the target words in the experimental
sentences. Like the 4-gram models, we used log ra-
tio of these probabilities to the probabilities of the
target words as predictors. This is called the Pq pre-
dictor below.

4.4 Latent semantic analysis predictors

Another predictor used in applications such as mod-
eling eye-movements and word-by-word reading
times, is Latent Semantic Analysis (LSA). The ba-
sic idea of the LSA model is to create a “meaning
representation” for words from a term-document co-
occurrence matrix. Here we construct the model
based on the co-occurrence of vocabulary and
content-bearing words in a fixed-sized window of
the Gigaword corpus (Graff et al., 2005). We used
the 2,000 most-frequent words in the corpus as the
content words and the 50,000 most-frequent words
as the vocabulary. Each row in the matrix represents
a vocabulary word, each column represents a content
word, and each entry is the co-occurrence count ni,j
of the ith vocabulary word and the jth content word
within a window with 15 words length. The co-
occurrence counts are normalised by dividing each
ni,j by the sum of all the counts in the correspond-
ing column:

wi,j =
ni,j∑
k nk,j

LSA performs dimensionality reduction using Sin-
gular Value Decomposition (SVD). In order to re-
tain 99% of the total variance, we used 795 right
eigenvectors of the normalised co-occurrence ma-
trix. Following Mitchell et al. (2010), we used the
LSA model to generate a numerical value indicating
the ”similarity” of the target word to the words in
its preceding context as follows: Let W1, W2, · · · ,
Wn denote vectors representing the context words
and let Wt denote a vector representing the target in
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a given sentence.

W1 W2 · · · Wn Wt
w1,1

w1,2
...

w1,m



w2,1

w2,2
...

w2,m

 · · ·

wn,1

wn,2
...

wn,m



wt,1

wt,2
...

wt,m


We multiply the context-word vectors element-wise
to produce a single vector H representing the con-
text as follows:

hi =
n∏

j=1

wj,i

Then the similarity of a target word to the context
words is given by the cosine of the angle between H
and Wt, i.e.:

sim(H,Wt) =
HTWt

‖H ‖‖Wt‖

We call sim(H,Wt) the LSA predictor below.

5 Experimental Results

We normalised the N400m responses by subtract-
ing the per-subject mean and then dividing by the
per-subject standard deviation. Similarly, we nor-
malised the values of predictors. We used the
non-linear regression package mgcv v1.7-6 (Wood,
2006; Wood, 2011) distributed with the R statis-
tical environment to predict the N400m response.
We used the manually-annotated context predictor
(Context) as a linear parametric predictor, and all
the other types of predictors i.e., the 4-gram lan-
guage model predictor (P4), the pairwise priming
predictor (Pq), the LSA predictor, and the predictors
based on Roark’s parser, as penalized cubic spline
functions (up to 20 degrees of freedom).

5.1 Models with one predictor
We first start with models with one predictor to find
out which predictors are significant. Table 1 lists
the significant predictors, where significance is de-
termined by a likelihood ratio test. Of all the pre-
dictors described by Roark et al. (2009) only the
LexH predictor (lexical entropy) is a significant pre-
dictor according to a likelihood-ratio test. Perhaps it

Predictor Df p-value
Context 1 1.53e-11 ***
Pq 2.3479 4.84e-10 ***
P4 2.067 5.30e-10 ***
LexH 3.2197 1.75e-04 ***
LSA 1.6707 5.28e-04 ***

Table 1: P-values and degrees of freedom as determined
by likelihood ratio test for non-linear regression models
with only one predictor

Context Pq P4 LexH
Pq -0.76∗∗∗

P4 -0.76∗∗∗ 0.96∗∗∗

LexH 0.41∗∗∗ -0.38∗∗∗ -0.38∗∗∗

LSA -0.15∗ 0.09 0.10 -0.06

Table 2: Correlation matrix of different types of predictor

should not be surprising that lexical entropy strongly
predicts the N400m response; the lexical entropy is
a measure of the predictive uncertainty of the target
word, and the N400 is strongest in less predictive
contexts.

5.2 Combining predictors

In this section, we combine all the predictors to cre-
ate a single model. From the correlation matrix
of the predictors (Table 2), we can see that some
of these predictors are highly correlated. Not sur-
prisingly, when we combined all the predictors we
discovered that some of predictors are redundant.
We performed backwards selection using p-values
to drop insignificant predictors (Wood, 2011). In
backwards selection, first we construct a model with
all the predictors, then we drop the single predic-
tor with the highest non-significant p-value from the
model. We repeat re-fitting, dropping insignificant
predictors until all remaining predictors are signifi-
cant. The results of performing backwards selection
show that only the manually-annotated context pre-
dictor and the LSA predictor are significant (Table
3):

Response ∼ Context + LSA

In order to construct a model without the
manually-annotated context predictor, we removed
the manually-annotated context predictor from the
model and re-performed backwards selection. The
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Predictor Df p-value
Context 1 2.34e-10 ***
LSA 2.779 0.0186 *

Table 3: P-values and degrees of freedom of the predic-
tors in the combined model after performing backwards
selection

Predictor Df p-value
LSA 3.165 0.00405 **
Pq 1.987 0.01817 *
P4 2.158 0.04340 *

Table 4: P-values and degrees of freedom of the pre-
dictors in the combined model without the manually-
annotated context predictor after performing backwards
selection

results show that the combination of the pairwise
priming predictor, the 4-gram language model pre-
dictor, and the LSA predictor are significant (Table
4):

Response ∼ LSA + Pq + P4

In order to minimise the effect of collinearity of
predictors, we applied PCA to find principal com-
ponents of the predictors’ space. In Table 5, the ma-
trix of eigenvectors is shown. Treating the principal
components as predictors, we performed backwards
selection to find a set of significant principal com-
ponents. In Table 6 the p-values of all the principal
components are presented. After performing back-
wards selection, only the first two principal compo-
nents are significant (Table 7):

Response ∼ PC1 + PC2

As can be seen, in the first principal component
(PC1) Context, Pq and P4 are dominant, while in
the second principal component LSA is dominant.
We can conclude that proposed predictors can be
grouped into two clusters; one that contains the LSA
predictor, and another that contains the manually-
annotated context predictor, the pairwise-priming
predictor, the 4-gram language model predictor, and
the lexical entropy predictor.

Hierarchical clustering also suggests that the set
of predictors cluster into two groups. Figure 1 de-
picts a hierarchical clustering of the predictors based
on Spearman’s rank correlation (Myers and Well,
2003). As this figure shows, the similarity between

PC1 PC2 PC3 PC4 PC5
Context 0.52 -0.01 0.10 0.85 0.01

Pq -0.55 -0.09 -0.24 0.36 0.71
P4 -0.55 -0.07 -0.24 0.37 -0.71

LexH 0.33 0.05 -0.94 -0.10 -0.00
LSA -0.10 0.99 0.01 0.07 0.01

Eigenvalue 2.92 0.98 0.76 0.29 0.04

Table 5: The principal components of the predictors’ cor-
relation matrix

Df p-value
PC1 1.000 2.23e-10 ***
PC2 5.230 0.00627 **
PC3 1.445 0.85781
PC4 1.000 0.59922
PC5 2.412 0.21918

Table 6: P-values and degrees of freedom for the princi-
pal components in the combined model before perform-
ing backwards selection

the LSA predictor and other predictors is close to
zero.

6 Conclusions and future work

This paper has studied a variety of predictors of the
N400m response derived from an incremental pars-
ing model (Roark et al., 2009), from Latent Se-
mantic Analysis, and from two language models
trained on the Gigaword corpus (Graff et al., 2005).
We found that many of the predictors derived from
these models were significant, suggesting that these
kinds of models may be useful for understanding the
N400m response. We also examined combining pre-
dictors to build a single model.

We can summarize our results as follows:

• A wide range of predictors are significant pre-
dictors of the N400m response on their own:
-the manually-annotated context predictor,
Context
-the LSA predictor, LSA
-the lexical entropy predictor, LexH, based on
Roark’s parsing model
-the 4-gram language model predictor, P4, and
-the pairwise-priming predictor, Pq

• These predictors can be grouped into two
clusters:
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Df p-value
PC1 1.188 5.78e-14 ***
PC2 4.848 0.0052 **

Table 7: P-values and degrees of freedom for the princi-
pal components in the combined model after performing
backwards selection
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Figure 1: Hierarchical clustering of predictors, using
square of Spearman’s rank correlation as similarity mea-
sure

-1: The manually-annotated context predictor
(Context), the 4-gram language model
predictor (P4), the pairwise-priming predictor
(Pq), and the lexical entropy (LexH), and
-2: The Latent Semantic Analysis predictor
(LSA)

This latter result suggests that these two groups
of predictors are capturing separate factors of the
N400m response. Of course this work just scratches
the surface in terms of possible applications of sta-
tistical language models to neurolinguistics. Clearly
it would be interesting to apply a much wider va-
riety of statistical models to the N400 data. Per-
haps parsing models would do better if they could
be trained on Gigaword-sized corpora. As we noted
above, MEG is capable of producing rich temporal
and spatial information about neural processes, pre-

senting new opportunities for using statistical lan-
guage models to help understand how language is
instantiated in the human brain.
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